JPS62291066A - Manufacture of vertical field-effect transistor - Google Patents

Manufacture of vertical field-effect transistor

Info

Publication number
JPS62291066A
JPS62291066A JP61135295A JP13529586A JPS62291066A JP S62291066 A JPS62291066 A JP S62291066A JP 61135295 A JP61135295 A JP 61135295A JP 13529586 A JP13529586 A JP 13529586A JP S62291066 A JPS62291066 A JP S62291066A
Authority
JP
Japan
Prior art keywords
mask
oxide film
semiconductor substrate
polysilicon
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61135295A
Other languages
Japanese (ja)
Other versions
JPH0736441B2 (en
Inventor
Masanori Yamamoto
山本 正徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61135295A priority Critical patent/JPH0736441B2/en
Publication of JPS62291066A publication Critical patent/JPS62291066A/en
Publication of JPH0736441B2 publication Critical patent/JPH0736441B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To render a process more simple and characteristics of products more stable as well as elements more compact by forming a impurity area of a conductivity opposite to that of a semiconductor substrate and taking other measures, thereby performing an ultra high energy ion implantation using a mask for etching or a residual polysilicon as the mask. CONSTITUTION:The surface of semiconductor substrate 1 has stepped portions in its thickness to grow an oxide film 2 and permits the stepped portions to grow polysilicons 3 on the oxide film 2. After that, the polysilicons 3 are treated by etching mainly at around thicker portions of film thickness of the oxide film 2 according to a technology of photo lithography. And then, an ultra high energy ion implantation 4 is carried out by using as mask 15 for etching and a residual polysilicon 3 as the mask to form a first impurity area 5 of a conductivity type opposite to that of the substrate 1. In addition, a second impurity area 6 of a conductive type that is identical to that of substrate 1 is formed in the first impurity area 5 by using the above residual polysilicon 3 as well as portions having the thicker portions of film thickness of the oxide film 2 as the mask to obtain a vertical type field effect transistor having a source 6 and gate 14 on the surface of semiconductor substrate 1 as well as a drain 9 on the rear face of its substrate.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 本発明は、縦型′亀界効呆トランジスタ(以下、縦型M
 OS I′I’ E Tと記す。)の製造方法に関し
、特に工程の簡略化、製品の特性安定化及び素子の縮小
化に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention [Industrial Field of Application] The present invention relates to a vertical M field effect transistor (hereinafter referred to as a vertical M
It is written as OS I'I' ET. ), and particularly relates to simplification of processes, stabilization of product characteristics, and miniaturization of devices.

〔従来の技術〕[Conventional technology]

従来の献型蛋界効果トランジスタは、第3図に示すよう
な製造方法で製造されていた。まず第3図(a)に示す
ように、半導体基板1上に酸化膜2を成長し、フォトリ
ソグラフィ技術を用いて、第3図(b)に示すようにレ
ジス)10を形成し、酸化膜2をエツチングしてP″ベ
ース領域11を形成する(第3図(C))。さらに第3
図(d)に示すように、酸化膜形成後P−ペース領域1
1−ヒに酸化膜12を残し、第3図(e)に示すように
ポリシリコンを成長し、フォト・リングラフィ技術を用
いて、ポリシリコン3を形成し、ポリシリコン3とマス
ク酸化膜12をマスクにして、イオン注入10〜100
 keV  程度のイオン注入により(不純物ピーク深
を、500〜3000A)Pベース領域5及び、N+ソ
ース領域6を形成し、さらに第3図(f)に示すように
隔間絶縁膜7を形成し、フォト・リソグラフィ技術を用
いて窓あけを行ない、ソースアルミ電極8を形成する。
A conventional protein field effect transistor has been manufactured by a manufacturing method as shown in FIG. First, as shown in FIG. 3(a), an oxide film 2 is grown on a semiconductor substrate 1, and a resist 10 is formed using photolithography technology as shown in FIG. 3(b). 2 to form a P″ base region 11 (FIG. 3(C)).
As shown in Figure (d), P-paste region 1 after oxide film formation
1- Leaving the oxide film 12 on the substrate, grow polysilicon as shown in FIG. Using as a mask, perform 10 to 100 ion implantations.
A P base region 5 and an N+ source region 6 are formed by ion implantation of about keV (impurity peak depth: 500 to 3000 A), and a spacing insulating film 7 is further formed as shown in FIG. 3(f). A window is opened using photolithography technology, and a source aluminum electrode 8 is formed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の縦型電界効果トランジスタの製造方法に
おいては、ポリシリコンをマスクにして、低エネルキイ
オン注入を用いてベース領域を形成していたので、不純
物ピーク深さが、500〜3000人となりバック・ゲ
ート部には、先にベース領域と同じ導1N型の不純物領
域を形成しておかなければベース領域がつながらず、耐
圧が小さくなり、また、ベース領域間に不純物領域を形
成する場合、工程が多くなるという欠点を持っていた。
In the conventional manufacturing method of vertical field effect transistors described above, the base region is formed using low-energy ion implantation using polysilicon as a mask, so the impurity peak depth is 500 to 3000, which is a back-up.・If an impurity region of the same type as the base region is first formed in the gate region, the base region will not be connected and the withstand voltage will be reduced. Also, when forming an impurity region between the base regions, It had the disadvantage that there were a lot of

