JPH046217Y2 - - Google Patents

Info

Publication number
JPH046217Y2
JPH046217Y2 JP1988158023U JP15802388U JPH046217Y2 JP H046217 Y2 JPH046217 Y2 JP H046217Y2 JP 1988158023 U JP1988158023 U JP 1988158023U JP 15802388 U JP15802388 U JP 15802388U JP H046217 Y2 JPH046217 Y2 JP H046217Y2
Authority
JP
Japan
Prior art keywords
layer
layers
semiconductor
type
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1988158023U
Other languages
Japanese (ja)
Other versions
JPH01118471U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1988158023U priority Critical patent/JPH046217Y2/ja
Publication of JPH01118471U publication Critical patent/JPH01118471U/ja
Application granted granted Critical
Publication of JPH046217Y2 publication Critical patent/JPH046217Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 技術分野 本考案は、少なくとも屈折率の周期的変化によ
る分布型の帰還結合により発光させる分布帰還型
半導体レーザ装置、特に、半導体層を多段に積層
して面発光させるように構成した分布帰還型面発
光半導体レーザ装置に関するものである。
[Detailed Description of the Invention] Technical Field The present invention relates to a distributed feedback semiconductor laser device that emits light by distributed feedback coupling based on at least periodic changes in refractive index, and in particular, to a distributed feedback semiconductor laser device that emits light by distributed feedback coupling due to periodic changes in refractive index, and in particular, a distributed feedback semiconductor laser device that emits light using distributed feedback coupling caused by periodic changes in refractive index. The present invention relates to a distributed feedback surface emitting semiconductor laser device configured as follows.

従来技術 一般に、長距離光通信用光源として高速変調時
に単一モード発振を得るに好適なレーザ装置とし
てこの種分布帰還(DFB)型半導体レーザ装置
の研究開発が進められているが、従来のこの種分
布帰還型半導体レーザ装置は、表面に回折格子を
形成した半導体層の表面をさらに半導体層により
被つて構成し、回折格子による屈折率の周期的変
化に共振した縦モードの発光を用いたものであつ
て、再現性の良好な単一モード化に問題が残され
ており、構造の非対称化および短共振器化を必要
とするなど、種々の問題があつた。
Prior Art In general, research and development is progressing on distributed feedback (DFB) type semiconductor laser devices as a laser device suitable for obtaining single mode oscillation during high-speed modulation as a light source for long-distance optical communication. A species distribution feedback semiconductor laser device is constructed by covering the surface of a semiconductor layer with a diffraction grating formed on its surface with a further semiconductor layer, and uses longitudinal mode light emission that resonates with periodic changes in the refractive index caused by the diffraction grating. However, problems remain in achieving a single mode with good reproducibility, and there are various problems such as the need to make the structure asymmetric and shorten the resonator.

すなわち、従来の回折格子を用いた分布帰還型
半導体レーザ装置においては、回折格子を形成し
た半導体層の表面上に他の半導体結晶層を成長さ
せるので、その結晶成長の過程にてさきに形成し
た下地表面上の回折格子の形が崩れてしまい、回
折格子の保存が困難であつた。また、キヤリヤ集
中による発光領域の活性層の近傍に回折格子が形
成されるために、回折格子を形成した下地表面上
に形成する半導体層の結晶に不整が生ずる恐れが
ある。さらに、回折格子による等価的な屈折率の
変化は大きくなし得ないので、分布帰還のための
結合係数を大きくなし得ないために、分布帰還モ
ードの発光を得るためには回折格子の格子数を増
大させねばならず、共振器長が長くなるので、単
一モード化が困難となる。しかも、回折格子は、
その格子間隔が狭いうえに、格子端面の切り方が
難しく、良好に位相整合のとれた反射端面を形成
するのが困難であり、そのうえ、共振可能の縦モ
ードが回折格子によつて決まる波長の前後に二つ
存在するので、二様の縦モード発振が同時に生ず
る恐れがあるなど、回折格子を用いた従来の分布
帰還型半導体レーザ装置には幾多の欠点があつ
た。
In other words, in a conventional distributed feedback semiconductor laser device using a diffraction grating, another semiconductor crystal layer is grown on the surface of the semiconductor layer on which the diffraction grating has been formed. The shape of the diffraction grating on the base surface was distorted, making it difficult to preserve the diffraction grating. Further, since a diffraction grating is formed near the active layer of the light emitting region due to carrier concentration, there is a risk that irregularities may occur in the crystal of the semiconductor layer formed on the underlying surface on which the diffraction grating is formed. Furthermore, since the change in the equivalent refractive index due to the diffraction grating cannot be made large, the coupling coefficient for distributed feedback cannot be made large. This increases the resonator length, making it difficult to achieve a single mode. Moreover, the diffraction grating is
In addition to the narrow grating spacing, it is difficult to cut the grating end faces, and it is difficult to form reflective end faces with good phase matching.Furthermore, the longitudinal mode that can resonate is at a wavelength determined by the diffraction grating. Conventional distributed feedback semiconductor laser devices using a diffraction grating have many drawbacks, such as the possibility that two types of longitudinal mode oscillation may occur simultaneously because there are two at the front and the rear.

