JPH0461312B2 - - Google Patents

Info

Publication number
JPH0461312B2
JPH0461312B2 JP57066965A JP6696582A JPH0461312B2 JP H0461312 B2 JPH0461312 B2 JP H0461312B2 JP 57066965 A JP57066965 A JP 57066965A JP 6696582 A JP6696582 A JP 6696582A JP H0461312 B2 JPH0461312 B2 JP H0461312B2
Authority
JP
Japan
Prior art keywords
test sample
breaker
disconnector
impulse voltage
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57066965A
Other languages
Japanese (ja)
Other versions
JPS58182569A (en
Inventor
Atsushi Ozawa
Rikizo Ishikawa
Yoshio Yoshioka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57066965A priority Critical patent/JPS58182569A/en
Publication of JPS58182569A publication Critical patent/JPS58182569A/en
Publication of JPH0461312B2 publication Critical patent/JPH0461312B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • G01R31/333Testing of the switching capacity of high-voltage circuit-breakers ; Testing of breaking capacity or related variables, e.g. post arc current or transient recovery voltage
    • G01R31/3333Apparatus, systems or circuits therefor

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Relating To Insulation (AREA)

Description

【発明の詳細な説明】 本発明はしや断器の進み小電流しや断性能の検
証方法に係り、特に長波尾のインパルス電圧発生
装置を使うしや断器の進み小電流しや断性能の検
証方法に関する。
[Detailed Description of the Invention] The present invention relates to a method for verifying the advanced small current shearing performance of a shield breaker, particularly the advanced small current shearing performance of a shield breaker using a long-wave tail impulse voltage generator. Regarding the verification method.

従来のしや断器の進み小電流しや断性能の検証
試験等価回路は第1図のようであつた。すなわ
ち、交流電源1とコンデンサ2との間に供試しや
断器3が接続されている。交流電流1には発電機
と変圧器等の内部インピーダンス4が含まれてい
る。
The equivalent circuit for the verification test of the advanced small current shear breaker performance of the conventional sheath breaker was as shown in Figure 1. That is, a test sample or disconnector 3 is connected between the AC power source 1 and the capacitor 2. The alternating current 1 includes internal impedance 4 such as a generator and a transformer.

第1図のような試験を行なう場合、発電機を使
用するので多大の試験費用と回路構成のための時
間を要する欠点があつた。
When conducting a test as shown in FIG. 1, a generator is used, which has the disadvantage of requiring a large amount of test cost and time for circuit configuration.

本発明の目的はしや断器の進み小電流しや断性
能が短絡発電機を使わないで行なえる試験方法を
提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a test method for testing the advanced small current shearing performance of a shunt breaker without using a short-circuit generator.

本発明はしや断器の進み小電流しや断性能を短
絡発電機を使わないで検証するために、10ms以
上の波尾長のインパルス電圧発生装置を使うよう
にした。すなわち、しや断器を開極してから長波
尾のインパルス電圧を印加し、1回の印加で開極
動作中のしや断器の極間絶縁破壊電圧を複数点得
ようとするものである。インパルス電圧が10ms
以上の長波尾であるために複数点の破壊電圧が一
挙に得られる。
The present invention uses an impulse voltage generator with a wave tail length of 10 ms or more in order to verify the advanced small current shearing performance of the shedding breaker without using a short-circuit generator. In other words, after opening the breaker, a long-wavelength impulse voltage is applied, and with a single application, the dielectric breakdown voltage between the electrodes of the breaker during opening operation can be obtained at multiple points. be. Impulse voltage is 10ms
Because of the above long wave tail, breakdown voltages at multiple points can be obtained at once.

ここで、波尾長とは、インパルス電圧波の(規
約)原点とインパルス電圧の波尾における半波高
点との間の時間で定義される(『絶縁試験法ハン
ドブツク』電気学会編、オーム社書店発行(昭和
51年7月15日)の第38頁〜第40頁及び第78頁〜第
79頁参照。開閉インパルス電圧では半波高時間と
もいう。) 以下本発明の一実施例を第2図により説明す
る。10ms以上の長波尾インパルス電圧発生装置
10は、正および負極性の直流充電電源11,1
2、充電抵抗13,14、充電用スイツチ15、
コンデンサ16、中性点抵抗17、放電ギヤツプ
18、波尾長調整抵抗19で構成されている。最
下段の放電ギヤツプ18には電気的トリガ電極2
0およびトリガ発生装置21が設けられている。
Here, the wave tail length is defined as the time between the (conventional) origin of the impulse voltage wave and the half-wave high point of the wave tail of the impulse voltage. (Showa
July 15, 1951), pages 38 to 40 and pages 78 to 78
See page 79. For switching impulse voltage, it is also called half-wave height time. ) An embodiment of the present invention will be described below with reference to FIG. The long wave tail impulse voltage generator 10 of 10 ms or more has positive and negative polarity DC charging power sources 11, 1.
2, charging resistors 13, 14, charging switch 15,
It is composed of a capacitor 16, a neutral point resistor 17, a discharge gap 18, and a wave length adjustment resistor 19. An electric trigger electrode 2 is installed in the lowest discharge gap 18.
0 and a trigger generator 21 are provided.