また、Pペース間にすき間が発生するので、P−ベース
領域が必要なため、工程が複雑になりさらに、P−ベー
スとPペースを別々に形成するため、目ずれなどが発生
した場合、チャンネル部などが重なり、特性が安定しな
いという欠点を持っていた。
In addition, since a gap occurs between the P-base regions, the process becomes complicated.Furthermore, since the P-base and P-pace are formed separately, if misalignment occurs, the channel It had the disadvantage that the parts overlapped and the characteristics were unstable.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明は、縦型A40SFB’l’の製造方法において
、ポリシリをマスクにして、Pペース領域を超高エネル
ギ・イオンを用いて(例えば、0.1〜5MeV)酸化
膜を通して形成し、逆に、N+ソース領域は、ポリシリ
及び酸化膜をマスクとして形成する。
In the manufacturing method of vertical A40SFB'l', the present invention uses polysilicon as a mask to form a P space region through an oxide film using ultra-high energy ions (for example, 0.1 to 5 MeV), and vice versa. , N+ source regions are formed using polysilicon and oxide films as masks.

本発明の縦型電界効果トランジスタの製造方法は、半導
体基板表面にソース及びゲートを有し裏面にドレインを
有する縦型電界効果トランジスタの製造方法において、
半導体基板表面に酸化膜を厚さに段差をつけて成長する
工程と、その上にポリシリコンを成長する工程と、フォ
トリソグラフィ技術を用いて酸化膜厚の厚い部分を中心
にポリシリコンをエツチングする工程と、エツチング用
マスクおよび残存ポリシリコンをマスクにして超高エネ
ルギーイオン注入を行い半導体基板と逆の導電型の第1
不純物領域を形成する工程と、さらにその第1不純物領
域内に前記残存ポリシリコン及び前記酸化膜厚の厚い部
分をマスクにして半導体基板と同じ導電型の第2不純物
領域を形成する工程とを有することを特徴とする。
A method for manufacturing a vertical field effect transistor of the present invention includes a method for manufacturing a vertical field effect transistor having a source and a gate on the front surface of a semiconductor substrate and a drain on the back surface.
A process of growing an oxide film on the surface of a semiconductor substrate with steps in thickness, a process of growing polysilicon on top of the oxide film, and a process of etching the polysilicon mainly in the thick oxide film using photolithography technology. In the process, ultra-high energy ion implantation is performed using an etching mask and the remaining polysilicon as a mask to form a first layer of conductivity type opposite to that of the semiconductor substrate.
forming an impurity region; and further forming a second impurity region of the same conductivity type as the semiconductor substrate using the remaining polysilicon and the thick oxide film as a mask in the first impurity region. It is characterized by

〔実施例〕〔Example〕

第1図は、本発明の第1実施例の断面図である。 FIG. 1 is a sectional view of a first embodiment of the invention.

第1図(a)に示すように、半導体基板1に、酸化膜2
を段差例えば、3000A〜2μmをつけて成長させ、
その上に第1図(b)に示すようにポリシリコン3を成
長し、フォト・リソグラフィ技術を用いてエツチングし
、その上より、超高エネルギーイオン注入4(例えば0
.1〜5MkeV)を行ない、イオン注入後のピーク値
が、5000^〜3μmになるようにする。次にポリシ
リコン3及びレジスト15をマスクにして、酸化膜2を
通してPペース領域5を形成する(第1図(C))。次
に、ポリシリ3及び、酸化膜2をマスクにして、N+ソ
ース領域6を形成する(第1図(d))。
As shown in FIG. 1(a), an oxide film 2 is formed on a semiconductor substrate 1.
is grown with a step of, for example, 3000A to 2μm,
Polysilicon 3 is grown thereon as shown in FIG. 1(b), etched using photolithography, and ultra-high energy ion implantation 4 (for example
.. 1 to 5 MkeV) so that the peak value after ion implantation is 5000 to 3 μm. Next, using the polysilicon 3 and the resist 15 as masks, a P space region 5 is formed through the oxide film 2 (FIG. 1(C)). Next, using the polysilicon 3 and the oxide film 2 as a mask, an N+ source region 6 is formed (FIG. 1(d)).