一方、分布帰還により発振する半導体レーザ装
置を短共振器化して単一モードを得るには、半導
体レーザ装置を面発光を行なうように構成するの
が好適であることが知られており、多層構造の半
導体層の両端面に同様に多層構造にしてブラグ反
射を行わさせるブラグレフレクタを設けた分布ブ
ラグ反射(DBR)型半導体レーザ装置の開発が
試みられているが、ブラグ反射型半導体レーザ装
置には、前述した再現性の良好な単一モード化と
いう分布型半導体レーザ装置に共通の問題のほか
に、多層構造とするブラグレフレクタは通常の金
属薄層による反射鏡に比して格段に厚くなるため
に半導体レーザ装置の短共振器化が困難であるう
えに、多層構造の共振発光層とブラグ反射層との
整合が困難であるという本質的な問題があり、未
だ十分な性能をもつて実用化し得るには到つてお
らず、良好な性能をもつて高速変調可能の単一縦
モード発振を行なう半導体レーザ装置は未だ実現
されていない。
On the other hand, in order to obtain a single mode by shortening a semiconductor laser device that oscillates by distributed feedback and obtaining a single mode, it is known that it is suitable to configure the semiconductor laser device to emit surface light. Attempts have been made to develop a distributed Bragg reflection (DBR) type semiconductor laser device in which Bragg reflectors with a multilayer structure are provided on both end faces of a semiconductor layer to perform Bragg reflection. In addition to the aforementioned problem common to distributed semiconductor laser devices, such as achieving a single mode with good reproducibility, the Bragg reflector, which has a multilayer structure, is much thicker than a normal reflector made of thin metal layers. In addition to making it difficult to shorten the cavity length of a semiconductor laser device, there is also the inherent problem that it is difficult to match the resonant light-emitting layer of the multilayer structure with the Bragg reflection layer. It has not yet been put to practical use, and a semiconductor laser device that performs single longitudinal mode oscillation that has good performance and is capable of high-speed modulation has not yet been realized.

なお、分布帰還型面発光半導体レーザ装置とし
ては、多層構造の両端面には特に反射手段を設け
ず、界面反射を利用するようにしたものもある
が、界面反射が不確実で安定なレーザ発振が得難
く、充分な分布帰還によつてレーザ発振を起こさ
せるには層数が極めて多い多層構造にする必要が
あり、装置が長大になる欠点があつた。
Note that some distributed feedback surface-emitting semiconductor laser devices utilize interface reflection without providing any reflecting means on both end faces of a multilayer structure, but interface reflection is uncertain and stable laser oscillation is not possible. is difficult to obtain, and in order to cause laser oscillation with sufficient distributed feedback, it is necessary to have a multilayer structure with an extremely large number of layers, resulting in a disadvantage that the device becomes long.

考案の要点 本考案の目的は、上述した従来の欠点を除去
し、多層構造の半導体層に容易に電流を注入して
短共振器化し、単一縦モードの分布帰還共振によ
りレーザ発振の閾値を下げて強力な面発光を再現
性よく行ない得るようにした分布帰還型面発光半
導体レーザ装置を提供することにある。
Summary of the invention The purpose of the invention is to eliminate the above-mentioned conventional drawbacks, easily inject current into a multilayered semiconductor layer to create a short cavity, and increase the threshold of laser oscillation by distributed feedback resonance in a single longitudinal mode. It is an object of the present invention to provide a distributed feedback surface emitting semiconductor laser device which can perform strong surface emitting light with good reproducibility.

すなわち、本考案分布帰還型面発光半導体レー
ザ装置は、それぞれ結晶を形成する族元素およ
び族元素の互いに異なる組合わせよりなる活性
半導体層と相互間にpn接合をなすp型およびn
型の半導体層との複数層を半導体基板上に順次交
互に積層して構成し、前記各層に平行の両端面の
少なくとも一方に同軸に配置して前記各層に垂直
の方向の電流路を局限するように構成した反射鏡
面を兼ねる電極層を設け、当該電極層を介して電
流を前記各層に垂直に注入することによつて前記
複数層における光屈折率および光増幅利得の周期
的変化および上下両端面間の反射に共振して発光
するように構成し、共振発光の波長をλとし、前
記活性半導体層の屈折率をn1とし、前記P型およ
びn型の半導体層の屈折率をn2として、前記活性
半導体層の層厚をλ/4n1とし、前記p型および
n型の半導体層の層厚を λ/4n2としたことを特徴とするものである。
That is, the distributed feedback type surface emitting semiconductor laser device of the present invention has active semiconductor layers formed of group elements forming crystals and different combinations of group elements, and p-type and n-type active semiconductor layers forming p-n junctions therebetween.
A plurality of semiconductor layers are sequentially and alternately laminated on a semiconductor substrate, and are arranged coaxially on at least one of both end faces parallel to each of the layers to confine a current path in a direction perpendicular to each of the layers. By providing an electrode layer that also serves as a reflective mirror surface and injecting current perpendicularly into each layer through the electrode layer, periodic changes in the optical refractive index and optical amplification gain in the plurality of layers and both upper and lower ends can be observed. It is configured to emit light by resonating with reflection between surfaces, the wavelength of the resonant light emission is λ, the refractive index of the active semiconductor layer is n1 , and the refractive index of the P-type and n-type semiconductor layers is n2. The active semiconductor layer has a layer thickness of λ/4n 1 , and the p-type and n-type semiconductor layers have a layer thickness of λ/4n 2 .