このインパルス電圧発生装置10の動作原理
は、前掲『絶縁試験法ハンドブツク』の第40頁〜
第65頁および第81頁〜第88頁に記載のように、多
段のコンデンサ16に充電し、放電ギヤツプ18
を使つて、充電されたコンデンサ16を直列に接
続し、高電圧を発生する従来の装置とほぼ同じで
あるが、10ms以上の長波尾を得るため、中性点
抵抗17の値および波尾長調整抵抗19の値を大
きくすると共に充電用スイツチ15を設け、コン
デンサ16に所定電圧充電後はスイツチ15を開
にするところが異なる。
The operating principle of this impulse voltage generator 10 is described in the above-mentioned "Insulation Test Method Handbook", page 40.
As described on pages 65 and 81 to 88, the multistage capacitor 16 is charged and the discharge gap 18 is
This is almost the same as the conventional device that generates high voltage by connecting charged capacitors 16 in series using The difference is that the value of the resistor 19 is increased and a charging switch 15 is provided, and the switch 15 is opened after charging the capacitor 16 to a predetermined voltage.

インパルス電圧の波頭長は外部に取り付けた波
頭調整抵抗22およびコンデンサ23の値により
制御可能である。
The wavefront length of the impulse voltage can be controlled by the values of the wavefront adjustment resistor 22 and capacitor 23 that are attached externally.

供試しや断器3はコンデンサ23に直接もしく
はあるインピーダンスを介して接続される。直接
接続しても第2図に示すように残留インダクタン
ス24、抵抗25が存在する。
The test sample or disconnector 3 is connected to the capacitor 23 directly or via a certain impedance. Even if they are directly connected, residual inductance 24 and resistance 25 exist as shown in FIG.

本発明の動作原理を第3図に示す。 The operating principle of the present invention is shown in FIG.

供試しや断器3の極間距離lの時間tに対する
特性が第3図のようであつたとする。完全な開放
状態での極間距離lはL0である。供試しや断器
3の開極中における極間の絶縁破壊電圧の時間特
性が第4図の30であつたとする。
Assume that the characteristics of the distance l between poles of the test sample and the disconnector 3 with respect to time t are as shown in FIG. The distance l between poles in a completely open state is L 0 . Assume that the time characteristic of the dielectric breakdown voltage between the electrodes during the test or during opening of the disconnector 3 is 30 in FIG.

時間T1で極間が開き始め、時刻T2で10ms以
上の長波尾インパルス電圧を印加すると、まず
P1で極間が絶縁破壊する。絶縁破壊後、コンデ
ンサ23の電荷がしや断器3を介して放電する
が、放電回路が振動性にされていれば、放電電流
は第5図に示すように振動性となり、電流零点が
得られる。ここで、しや断器3は絶縁回復し、再
び長波尾インパルス電圧発生装置から電圧が加わ
り、第4図に示すようにしや断器にS2の電圧が加
わり、P2で絶縁破壊するようになる。
The gap between the poles begins to open at time T 1 , and when a long wave tail impulse voltage of 10 ms or more is applied at time T 2 , first
At P 1 , dielectric breakdown occurs between the electrodes. After dielectric breakdown, the charge of the capacitor 23 is discharged through the circuit breaker 3, but if the discharge circuit is made oscillatory, the discharge current becomes oscillatory as shown in Figure 5, and the current zero point is obtained. It will be done. Here, the insulation of the shield breaker 3 is restored, and voltage is applied again from the long-wave tail impulse voltage generator, and as shown in Figure 4, the voltage S2 is applied to the shield breaker 3, causing dielectric breakdown at P2 . become.

その後、同じ現象が繰り返し得られ、P3〜P6
のように絶縁破壊する。P1〜P6を結べば、極間
の絶縁破壊電圧の時間特性が得られる。すなわ
ち、普通のインパルス電圧発生装置を使えば、例
えばP5のように1点だけしか測定点は得られな
いが、本実施例のようにすればP1〜P6の複数の
測定点が1回のインパルス電圧を印加することに
より得られる。ここで、インパルス電圧の波尾長
は長い程良いが、しや断器の進み小電流しや断性
能は、開極開始から10〜40msの領域の特性で決
まることから最低10msは必要である。
Then the same phenomenon is obtained repeatedly, P 3 ~ P 6
Dielectric breakdown occurs as in By connecting P 1 to P 6 , the time characteristics of the breakdown voltage between the electrodes can be obtained. In other words, if a normal impulse voltage generator is used, only one measurement point, such as P 5 , can be obtained, but with this embodiment, multiple measurement points P 1 to P 6 can be obtained at one measurement point. It is obtained by applying an impulse voltage of 2 times. Here, the longer the wave tail length of the impulse voltage is, the better; however, a minimum of 10 ms is required since the advanced small current shear breaker performance is determined by the characteristics in the region of 10 to 40 ms from the start of contact opening.

本実施例によれば、しや断器の進み小電流しや
断性能の検証試験に10ms以上の長波尾インパル
ス電圧発生装置を使用できるので1回のインパル
ス電圧印加によりしや断器極間の絶縁破壊電圧特
性を複数点求めることができる。
According to this embodiment, a long-wave tail impulse voltage generator of 10 ms or more can be used for the verification test of advanced small current shearing performance of the shingle breaker. Dielectric breakdown voltage characteristics can be determined at multiple points.

第6図は本発明の他の実施例による回路図であ
る。第2図では供試しや断器の片側は接地状態で
あるが、第6図では長波尾インパルス電圧とは逆
極性の直流電圧がかかつているようにした。直流
高電圧電源40が抵抗41、コンデンサ42を介
してしや断器3の片側に接続されている。
FIG. 6 is a circuit diagram according to another embodiment of the present invention. In FIG. 2, one side of the test sample or disconnector is grounded, but in FIG. 6, a DC voltage of opposite polarity to the long-wave tail impulse voltage is applied. A DC high voltage power supply 40 is connected to one side of the shield breaker 3 via a resistor 41 and a capacitor 42.

この例では、しや断器の進み小電流の試験によ
り近い回路条件になつている。
In this example, the circuit conditions are more similar to the test for the small current of the circuit breaker.

以上、本発明によれば、供試しや断器の他端
に、その開極開始後に、インパルス電圧発生装置
により10ms以上の長波尾インパルス電圧を印加
し、供試しや断器の進み小電流しや断性能を検証
し得るので、従来のような短絡発電機を使う必要
がないと共に、供試しや断器への1回のインパル
ス電圧印加により、供試しや断器の開極動作中の
極間絶縁電圧を複数点において検証することがで
きる。その結果、試験設備が安価になると共に、
複数点の破壊電圧を一挙に得られ、試験時間を大
幅に削減することができる。
As described above, according to the present invention, a long-wave tail impulse voltage of 10 ms or more is applied to the other end of the test sample or disconnector after the start of opening, and a small current flows through the test sample or disconnector. Since it is possible to verify the disconnection performance of the test specimen or disconnector, there is no need to use a conventional short-circuit generator. The insulation voltage can be verified at multiple points. As a result, test equipment becomes cheaper and
Breakdown voltages at multiple points can be obtained at once, significantly reducing test time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のしや断器の進み小電流しや断性
能検証等価回路、第2図は本発明方法を適用する
長波尾インパルス電圧発生装置を使つた試験等価
回路、第3〜5図は本発明の動作原理説明図、第
6図は本発明の変形例による試験等価回路であ
る。 3……しや断器、15……充電用スイツチ、1
6……コンデンサ、18……放電ギヤツプ、19
……波長尾調整抵抗、22……波頭長調整抵抗、
23……コンデンサ。
Figure 1 is an equivalent circuit for verifying the advanced small current shield breaking performance of a conventional shield breaker, Figure 2 is an equivalent circuit for testing using a long wave tail impulse voltage generator to which the method of the present invention is applied, and Figures 3 to 5 6 is a diagram explaining the operating principle of the present invention, and FIG. 6 is a test equivalent circuit according to a modification of the present invention. 3...Shiya disconnector, 15...Charging switch, 1
6...Capacitor, 18...Discharge gap, 19
...Wavelength tail adjustment resistance, 22...Wavelength adjustment resistance,
23... Capacitor.

Claims (1)

【特許請求の範囲】[Claims] 1 供試しや断器の進み小電流しや断性能を検証
するものにおいて、前記供試しや断器の一端を接
地するかもしくは直流電圧を印加しておき、前記
供試しや断器の他端に接続したインパルス電圧発
生装置によつて、前記供試しや断器が開極し始め
てから、しや断器の開極中の極間絶縁破壊特性に
関与する10ms以上の波尾長のインパルス電圧を
印加するとともに、前記供試しや断器の他端と前
記インパルス電圧発生装置の間に一端が接続され
他端が接地されたコンデンサの電荷を、前記供試
しや断器の極間が絶縁破壊した後毎に前記供試し
や断器の極間に振動性の放電電流として放電させ
ることを特徴とするしや断器の進み小電流しや断
性能検証方法。
1. In the case of verifying the progress of a test sample or disconnector's small current shedding performance, one end of the test sample or disconnector is grounded or a DC voltage is applied, and the other end of the test sample or disconnector is grounded or a DC voltage is applied. An impulse voltage generator connected to the circuit generates an impulse voltage with a wave length of 10 ms or more, which is related to the interelectrode dielectric breakdown characteristics during opening of the circuit breaker, after the test sample or circuit breaker begins to open. At the same time, the electric charge of a capacitor whose one end is connected between the other end of the test sample or disconnector and the impulse voltage generator and the other end is grounded is caused by dielectric breakdown between the electrodes of the test sample or disconnector. A method for verifying the progressing small current breaker performance of a breaker, characterized in that an oscillatory discharge current is discharged between the poles of the test sample or breaker after each test.
JP57066965A 1982-04-20 1982-04-20 Verifying method of small leading current breaking performance of circuit breaker Granted JPS58182569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57066965A JPS58182569A (en) 1982-04-20 1982-04-20 Verifying method of small leading current breaking performance of circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57066965A JPS58182569A (en) 1982-04-20 1982-04-20 Verifying method of small leading current breaking performance of circuit breaker

Publications (2)

Publication Number Publication Date
JPS58182569A JPS58182569A (en) 1983-10-25
JPH0461312B2 true JPH0461312B2 (en) 1992-09-30

Family

ID=13331239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57066965A Granted JPS58182569A (en) 1982-04-20 1982-04-20 Verifying method of small leading current breaking performance of circuit breaker

Country Status (1)

Country Link
JP (1) JPS58182569A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52112772A (en) * 1976-03-19 1977-09-21 Hitachi Ltd Method of testing breaker equivalent

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52112772A (en) * 1976-03-19 1977-09-21 Hitachi Ltd Method of testing breaker equivalent

Also Published As

Publication number Publication date
JPS58182569A (en) 1983-10-25

Similar Documents

Publication Publication Date Title
KR850002326A (en) Electrostatic breakdown test method and apparatus for semiconductor devices
KR890000692B1 (en) Method of testing and verifying a performance for insulation to ground of a disconnecting switch when breaking a charging current
US4147975A (en) Synthetic test circuit for a metal encapsulated high voltage circuit breaker
JP2550046B2 (en) Inspection circuit
JPH0461312B2 (en)
CN218213273U (en) Device for synchronously testing insulation aging and water content of transformer
JPH0145592B2 (en)
JP2003222651A (en) Judging method for insulation degradation of electric appliance
JP2787050B2 (en) Insulation recovery test circuit for switchgear
JPH0651036A (en) Short line fault testing device
SU905884A1 (en) Device for synthetic testing of heavy-duty spark discharger
JPS5818174A (en) Equivalent test method for circuit breaker
JPH0355110Y2 (en)
JPS6012583B2 (en) Synthetic equivalent test device for breaker
SU1359760A1 (en) Device for testing switches for cutting off capacitive current
SU1486964A1 (en) Device for synthetic disconnecting testing of ac disconnecting switches
JPS61155780A (en) Equivalence tester for small leading current of breaker
RU1803886C (en) Device for testing electric strength of insulation
JPH0464151B2 (en)
JPS6350813B2 (en)
JPS6158123A (en) Method of testing equivalent of dc breaker
JPH0563748B2 (en)
JPS58174865A (en) Equivalence test of breaker
JPS63255674A (en) Voltage source for insulation recovery characteristic test of switch gear
JPS59141079A (en) Equivalence tester for dc breaker