以上のようにすることにより、P−領域を形成すること
なく、バックゲート部14を形成できる=5− ため、工程を簡略化できる。また、P−ベースの大きさ
をセル設置l”時に考慮に入れる必要がなくなるため、
セルの縮小化を計ることができる。
By doing as described above, the back gate portion 14 can be formed without forming the P- region, so that the process can be simplified. In addition, there is no need to take the size of the P-base into consideration when installing the cell.
Cell size can be reduced.

第2図は、本発明の第2の実施例の縦断面図である。第
2図は、第1図のレジスト15を、アルミカバー16に
変更した例であり、他は第1の実施例と同一である。
FIG. 2 is a longitudinal sectional view of a second embodiment of the invention. FIG. 2 shows an example in which the resist 15 in FIG. 1 is replaced with an aluminum cover 16, and the rest is the same as the first embodiment.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、縦型MO8FETの製造
において、超高エネルギーイオン注入を用いることによ
り、Pベース領域は、ポリシリゲートもしくは、ポリシ
リ・エツチング時のカバーをマスクにして、バック・ゲ
ート部酸化膜を通して形成し、N+ソース領域は、ポリ
シリコン及び酸化膜をマスクにして形成する。
As explained above, the present invention uses ultra-high energy ion implantation in the manufacturing of vertical MO8FETs to oxidize the back gate region of the P base region using polysiligate or a cover during polysilicon etching as a mask. The N+ source region is formed using polysilicon and an oxide film as a mask.

これにより、P−ベース領域を形成しなくてよいので、
工程を簡略化でき、また、バ、り・ゲート面積を確保す
れば、P一層の拡散拡がりなどを考慮に入れることなく
素子を設計することができるため、それだけ素子の縮小
化を計ることができるという効果がある。
This eliminates the need to form a P-base region, so
The process can be simplified, and if the barrier/gate area is secured, the device can be designed without taking into account further diffusion of P, so the device can be made smaller. There is an effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(d)は本発明の第1の実施例の工程断
面図、第2図(a)〜(d)は本発明の第2の実施例の
工程断面図、第3図(a)〜(f)は従来の縦型MO8
FETの工程断面図である。 1・・・・・・N型半導体基板、2・・・・・・酸化膜
、3・・・・・・ポリシリ、4・・・・・・超高エネル
ギイオン注入、5・・・・・・Pベース領域、6・・・
・・・N+ソース領域、7・・・・−・層間絶縁膜、8
・・・・・・ソース・アルミ電極、9・・・・・・ドレ
イン電極、10・・・・・・フォト・レジスト、11・
・・・・・P−ベース領域、12・・・・・・マスク酸
化膜、13・・・・・・チャンネル部、14−・・・・
・バック・ゲート部、15・・・・・・レジスト、16
・・・・・・アルミ・カバー。 2、\、 代理人 弁理士  内 原   晋:  ′井 /I!
[’ □□−−力 −づ 15ニ レジスト $ 2 図 特開口UG2−291066  (4)弄3W!J (Cλ
1(a) to (d) are process cross-sectional views of the first embodiment of the present invention, FIGS. 2(a) to (d) are process cross-sectional views of the second embodiment of the present invention, and FIG. Figures (a) to (f) are conventional vertical MO8
It is a process sectional view of FET. 1... N-type semiconductor substrate, 2... Oxide film, 3... Polysilicon, 4... Ultra-high energy ion implantation, 5...・P base area, 6...
...N+ source region, 7...--interlayer insulating film, 8
...Source aluminum electrode, 9...Drain electrode, 10...Photoresist, 11.
...P-base region, 12...Mask oxide film, 13...Channel part, 14-...
・Back gate section, 15...Resist, 16
...Aluminum cover. 2,\, Agent Patent Attorney Susumu Uchihara: 'I/I!
[' □□--Force-zu 15 Ni Resist $ 2 Special opening UG2-291066 (4) Play 3W! J (Cλ

Claims (1)