実施例 以下に図面を参照して実施例につき本考案を詳
細に説明する。
Embodiments The present invention will be described in detail below with reference to the drawings.

まず、本考案分布帰還型面発光半導体レーザ装
置の基本的構成例を第1図に示す。図示の構成に
よる半導体レーザ装置は、結晶成長可能な族元
素と族元素との組合わせよりなり、キヤリヤの
集中により活性領域をなして発光する活性半導体
層、例えば、GaInAsP層と、同様に結晶成長可
能な族元素と族元素との他の組合わせよりな
り、電流の注入に寄与するpn接合半導体層、例
えばpn接合InP層とを交互に多段に積層した多層
構造の半導体装置の両端面に、電流を流すための
p型およびn型の半導体層、例えばInP層をそれ
ぞれ被着したものを、半導体基板上、例えばn型
InP基板上に設け、かかる構成の透明な半導体装
置の両端面に反射鏡としても作用する金属電極薄
層をそれぞれ設けて電圧を印加し、活性半導体層
とpn接合半導体層との交互積層による屈折率と
光増幅利得との周期的変化に共振した単一縦モー
ド発光を一方の端面から取り出すようにしたもの
である。
First, an example of the basic configuration of the distributed feedback surface emitting semiconductor laser device of the present invention is shown in FIG. The semiconductor laser device with the configuration shown in the figure is composed of a combination of group elements that can be grown as crystals, and has an active semiconductor layer, such as a GaInAsP layer, that forms an active region and emits light by concentration of carriers, and a layer that can grow crystals as well. On both end faces of a semiconductor device having a multilayer structure in which pn junction semiconductor layers made of other possible combinations of group elements and group elements and contributing to current injection, such as pn junction InP layers, are stacked alternately in multiple stages, A p-type and an n-type semiconductor layer, for example, an InP layer, are deposited on a semiconductor substrate, for example, an n-type
A thin metal electrode layer is provided on both end faces of a transparent semiconductor device having such a structure, which is provided on an InP substrate, and also serves as a reflecting mirror, and a voltage is applied to the transparent semiconductor device. Single longitudinal mode light emission that resonates with periodic changes in index and optical amplification gain is extracted from one end face.

すなわち、第1図示の構成による分布帰還は、
活性領域たるGaInAsP層40とp型InP層50お
よびn型InP層60よりなるpn接合半導体層との
多段積層によつて生じ、図の中央部に矢印をもつ
て示す経路10により共振して発光する。また、
図に示すように、n型InP基板30上に結晶成長
させたn型InP層35を被着し、その上に上述し
たGaInAsP層40、p型InP層50およびn型
InP層60を順次交互に結晶成長させて積層被着
し、かかる積層構造の最終GaInAsP層40上に
p型InP層70を結晶成長させて被着する。かか
る積層構造による共振発光の波長をλとし、
GaInAsP層の屈折率をn1とし、InP層の屈折率を
n2として、GaInAsP層40の層厚はλ/4n1とし、 p型およびn型のInP層50および60よりなる
pn接合InP層の層厚はλ/4n2として、各層の境界面 からの反射光が互いに同相となつて多重干渉する
ように構成する。なお、かかる積層構造に電流を
流すために両端面に被着するn型およびp型の
InP層35および70は、図に示すように、積層
構造における各層厚より厚くする。かかる構成の
半導体装置を適切な厚さ、例えば10ミクロン程度
の厚さにしたn型InP基板上に設け、好ましくは
中央部に設けて共振経路10の領域を限定する開
口を有する絶縁層、例えばSiO2層80を介して、
例えばAu/ZnもしくはAu/Crの合金よりなる
透明なp側(+)電極薄層100を上端面に被着
するとともに、同様に中央部に設けて共振経路1
0の領域を限定する開口を有する絶縁層、例えば
SiO2層90を介して、例えばAu/Snもしくは
Au/Geの合金よりなるn側(−)電極薄層11
0を下端面に被着してある。
In other words, the distributed feedback with the configuration shown in Figure 1 is as follows:
This occurs due to the multi-layer stacking of the GaInAsP layer 40 serving as the active region and the pn junction semiconductor layer consisting of the p-type InP layer 50 and the n-type InP layer 60, and it resonates and emits light through a path 10 indicated by an arrow in the center of the figure. do. Also,
As shown in the figure, a crystal-grown n-type InP layer 35 is deposited on an n-type InP substrate 30, and the above-mentioned GaInAsP layer 40, p-type InP layer 50 and n-type
InP layers 60 are sequentially and alternately crystal-grown and deposited in a laminated manner, and a p-type InP layer 70 is crystal-grown and deposited on the final GaInAsP layer 40 of this laminated structure. Let λ be the wavelength of resonant light emission from such a laminated structure,
The refractive index of the GaInAsP layer is n 1 , and the refractive index of the InP layer is
n 2 , the thickness of the GaInAsP layer 40 is λ/4n 1 , and consists of p-type and n-type InP layers 50 and 60.
The layer thickness of the pn junction InP layer is set to λ/4n 2 so that the reflected lights from the boundary surfaces of each layer are in phase with each other and cause multiple interference. In addition, in order to flow current through such a laminated structure, n-type and p-type are coated on both end faces.
As shown in the figure, the InP layers 35 and 70 are made thicker than each layer in the stacked structure. A semiconductor device having such a configuration is provided on an n-type InP substrate having an appropriate thickness, for example, about 10 microns, and an insulating layer, for example, having an opening provided preferably in the center to limit the region of the resonance path 10, is provided. Through the SiO 2 layer 80,
For example, a transparent p-side (+) electrode thin layer 100 made of an alloy of Au/Zn or Au/Cr is deposited on the upper end surface, and is similarly provided in the center part to form a resonance path 1.
An insulating layer with an opening defining a region of 0, e.g.
For example, Au / Sn or
N-side (-) electrode thin layer 11 made of Au/Ge alloy
0 is adhered to the lower end surface.

つぎに、第1図示の基本的構成による本考案分
布帰還型面発光半導体レーザ装置の動作を説明す
ると、まず、両端電極薄層100,110間に電
圧を印加して多層構造の半導体装置に電流を流す
と、キヤリヤは最初に最上段に位置する
GaInAsP層40中に閉じ込められ、その結果、
キヤリヤの反転分布が形成されて、レーザ媒質と
なるGaInAsP活性領域が構成される。ついで、
pn接合半導体層50,60のリーク電流もしく
は逆バイアスによるトンネル電流により、第2段
以下に位置する各GaInAsP層40に順次にキヤ
リヤが閉じ込められて順次に活性領域を構成して
行く。各段のGaInAsP層40の活性化により発
生した光は、GaInAsP層40とInP層50,60
とにおける屈折率n1とn2との周期的変化および光
増幅利得の周期的変化に共振して、その周期的変
化により選択的に定まる波長にてレーザ発振をお
こす。しかして、かかる半導体層の積層構造によ
れば、層間に大きい結合係数が得られるので、レ
ーザ発振をおこさせるに要する共振器長を短くす
ることができ、したがつて、異なる波長による発
振モードの間隔を広くとることができるので、単
一モードのレーザ発振を容易に得ることができ
る。また、上端面の反射電極薄層100との間に
設けたp型InP層70の層厚を適切に調整するこ
とによつて両端の反射鏡面に良好な位相整合した
反射光が得られるので、レーザ発振をおこさせる
注入電流の閥値を低減させて、容易にレーザ発振
をおこさせることができる。
Next, to explain the operation of the distributed feedback surface emitting semiconductor laser device of the present invention having the basic configuration shown in the first diagram, first, a voltage is applied between the electrode thin layers 100 and 110 at both ends to cause a current to flow through the multilayer semiconductor device. When flowing, the carrier is initially located at the top stage.
Confined within the GaInAsP layer 40, as a result,
A population inversion of the carrier is formed, forming a GaInAsP active region which becomes a laser medium. Then,
Due to the leakage current of the pn junction semiconductor layers 50 and 60 or the tunnel current due to reverse bias, carriers are sequentially confined in each GaInAsP layer 40 located below the second stage, and the active region is sequentially formed. The light generated by the activation of the GaInAsP layer 40 at each stage is transmitted to the GaInAsP layer 40 and the InP layers 50 and 60.
It resonates with the periodic changes in the refractive indexes n 1 and n 2 and the periodic changes in the optical amplification gain, and causes laser oscillation at a wavelength selectively determined by the periodic changes. According to such a laminated structure of semiconductor layers, a large coupling coefficient can be obtained between the layers, so the resonator length required for laser oscillation can be shortened, and therefore, the oscillation mode due to different wavelengths can be reduced. Since the spacing can be widened, single mode laser oscillation can be easily obtained. In addition, by appropriately adjusting the layer thickness of the p-type InP layer 70 provided between the reflective electrode thin layer 100 on the upper end surface, reflected light with good phase matching can be obtained on the reflective mirror surfaces at both ends. By reducing the threshold value of the injected current that causes laser oscillation, laser oscillation can be easily caused.

つぎに、第1図示の基本的構成による本考案半
導体レーザ装置の製造過程を第2図a乃至fに順
次に示して説明すると、まず、第2図aに示すよ
うに、n型InP層30上に適切な層厚にして電流
を流すようにしたn型InP層35を結晶成長させ
て被着し、その上に、GaInAsP層40、p型InP
層50およびn型InP層60を反復して順次に積
層した後、最上段のGaInAsP層40上に、前述
したように適切な層厚にして反射電極層との位相
整合を調整するとともに電流を流すためのp型
InP層70を結晶成長させて被着する。ついで、
第2図bに示すように、上述のようにして構成し
た多層構造の半導体装置の上端面に絶縁層とする
SiO2層80を被着した後に、後で裁断して複数
個のレーザ発光素子とするに適した間隔にて共振
経路10に対応した円形開口を蝕刻により形成す
る。ついで、第2図cに示すように、n型InP層
30の下面を慣用の方法により研磨して、その厚
さを適切な値、例えば前述した100ミクロン程度
にした後、第2図dに示すように、n型InP基板
30の研磨した下端面に、上端面におけると同様
に絶縁層とするSiO2層90を被着して、上端面
のSiO2層80に形成した各開口にそれぞれ対向
させて同様の開口を蝕刻により形成する。しかる
後に、第2図eに示すように、上端面のSiO2
80を覆つて例えばAu/Zn,Au/Cr等の合金
薄層を全面に被着するとともに、下端面のSiO2
層90を覆つて例えばAu/Sn,Au/Ge等の合
金薄層を全面に被着し、それぞれp側(+)電極
層100およびn側(−)電極層110とする。
ついで、上下端面のSiO2層80,90にそれぞ
れ設けた各開口がそれぞれ中央部に位置するよう
にして複数ブロツクに裁断し、第2図fに示すよ
うに所望の形状寸法を有する本考案による半導体
レーザ発光素子を複数個同時に完成する。
Next, the manufacturing process of the semiconductor laser device of the present invention having the basic configuration shown in FIG. 1 will be explained with reference to FIGS. On top of this, an n-type InP layer 35 with an appropriate thickness to allow current to flow is deposited by crystal growth, and on top of that, a GaInAsP layer 40 and a p-type InP layer 35 are deposited.
After repeatedly and sequentially stacking the layer 50 and the n-type InP layer 60, the uppermost GaInAsP layer 40 is coated with an appropriate layer thickness to adjust the phase matching with the reflective electrode layer and to apply a current. p type for flowing
An InP layer 70 is deposited by crystal growth. Then,
As shown in FIG. 2b, an insulating layer is formed on the top surface of the multilayer semiconductor device constructed as described above.
After depositing the SiO 2 layer 80, circular openings corresponding to the resonant paths 10 are formed by etching at suitable intervals for later cutting into a plurality of laser emitting elements. Next, as shown in FIG. 2c, the lower surface of the n-type InP layer 30 is polished by a conventional method to make the thickness an appropriate value, for example, about 100 microns as described above, and then as shown in FIG. 2d. As shown, a SiO 2 layer 90 serving as an insulating layer is deposited on the polished lower end surface of the n-type InP substrate 30 in the same manner as on the upper end surface, and each opening formed in the SiO 2 layer 80 on the upper end surface is filled with the SiO 2 layer 90. Similar openings are formed by etching to face each other. Thereafter, as shown in FIG. 2e, a thin alloy layer such as Au/Zn, Au/Cr, etc. is deposited over the entire surface of the SiO 2 layer 80 on the upper end surface, and the SiO 2 layer 80 on the lower end surface is coated on the entire surface.
A thin alloy layer such as Au/Sn or Au/Ge is deposited over the entire surface of layer 90 to form a p-side (+) electrode layer 100 and an n-side (-) electrode layer 110, respectively.
Next, the SiO 2 layers 80 and 90 on the upper and lower end surfaces are cut into a plurality of blocks so that the respective openings are located in the center, and the blocks are cut into a plurality of blocks having the desired shape and dimensions as shown in FIG. 2f. A plurality of semiconductor laser light emitting devices are completed at the same time.

つぎに、第1図示の基本的構成において逆バイ
アスしたpn接合による電流注入の作用効果を増
大させるようにした本考案半導体レーザ装置の他
の構成例を第3図に示す。第3図示の構成は、第
1図示の基本的構成における各段のpn接合半導
体層、p型InP層50とn型InP層60との間に
p+型InP層55およびn+型InP層65を介挿する
ことにより、逆バイアスした超階段pn接合を形
成してトンネル効果による電流注入を促進し、レ
ーザ発光をおこさせるに要する注入電流の閥値を
低減させ、強力なレーザ発光が確実容易に得られ
るようにしたものである。
Next, FIG. 3 shows another example of the structure of the semiconductor laser device of the present invention, which increases the effect of current injection through a reverse biased pn junction in the basic structure shown in FIG. The configuration shown in the third figure is between the p-n junction semiconductor layer of each stage, the p-type InP layer 50 and the n-type InP layer 60 in the basic configuration shown in the first figure.
By interposing the p + type InP layer 55 and the n + type InP layer 65, a reverse-biased super-step p-n junction is formed to promote current injection due to the tunnel effect, reducing the injection current required to cause laser emission. The threshold value is reduced and powerful laser emission can be reliably and easily obtained.

なお、電流注入促進のためには、かかる超段階
pn接合を、エネルギーバンドギヤツプが狭く、
電流が流れ易い活性層との異種界面間に形成した
方がよいが、レーザ発振に所定の厚さを必要とす
る活性層の近傍に高濃度ドープを施すことは、結
晶性や光損失の点でも得策ではない。
In addition, in order to promote current injection, such super-step
The p-n junction has a narrow energy band gap,
It is better to form a dissimilar interface between the active layer and the active layer, where current can easily flow, but doping at a high concentration near the active layer, which requires a certain thickness for laser oscillation, may cause problems with crystallinity and optical loss. But it's not a good idea.

なお、第1図および第3図に示した本考案半導
体レーザ装置の構成例においては、いずれも、半
導体基板30をn型InP半導体を用いて形成した
が、半導体基板30はp型InP半導体とすること
もできる。なお、その場合には、第1図示および
第3図示の構成における各半導体層および各電極
層のp型とn型とをすべて逆の組合わせにする。
In the configuration examples of the semiconductor laser device of the present invention shown in FIGS. 1 and 3, the semiconductor substrate 30 is formed using an n-type InP semiconductor, but the semiconductor substrate 30 is formed using a p-type InP semiconductor. You can also. In this case, the combinations of p-type and n-type of each semiconductor layer and each electrode layer in the configurations shown in the first and third figures are all reversed.

また、以上に説明した構成例においては、いず
れも、活性半導体層40をGaAs半導体により形
成するとともに、pn接合半導体層50,60、
両端面半導体層35,70および半導体基板30
をInP半導体により形成してあるが、これらの半
導体材料は、上述した例の組成に限ることなく、
結晶成長可能の族元素と族元素との異なる組
合わせを任意に用いることができ、例えば、半導
体基板30をGaAs半導体により形成するととも
に、活性半導体層40をGaAs半導体により形成
し、pn接合半導体層50,60をGaAlAs半導体
により形成するなど、結晶成長が可能な限り、任
意所望の組成の半導体を適切に組合わせても、前
述したと同様の本考案による作用効果を得ること
ができる。
Furthermore, in all of the configuration examples described above, the active semiconductor layer 40 is formed of a GaAs semiconductor, and the pn junction semiconductor layers 50, 60,
Both end semiconductor layers 35, 70 and semiconductor substrate 30
are formed of InP semiconductors, but these semiconductor materials are not limited to the compositions of the examples mentioned above.
Different combinations of group elements capable of crystal growth and group elements can be arbitrarily used. For example, the semiconductor substrate 30 is formed of a GaAs semiconductor, the active semiconductor layer 40 is formed of a GaAs semiconductor, and a pn junction semiconductor layer is formed. Even if semiconductors of any desired composition are appropriately combined as long as crystal growth is possible, such as forming 50 and 60 with GaAlAs semiconductors, the same effects of the present invention as described above can be obtained.

つぎに、上述のように構成する本考案分布帰還
型面発光半導体レーザ装置におけるレーザ発振の
条件を検討した結果について説明すると、上述し
た多層構造の半導体装置における屈折率nおよび
光増幅利得αの周期的変化が正弦波状に生ずるも
のと仮定して、それぞれの変化の大きさをndおよ
びαdとすると、実数部をKrとし、虚数部をKi
する層間の結合係数Kはつぎの(1)式によつて表わ
される。
Next, we will explain the results of examining the laser oscillation conditions in the distributed feedback surface emitting semiconductor laser device of the present invention configured as described above. Assuming that the changes occur in the form of a sine wave, and the magnitude of each change is n d and α d , the coupling coefficient K between layers, where the real part is K r and the imaginary part is K i , is as follows ( 1) It is expressed by the formula.

K=Kr+jKi=πnd/λ+jαd/2 (1) ここに、λは共振発光の波長である。 K=K r +jK i =πn d /λ+jα d /2 (1) where λ is the wavelength of resonant light emission.

一方、多層構造の半導体素子の素子長L、光増
幅利得α、離調率δ、光伝搬定数γおよび結合係
数Kの間にはつぎの(2)式の関係が成立つ。
On the other hand, the following relationship (2) holds among the element length L, optical amplification gain α, detuning ratio δ, optical propagation constant γ, and coupling coefficient K of the multilayer semiconductor element.

(α−jδ)L=±KLcoshγL (2) これらの式(1)、(2)を用いて、レーザ発振を得る
に必要な光増幅利得αの閾値を計算した結果は第
4図に示すようになり、素子長Lに対する閾値利
得αの関係を計算した結果は第5図に示すように
なる。
(α−jδ)L=±KLcoshγL (2) Using these equations (1) and (2), the threshold value of the optical amplification gain α necessary to obtain laser oscillation is calculated, and the results are shown in Figure 4. The result of calculating the relationship between the threshold gain α and the element length L is shown in FIG.

しかして、第1図示の構成により実際に得られ
る屈折率の変化の大きさndは、GaInAsP半導体
層とInP半導体層との組合わせにより波長λ=
1.6μmの共振発光が得られたときにはnd=0.185
となり、前述した他の組成例におけるGa1-xAlx
As半導体とGaAs半導体との組合わせにおいてx
=0.7としたときにはnd=0.226となつた。したが
つて、結合係数Kの実数部Krは、上述の組合わ
せの例について、それぞれ、3624cm-1および7978
cm-1となることが期待される。また、前者の組合
わせの例において素子長LをL=6μmとしたと
きには第5図示の計算結果におけるパラメータ
KrL=2.17となり、利得α=1180cm-1となる。な
お、共振発光素子としては利得α<400cm-1とす
るのが望ましいが、利得αをこの範囲に設定した
ときに要する素子長Lは10μm程度となる。しか
して、第1図示の構成による多層構成の各半導体
層の層厚は0.3μm程度であり、通例10〜30層を積
層するので、素子長Lは3〜9μm程度となる。
Therefore, the magnitude of the change in refractive index n d actually obtained with the configuration shown in Figure 1 is determined by the combination of the GaInAsP semiconductor layer and the InP semiconductor layer.
When resonance emission of 1.6 μm is obtained, n d =0.185
Therefore, Ga 1-x Al x in the other composition examples mentioned above
In the combination of As semiconductor and GaAs semiconductor
When = 0.7, n d = 0.226. Therefore, the real part K r of the coupling coefficient K is 3624 cm −1 and 7978 cm −1 for the above combination example, respectively.
cm -1 is expected. In addition, in the example of the former combination, when the element length L is set to L = 6 μm, the parameters in the calculation results shown in Figure 5
K r L = 2.17, and the gain α = 1180 cm -1 . Note that it is desirable for the resonant light emitting element to have a gain α<400 cm −1 , but when the gain α is set in this range, the required element length L is about 10 μm. Therefore, the layer thickness of each semiconductor layer in the multilayer structure according to the structure shown in the first drawing is about 0.3 μm, and since 10 to 30 layers are usually stacked, the element length L is about 3 to 9 μm.

効 果 以上の説明から明らかなように、本考案によれ
ば、分布型半導体レーザ装置を多層構造に構成し
て面発光を行なわせるので、短共振器化による単
一縦モードの共振発光を確実容易に得ることがで
き、また、光出力を多層構造半導体発光素子の端
面に対して垂直に取出すので、かかる半導体発光
素子を単一ウエハ上に多数構成配置して2次元レ
ーザアレイを構成するに極めて好適であり、さら
に、多層構造の半導体素子における層厚制御は容
易であるから、かかる膜厚制御による反射面間の
位相整合も確実容易に得られる。
Effects As is clear from the above explanation, according to the present invention, the distributed semiconductor laser device is configured in a multilayer structure to emit surface light, so that resonant light emission in a single longitudinal mode is ensured by shortening the cavity. In addition, since the light output is extracted perpendicularly to the end face of the multilayer semiconductor light emitting device, it is possible to arrange a large number of such semiconductor light emitting devices on a single wafer to construct a two-dimensional laser array. This is extremely suitable, and furthermore, since layer thickness control in a multilayer semiconductor device is easy, phase matching between reflecting surfaces can be reliably and easily obtained by such film thickness control.

したがつて、本考案分布帰還型面発光半導体レ
ーザ装置は、従来実用化が期待される光集積回路
を構成するうえで幅広く利用し得るという格別の
効果を有するとともに、極めて重要な意義を有す
る。
Therefore, the distributed feedback surface emitting semiconductor laser device of the present invention has the special effect of being widely applicable in constructing optical integrated circuits that are expected to be put to practical use, and has extremely important significance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案分布帰還型面発光半導体レーザ
装置の基本的構成例を示す側断面図、第2図a乃
至fは第1図示の構成による本考案半導体レーザ
装置の製造過程を順次に示す側断面図、第3図は
本考案半導体レーザ装置の他の構成例を示す側断
面図、第4図および第5図は本考案半導体レーザ
装置の諸特性の計算結果の例をそれぞれ示す特性
曲線図である。 1……p型領域、10……光共振経路、20…
…光出力、30……n型InP基板、35,60…
…n型InP層、40……GaInAsP層、50,70
……p型InP層、55……p+型InP層、65……
n+型InP層、80,90……SiO2層、100,1
10……電極薄層、120……金属薄層。
FIG. 1 is a side sectional view showing an example of the basic configuration of the distributed feedback type surface emitting semiconductor laser device of the present invention, and FIGS. 2 a to 2 f sequentially show the manufacturing process of the semiconductor laser device of the present invention having the configuration shown in FIG. 1. 3 is a side sectional view showing another configuration example of the semiconductor laser device of the present invention, and FIGS. 4 and 5 are characteristic curves showing examples of calculation results of various characteristics of the semiconductor laser device of the present invention, respectively. It is a diagram. 1... p-type region, 10... optical resonance path, 20...
...Light output, 30...n-type InP substrate, 35,60...
...n-type InP layer, 40...GaInAsP layer, 50, 70
... p-type InP layer, 55 ... p + type InP layer, 65 ...
n + type InP layer, 80,90...SiO 2 layer, 100,1
10... Electrode thin layer, 120... Metal thin layer.

Claims (1)

【実用新案登録請求の範囲】 1 それぞれ結晶を形成する族元素および族
元素の互いに異なる組合わせよりなる活性半導
体層と相互間にpn接合をなすp型およびn型
の半導体層との複数層を半導体基板上に順次交
互に積層して構成し、前記各層に平行の両端面
の少なくとも一方に同軸に配置して前記各層に
垂直の方向の電流路を局限するように構成した
反射鏡面を兼ねる電極層を設け、当該電極層を
介して電流を前記各層に垂直に注入することに
よつて前記複数層における光屈折率および光増
幅利得の周期的変化および上下両端面間の反射
に共振して発光するように構成し、共振発光の
波長をλとし、前記活性半導体層の屈折率をn1
とし、前記P型およびn型の半導体層の屈折率
をn2として、前記活性半導体層の層厚をλ/
4n1とし、前記P型およびn型の半導体層の層
厚を λ/4n2としたことを特徴とする分布帰還型
面発光半導体レーザ装置。 2 順次交互に積層した前記複数層にλ/4n2
は異なる層厚の前記p型もしくは前記n型の半
導体層を介挿して両端鏡面間における反射光の
位相を整合させるようにしたことを特徴とする
実用新案登録請求の範囲第1項記載の分布帰還
型面発光半導体レーザ装置。
[Claims for Utility Model Registration] 1. A plurality of layers of active semiconductor layers each consisting of a group element forming a crystal and a mutually different combination of group elements, and p-type and n-type semiconductor layers forming a p-n junction between them. an electrode that is configured by sequentially and alternately laminating layers on a semiconductor substrate, and is coaxially disposed on at least one of both end faces parallel to each of the layers, and serves as a reflective mirror surface configured to confine a current path in a direction perpendicular to each of the layers; By providing layers and injecting current perpendicularly into each layer through the electrode layer, light is emitted by resonating with the periodic changes in the optical refractive index and optical amplification gain in the multiple layers and the reflection between the upper and lower end surfaces. The wavelength of the resonant light emission is λ, and the refractive index of the active semiconductor layer is n 1
, the refractive index of the P-type and n-type semiconductor layers is n2 , and the layer thickness of the active semiconductor layer is λ/
4n 1 , and the layer thickness of the P-type and n-type semiconductor layers is λ/4n 2 . 2. The p-type or n-type semiconductor layer having a layer thickness different from λ/4n 2 is inserted into the plurality of layers stacked alternately in order to match the phase of the reflected light between the mirror surfaces at both ends. A distributed feedback surface emitting semiconductor laser device according to claim 1, characterized in that it is a utility model registered.
JP1988158023U 1988-12-06 1988-12-06 Expired JPH046217Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1988158023U JPH046217Y2 (en) 1988-12-06 1988-12-06

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1988158023U JPH046217Y2 (en) 1988-12-06 1988-12-06

Publications (2)

Publication Number Publication Date
JPH01118471U JPH01118471U (en) 1989-08-10
JPH046217Y2 true JPH046217Y2 (en) 1992-02-20

Family

ID=31437979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1988158023U Expired JPH046217Y2 (en) 1988-12-06 1988-12-06

Country Status (1)

Country Link
JP (1) JPH046217Y2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1046702A (en) * 1963-03-19 1966-10-26 Licentia Gmbh Improvements in or relating to lasers
JPS51128283A (en) * 1975-04-25 1976-11-09 Xerox Corp Multiilayer diode laser electrically pumped
JPS5367391A (en) * 1976-11-29 1978-06-15 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1046702A (en) * 1963-03-19 1966-10-26 Licentia Gmbh Improvements in or relating to lasers
JPS51128283A (en) * 1975-04-25 1976-11-09 Xerox Corp Multiilayer diode laser electrically pumped
JPS5367391A (en) * 1976-11-29 1978-06-15 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser device

Also Published As

Publication number Publication date
JPH01118471U (en) 1989-08-10

Similar Documents

Publication Publication Date Title
JP3207590B2 (en) Optical semiconductor device
JPH09512138A (en) Strain-compensated composite quantum well laser structure
KR910003465B1 (en) Opto-electronic device
JP4673951B2 (en) Semiconductor laser and manufacturing method thereof
US7369595B2 (en) Distributed Bragg reflector (DBR) structure in vertical cavity surface emitting laser (VCSEL) diode, method of manufacturing the same, and VCSEL diode
JPS62189785A (en) Semiconductor device with distributed bragg reflector
GB2301481A (en) Semiconductor laser
JPH0194689A (en) Optoelectronic semiconductor element
US20050031007A1 (en) Semiconductor light emitting element
JPH046217Y2 (en)
JP2003142773A (en) Semiconductor light emitting device
JP3293221B2 (en) Surface emitting semiconductor laser and method of manufacturing the same
JPH104240A (en) Semiconductor light emitting diode, wafer and their manufacturing method
JPH05327111A (en) Semiconductor laser and its manufacture
JPS6010685A (en) Distributed feedback type plane light emitting semiconductor laser
JPH0478036B2 (en)
JPH04234188A (en) Optoelectronic element and laser and their uses in optical detector manufacture
JP2955250B2 (en) Semiconductor light emitting device and method of manufacturing the same
KR100331441B1 (en) Vertical cavity surface emitting laser diode
KR20070059853A (en) A distributed bragg reflector(dbr) in vertical cavity surface emitting laser(vcsel) diode and a manufacturing method thereof and a vcsel diode
JPS61220389A (en) Integrated type semiconductor laser
JPS59184585A (en) Semiconductor laser of single axial mode
JP3532433B2 (en) Surface emitting semiconductor laser and method of manufacturing the same
JPH0621581A (en) Semiconductor surface type optical switch
JPS61212082A (en) Integrated semiconductor laser