【特許請求の範囲】[Claims] 半導体基板表面にソース及びゲートを有し裏面にドレイ
ンを有する縦型電界効果トランジスタの製造方法におい
て、半導体基板表面に酸化膜を厚さに段差をつけて成長
する工程と、その上にポリシリコンを成長する工程と、
フォトリソグラフィ技術を用いて酸化膜厚の厚い部分を
中心にポリシリコンをエッチングする工程と、エッチン
グ用マスク及び残存ポリシリコンをマスクにして超高エ
ネルギーイオン注入を行ない半導体基板と逆の導電型の
第1不純物領域を形成する工程と、さらに、その第1不
純物領域内に前記残存ポリシリコン及び前記酸化膜厚の
厚い部分をマスクにして半導体基板と同じ導電型の第2
不純物領域を形成する工程とを有することを特徴とする
縦型電界効果トランジスタの製造方法。
A method for manufacturing a vertical field effect transistor having a source and a gate on the surface of a semiconductor substrate and a drain on the back surface includes a step of growing an oxide film on the surface of the semiconductor substrate with steps in thickness, and a step of growing polysilicon on the surface of the semiconductor substrate. The process of growing and
A process of etching the polysilicon mainly in the thick oxide film using photolithography technology, and performing ultra-high energy ion implantation using the etching mask and the remaining polysilicon as a mask to form a semiconductor substrate with a conductivity type opposite to that of the semiconductor substrate. forming a second impurity region of the same conductivity type as the semiconductor substrate using the remaining polysilicon and the thick oxide film as a mask in the first impurity region;
1. A method for manufacturing a vertical field effect transistor, comprising the step of forming an impurity region.
JP61135295A 1986-06-10 1986-06-10 Method for manufacturing vertical field effect transistor Expired - Fee Related JPH0736441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61135295A JPH0736441B2 (en) 1986-06-10 1986-06-10 Method for manufacturing vertical field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61135295A JPH0736441B2 (en) 1986-06-10 1986-06-10 Method for manufacturing vertical field effect transistor

Publications (2)

Publication Number Publication Date
JPS62291066A true JPS62291066A (en) 1987-12-17
JPH0736441B2 JPH0736441B2 (en) 1995-04-19

Family

ID=15148358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61135295A Expired - Fee Related JPH0736441B2 (en) 1986-06-10 1986-06-10 Method for manufacturing vertical field effect transistor

Country Status (1)

Country Link
JP (1) JPH0736441B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0667035A1 (en) * 1992-02-11 1995-08-16 Ixys Corporation Single diffusion process for fabricating semiconductor devices
WO2011013380A1 (en) * 2009-07-31 2011-02-03 Fuji Electric Systems Co., Ltd. Manufacturing method of semiconductor apparatus and semiconductor apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61158180A (en) * 1984-12-28 1986-07-17 Tdk Corp Manufacture of mis-type semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61158180A (en) * 1984-12-28 1986-07-17 Tdk Corp Manufacture of mis-type semiconductor device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0667035A1 (en) * 1992-02-11 1995-08-16 Ixys Corporation Single diffusion process for fabricating semiconductor devices
EP0667035A4 (en) * 1992-02-11 1996-07-31 Ixys Corp Single diffusion process for fabricating semiconductor devices.
WO2011013380A1 (en) * 2009-07-31 2011-02-03 Fuji Electric Systems Co., Ltd. Manufacturing method of semiconductor apparatus and semiconductor apparatus
JP2012527114A (en) * 2009-07-31 2012-11-01 富士電機株式会社 Semiconductor device manufacturing method and semiconductor device
US9136352B2 (en) 2009-07-31 2015-09-15 Fuji Electric Co., Ltd. Manufacturing method of semiconductor apparatus and semiconductor apparatus
US9312379B2 (en) 2009-07-31 2016-04-12 Fuji Electric Co., Ltd. Manufacturing method of semiconductor apparatus and semiconductor apparatus
US9496370B2 (en) 2009-07-31 2016-11-15 Fuji Electric Co., Ltd. Manufacturing method of semiconductor apparatus and semiconductor apparatus

Also Published As

Publication number Publication date
JPH0736441B2 (en) 1995-04-19

Similar Documents

Publication Publication Date Title
US4149307A (en) Process for fabricating insulated-gate field-effect transistors with self-aligned contacts
JPS62291066A (en) Manufacture of vertical field-effect transistor
JPH06349856A (en) Thin-film transistor and its manufacture
JPS63244683A (en) Field effect type semiconductor device and its manufacture
JPS6025028B2 (en) Manufacturing method of semiconductor device
JPH0472770A (en) Manufacture of semiconductor device
JPS63305566A (en) Semiconductor device and manufacture thereof
JPH0964193A (en) Manufacture of semiconductor device
JPS6211516B2 (en)
KR0166888B1 (en) Thin film transistor & its making method
KR100250686B1 (en) Manufacturing method of a semiconductor device
JPS6169176A (en) Manufacture of semiconductor device
JPH03148834A (en) Manufacture of mos transistor
JPS60160168A (en) Manufacture of mos semiconductor device
JPH04146627A (en) Field-effect type semiconductor device and manufacture thereof
KR970006740B1 (en) Method for manufacturing thin film transistor
JPH0290628A (en) Manufacture of semiconductor device
JPS61166154A (en) Manufacture of mis type semiconductor device
JPH0243740A (en) Manufacture of mos semiconductor element
JPH03227526A (en) Manufacture of semiconductor element
JPH0233940A (en) Manufacture of semiconductor device
JPH0547982B2 (en)
JPH05182977A (en) Manufacture of semiconductor device
JPH03215971A (en) Manufacture of complementary semiconductor device
JPS63291471A (en) Semiconductor device and manufacture thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees