JPS59141079A - Equivalence tester for dc breaker - Google Patents

Equivalence tester for dc breaker

Info

Publication number
JPS59141079A
JPS59141079A JP58015129A JP1512983A JPS59141079A JP S59141079 A JPS59141079 A JP S59141079A JP 58015129 A JP58015129 A JP 58015129A JP 1512983 A JP1512983 A JP 1512983A JP S59141079 A JPS59141079 A JP S59141079A
Authority
JP
Japan
Prior art keywords
breaker
voltage
reactor
transformer
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58015129A
Other languages
Japanese (ja)
Inventor
Koji Suzuki
光二 鈴木
Shunji Tokuyama
徳山 俊二
Isao Takahashi
功 高橋
Keiji Arimatsu
有松 啓治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58015129A priority Critical patent/JPS59141079A/en
Publication of JPS59141079A publication Critical patent/JPS59141079A/en
Pending legal-status Critical Current

Links

Landscapes

  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)

Abstract

PURPOSE:To obtain a highly reliable equivalence tester with a high economy for a DC breaker or the like by providing a reactor between the secondary winding side of a transformer and an auxiliary breaker. CONSTITUTION:A reactor 10 is connected between one end of an over-voltage suppressor 9 on the secondary side of a transformer 2 and an auxiliary breaker 5 connected to a sample commutation switch and voltage is shared with the reactor 10 and an equivalent reactor of the transformer 2. Therefore, only the use of a reactor for high voltage testing suffices eliminating exchange or the like of an auxiliary different in the dielectric strength thereby providing a highly reliable equivalence tester with a high economy for a high voltage/large DC breaker or the like.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は直流しゃ断器の等価試験装置に係シ、特に高電
圧、大電流用直流しゃ断器の試験に好適な等価試験装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an equivalent testing device for DC circuit breakers, and particularly to an equivalent testing device suitable for testing high voltage, large current DC circuit breakers.

〔従来技術〕[Prior art]

従来例を第1図に示す。発電機1を10’Hz程度の低
速で運転したものを電源とし、変圧器2の一次側に設け
た保護しゃ断器3と投入スイッチ4を閉にして変圧器2
の二次側に設けた補助しゃ断器5と供試転流スイッチ6
に低周波の等価直流電流を流す。
A conventional example is shown in FIG. A generator 1 operated at a low speed of about 10'Hz is used as a power source, and a protective breaker 3 and a closing switch 4 provided on the primary side of the transformer 2 are closed to turn the transformer 2 on.
Auxiliary breaker 5 and test commutation switch 6 installed on the secondary side of
A low-frequency equivalent direct current is applied to the

しゃ断時は、供試転流スイッチ6と並列に接続したりア
クドルL1放電ギャップ7、図示しない電源によシ充電
されたコンデンサCから成る電流零点発生装置によりL
−Cの振動電流を供試転流スイッチ6を流れる等価直流
電流に重畳させ、これによってしゃ断電流に電流零を発
生させて供試転流スイッチ6でしゃ断する。このしゃ断
電流は、コンデンサCに転流される。このとき変圧器2
の一次側に設けたりアクドル8と変圧器2自身の等価イ
ンダクタンスに蓄積されたエネルギーがコンデンサCで
吸収されるため供試転流スイッチ6の極間電圧が上昇す
る。この電圧が変圧器二次側に設けた過電圧抑制装置9
(例えば酸化亜鉛抵抗体で構成した非線形抵抗)で制限
される電圧に達すると過電圧抑制装置9が導通し、補助
しゃ断器5の両端の電圧が平衡し、補助しゃ断器5がし
ゃ断され電源1側と供試転流スイッチ6が切離される。
When cut off, L is set by a current zero point generator connected in parallel with the commutating switch 6 under test, an accelerator L1 discharge gap 7, and a capacitor C charged by a power supply (not shown).
The oscillating current of -C is superimposed on the equivalent direct current flowing through the commutation switch 6 under test, thereby generating a current zero in the cutoff current, and the commutation switch 6 under test is cut off. This cutoff current is commutated to capacitor C. At this time, transformer 2
Since the energy provided on the primary side of the transformer 2 or accumulated in the equivalent inductance of the accelerator 8 and the transformer 2 itself is absorbed by the capacitor C, the interpole voltage of the commutating switch 6 under test increases. Overvoltage suppression device 9 installed on the secondary side of the transformer
(for example, a nonlinear resistor made of a zinc oxide resistor), the overvoltage suppressor 9 becomes conductive, the voltage across the auxiliary breaker 5 is balanced, the auxiliary breaker 5 is cut off, and the power source 1 side The commutation switch 6 under test is disconnected.

このため供試転流スイッチ6が極間にはステップ状の電
圧が印加される。
Therefore, a step voltage is applied between the electrodes of the commutation switch 6 under test.

即ち、この方法によれば、供試転流スイッチ6で所望の
電流をしゃ断した後極間に直流電圧が印加できるため実
系統と等価な試験が可能である。
That is, according to this method, since a DC voltage can be applied between the poles after the desired current is cut off by the test commutation switch 6, a test equivalent to the actual system can be performed.

この場合、過電圧抑制装置9は、供試転流スイッチ60
両端に設けても同じ効果が得られる。
In this case, the overvoltage suppression device 9 includes the test commutation switch 60
The same effect can be obtained even if it is provided at both ends.

しかし、前述したように補助しゃ断器5のしゃ断は補助
しゃ断器5の両端電圧の平衡によるため、電源側の電圧
が供試転流スイッチ6に印加すべき電圧まで耐えなけれ
ばならない。従って定格電圧500kVの供試転流スイ
ッチ6のしゃ断征能検証には過電圧倍数1.6とする8
00kVpの直流電圧を極間に印加する必要があシ、電
源側の絶縁も800kVp必要になる。しかし、これら
大電流、高電圧の試験が可能な試験設備はなく、新たに
製作するには影太な費用を要し、不経済である。またフ
ィールドテストが可能な直流系統も国内にはないだめ、
経済的な等価試験装置の開発が必要であった。
However, as described above, since the auxiliary breaker 5 is disconnected by balancing the voltages across the auxiliary breaker 5, the voltage on the power supply side must withstand up to the voltage to be applied to the commutation switch 6 under test. Therefore, to verify the breaking capability of the test commutator switch 6 with a rated voltage of 500 kV, the overvoltage multiple is set to 1.6.
It is necessary to apply a DC voltage of 00 kVp between the poles, and insulation of 800 kVp on the power supply side is also required. However, there is no test equipment capable of testing these large currents and high voltages, and manufacturing a new one requires significant costs and is uneconomical. Also, there is no DC system in Japan that can be tested in the field.
It was necessary to develop an economical equivalent test device.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、経済的かつ信頼性ある大容量直流しゃ
断器の等価試験装置を提供することにある。
An object of the present invention is to provide an economical and reliable equivalent testing device for large-capacity DC circuit breakers.

〔発明の概要〕[Summary of the invention]

不発明は電源側に用いる変圧器の等価リアクトルの他に
新たに高電圧試験用のりアクドルを電源側に設け、この
リアクトルと変圧器の等価リアクトルで電圧を分担され
ることによp1高電圧用直流しゃ断器のしゃ断性能検証
を可能にした。この方法によれは、既設の試験設備にリ
アクトルを追加するのみであシ、極めて経済的である。
The non-invention is that in addition to the equivalent reactor of the transformer used on the power supply side, a new high-voltage test glue handle is provided on the power supply side, and the voltage is shared between this reactor and the equivalent reactor of the transformer, thereby making it possible to perform p1 high voltage testing. This made it possible to verify the breaker performance of DC breaker. This method only requires adding a reactor to the existing test equipment, and is extremely economical.

また、計算による解析でも等個性を確認しておシ、信頼
性も高い。
In addition, the reliability is also high because the same characteristics can be confirmed through computational analysis.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第2図によシ説明する。従来
例と同一機能を有するものは同一符号で表わす。第2図
は従来技術を示す第1図の変圧器2の二次側に過電圧抑
制装置9を設け、この一端と補助しゃ断器5の間に電圧
分担用のりアクドル10を設けたもので、補助しゃ断器
5と供試転流スイッチ6の直列回路の両端および供試転
流スイッチ6の両端にはそれぞれ同一制限電圧の過電圧
抑制装置(例えば酸化亜鉛抵抗体で構成した非線形抵抗
)11.12を接続したものである。
An embodiment of the present invention will be explained below with reference to FIG. Components having the same functions as those of the conventional example are indicated by the same reference numerals. FIG. 2 shows the prior art, in which an overvoltage suppression device 9 is provided on the secondary side of the transformer 2 shown in FIG. At both ends of the series circuit of the breaker 5 and the commutation switch under test 6, and at both ends of the commutation switch under test 6, overvoltage suppression devices (for example, nonlinear resistors made of zinc oxide resistors) 11 and 12 with the same limiting voltage are installed. It is connected.

第3図に供試転流スイッチ6を流れる電流lと極間電圧
Vの波形例を示す。第2図と第3図を基に本笑施例によ
る動作例を説明する。試験前に補助しゃ断器5、供試転
流スイッチ6を投入しておき、図示しない電源により電
流零点発生装置のコンデンサC′tl−所望の電圧に充
電しておく。発電機1’!1=10Hz程度の低速で運
転し、保護しゃ断器3、投入スイッチ4を投入すると供
試転流スイッチ6には低周波の直流電流が流れる。時刻
t1で補助しゃ断器5、供試転流スイッチ6を開極する
FIG. 3 shows an example of the waveforms of the current l flowing through the test commutating switch 6 and the voltage V between electrodes. An example of the operation of this embodiment will be explained based on FIGS. 2 and 3. Before the test, the auxiliary breaker 5 and the commutation switch 6 under test are turned on, and the capacitor C'tl of the current zero point generator is charged to a desired voltage by a power source (not shown). Generator 1'! When operating at a low speed of about 1=10 Hz and turning on the protective breaker 3 and the closing switch 4, a low-frequency DC current flows through the commutation switch 6 under test. At time t1, the auxiliary breaker 5 and the test commutation switch 6 are opened.

供試転流スイッチ6がしゃ断可能な時刻t2で放電ギャ
ップ7を図示しない始動装置で放電させ、供試転流スイ
ッチ6を流れる直流電流にL−Cの振動電流を重畳させ
る。この場合、放電ギャップの替わシに投入スイッチを
用いても効果は同じである。この振動電流で強制的に電
流零点を発生させ、時刻t3で供試転流スイッチ6は電
流をコンダン?Cに転流してしゃ断する。しゃ断後供試
転流スイッチ6には第3図に示す電圧が印加される。
At time t2 when the test commutation switch 6 can be cut off, the discharge gap 7 is discharged by a starter (not shown), and the LC oscillating current is superimposed on the DC current flowing through the test commutation switch 6. In this case, the effect is the same even if a closing switch is used instead of the discharge gap. This oscillating current forcibly generates a current zero point, and at time t3, the test commutation switch 6 conducts the current. It is commutated to C and cut off. After the cutoff, the voltage shown in FIG. 3 is applied to the commutation switch 6 under test.

図のしゃ断時側13ではコンデンサCの電圧は負になる
ため、極間電圧は初め負となる。その後電源側リアクト
ルに蓄積されたエネルギーがコンデンサCに転流される
ため極間電圧は図示の如く正極性で上昇する。こり電圧
が供試転流スイッチの性能検証に必要な電圧(定格電圧
500kVの直流しゃ断器では1.6倍の800kVp
)に達すると過電圧抑制装置11.12が導通し、電源
側電流はこの過電圧抑制装置11.12に分流し、限流
しゃ断される。補助しゃ断器5は両過電抑制装置11.
12が導通し、補助しゃ断器5の両端電圧が平衡した時
刻t4でしゃ断される。従って供試転流スイッチ6の極
間には過電圧抑制装置12で制限される電圧がコンデン
サに残シ直流電圧Vが印加される。
Since the voltage of the capacitor C becomes negative on the cut-off side 13 in the figure, the voltage between the electrodes initially becomes negative. Thereafter, the energy accumulated in the power supply side reactor is commutated to the capacitor C, so that the voltage between the poles increases with positive polarity as shown in the figure. The voltage is the voltage required for performance verification of the commutation switch under test (for a DC breaker with a rated voltage of 500 kV, it is 800 kVp, which is 1.6 times
), the overvoltage suppressor 11.12 becomes conductive, and the current on the power supply side is shunted to the overvoltage suppressor 11.12, and the current is cut off. The auxiliary circuit breaker 5 has both overcurrent suppression devices 11.
12 becomes conductive and is cut off at time t4 when the voltages across the auxiliary breaker 5 are balanced. Therefore, a DC voltage V is applied between the poles of the commutation switch 6 under test, with the voltage limited by the overvoltage suppressor 12 remaining on the capacitor.

この場合、本発明によって追加されたりアクドル10の
一端には高電圧(定格電圧500kV用しゃ断器では8
00kVp)が印加されるが変圧器二次側には、変圧器
2の等価リアクトルとリアクトル10の値で分圧される
電圧が印加される。例えば、この比を1/8に選べば、
変圧器2の二次側は、1/:8の!圧(S ookv用
では100kVpンKにる。即ち、低電圧の電源で高電
圧のしゃ断検証試験が可能になる。一般には電源容量が
限定されるため、リアクトルlOO値をあまシ大きくで
きない場合が多い。この場合には、過電圧抑制装置9の
制限電圧を過電圧抑制装[11の制限電圧の例えば1/
8に設定すれは、変圧器二次側の電圧を1/8に制限で
きるため、同様の効果が期待できる。即ち、リアクトル
の値を必らずしも電圧分担比に選はなくとも電源側を保
護できる効果かある。
In this case, the present invention adds a high voltage to one end of the accelerator 10 (for a rated voltage breaker of 500 kV, 8
00 kVp) is applied, but a voltage divided by the equivalent reactor of the transformer 2 and the value of the reactor 10 is applied to the secondary side of the transformer. For example, if you choose this ratio to be 1/8,
The secondary side of transformer 2 is 1/:8! voltage (100kVp-K for SOOKV. In other words, it is possible to perform high-voltage cutoff verification tests with a low-voltage power supply. Generally, the power supply capacity is limited, so there are cases where it is not possible to increase the reactor lOO value by a certain amount. In this case, the limiting voltage of the overvoltage suppressor 9 may be set to, for example, 1/1/1 of the limiting voltage of the overvoltage suppressor [11].
When set to 8, the voltage on the secondary side of the transformer can be limited to 1/8, so a similar effect can be expected. That is, even if the value of the reactor is not necessarily selected as the voltage sharing ratio, there is an effect that the power supply side can be protected.

第4図は他の実施例を示すもので、電源側および振動電
流発生源側を省略して示す。電源側等価リアクトルとり
アクドル10の分担のみで充分電源側が保護できる場合
は、電源側の過電圧抑制装置9および11を省略できる
FIG. 4 shows another embodiment, in which the power supply side and the oscillating current generation source side are omitted. If the power source side can be sufficiently protected only by the share of the power source side equivalent reactor/acdle 10, the overvoltage suppressors 9 and 11 on the power source side can be omitted.

第5図は第2図の変形例を示しだもので、リアクトル1
0の端子間に過電圧抑制装置13を接続し、リアクトル
の端子間保護と過電圧抑制装置13の省略化を計ったも
ので、第2図に示す過電圧抑制装置11t電圧分担割合
に分割して配置できるO 第6区に示す他の実施例は、第2図に示す過電圧抑制装
置12を省略したもので、経済的な効果がある。この方
法では、しゃ断する電流によシコンデンサの残留電圧が
看干異なると言う欠点もあるが、過電圧抑制装置11の
制限電圧金高めるなどの方法によシ対処できる。
Figure 5 shows a modification of Figure 2, with reactor 1
The overvoltage suppressor 13 is connected between the terminals of the reactor and the overvoltage suppressor 13 is omitted, and the overvoltage suppressor 11t shown in Fig. 2 can be divided and arranged according to the voltage sharing ratio. O In the other embodiment shown in section 6, the overvoltage suppressing device 12 shown in FIG. 2 is omitted, which has an economical effect. This method has the disadvantage that the residual voltage of the capacitor varies considerably depending on the current to be cut off, but this can be overcome by increasing the limit voltage of the overvoltage suppressor 11.

以上、これまでの実施例では特に説明を省略したが、第
2図以下の実施例で示す補助しゃ断器5の端子間を保護
する目的で、供試転流スイッチ60両端に設けたものと
同様の過電圧抑制装置を補助しゃ断器5の端子間に設け
ることもできる。
Although the explanation has been omitted in the above embodiments, it is similar to the one provided at both ends of the test commutator switch 60 for the purpose of protecting between the terminals of the auxiliary breaker 5 shown in the embodiments shown in Fig. 2 and below. It is also possible to provide an overvoltage suppression device between the terminals of the auxiliary circuit breaker 5.

第7図は電源としてコンデンサ14を用いた他の実施例
を示す。変圧器2の二次側回路は第2図以下に示した実
施例が適用できるため省略しである。変圧器2の一次側
には図示しない充電装置によシ充電されたコンデンサ1
4と投入スイッチ15および電流調整用リアクトル16
の直列回路全接続する、試験時は、投入スイッチ15’
に閉にして低周波の電流を通電することで発電機を電源
とする場合と同様の効果が得られる。
FIG. 7 shows another embodiment using a capacitor 14 as the power source. The secondary side circuit of the transformer 2 is omitted because the embodiments shown in FIG. 2 and subsequent figures can be applied. On the primary side of the transformer 2, there is a capacitor 1 charged by a charging device (not shown).
4, closing switch 15, and current adjustment reactor 16
When testing, connect all series circuits of
The same effect as using a generator as a power source can be obtained by closing the generator and passing a low-frequency current through it.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、従来の試験設備にリアクトルのみを追
加することで、高電圧、大電流用直流しゃ断器の等価試
験が経済的な方法で達成できると言う効果がある。
According to the present invention, by adding only a reactor to conventional test equipment, an equivalent test of a high voltage, large current DC breaker can be accomplished in an economical manner.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例の等価試験装置の回路図、第2図は本発
明を適用する等価試験装置の一実施例?示す回路図、第
3図は第2図の動作例を示す電圧、電流波形図、第4図
〜第6図は他の等価試験装置の実施例を示す回路図、第
7図は電源装置の他の実施例を示す回路図である。 5・・・補助しゃ断器、6・・・供試転流スイッチ、9
・・・非線形抵抗、10・・・リアクトル、11〜13
・・・非第1図 第4図 第6図 算7霞 手続補正書(方式) %式% 4 明 の 名 称 直流しゃ断器の等価試験装置辛1 瓦   理   人 居  所(〒]OO)東京都千代田区丸の内−丁目5番
1号証明する書面。 重工の 内容 別紙のとおシ。
Fig. 1 is a circuit diagram of a conventional equivalence test device, and Fig. 2 is an example of an equivalence test device to which the present invention is applied. 3 is a voltage and current waveform diagram showing the operation example of FIG. 2, FIGS. 4 to 6 are circuit diagrams showing examples of other equivalent test equipment, and FIG. FIG. 7 is a circuit diagram showing another embodiment. 5... Auxiliary breaker, 6... Test commutation switch, 9
...Nonlinear resistance, 10...Reactor, 11-13
...Non Figure 1 Figure 4 Figure 6 Calculation 7 Kasumi procedural amendment (method) % formula % 4 Akira's name DC breaker equivalence test equipment Shin 1 Kawarari Residence (〒]OO) Tokyo 5-1 Marunouchi-chome, Chiyoda-ku, Miyako Prefecture Documents to certify. Heavy industry content See attached sheet.

Claims (1)

【特許請求の範囲】 1、電源を変圧器と組合せ、変圧器の二次側に補助しゃ
断器と供試直流しゃ断器を直列に接続して成る直流しゃ
断器の等価試験装置において、前記変圧器と補助しゃ断
器との間にリアクトルを設けたことを特徴とする直流し
ゃ断器の等価試験装置。 2、上記特許請求の範囲第1項記載のものにおいて前記
、変圧器二次側、前記リアクトル、補助しゃ断器、供試
直流しゃ断器の端子間および前記リアクトルと補助しゃ
断器の接続点と前記変圧器二次側の一端に過電圧抑制装
置を設けたことを特徴とする直流しゃ断器の等価試験装
置。 3、上記特許請求の範囲第2項記載のものにおいて上記
過電圧抑制装置を非線形抵抗としたことを特徴とする直
流しゃ断器の等価試験装置。
[Scope of Claims] 1. A DC breaker equivalence test device comprising a power source combined with a transformer and an auxiliary breaker and a test DC breaker connected in series on the secondary side of the transformer, wherein said transformer An equivalent test device for a DC breaker, characterized in that a reactor is provided between the breaker and the auxiliary breaker. 2. In the item described in claim 1 above, the secondary side of the transformer, the reactor, the auxiliary breaker, between the terminals of the DC breaker under test, and between the connection point of the reactor and the auxiliary breaker and the transformer. An equivalent testing device for a DC breaker, characterized in that an overvoltage suppressor is provided at one end of the secondary side of the device. 3. An equivalent testing device for a DC breaker according to claim 2, characterized in that the overvoltage suppression device is a nonlinear resistor.
JP58015129A 1983-01-31 1983-01-31 Equivalence tester for dc breaker Pending JPS59141079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58015129A JPS59141079A (en) 1983-01-31 1983-01-31 Equivalence tester for dc breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58015129A JPS59141079A (en) 1983-01-31 1983-01-31 Equivalence tester for dc breaker

Publications (1)

Publication Number Publication Date
JPS59141079A true JPS59141079A (en) 1984-08-13

Family

ID=11880207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58015129A Pending JPS59141079A (en) 1983-01-31 1983-01-31 Equivalence tester for dc breaker

Country Status (1)

Country Link
JP (1) JPS59141079A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2997196A1 (en) * 2012-10-22 2014-04-25 Alstom Technology Ltd HIGH VOLTAGE CIRCUIT CIRCUIT FOR HIGH CONTINUOUS CURRENT CIRCUIT CIRCUIT BREAKER

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2997196A1 (en) * 2012-10-22 2014-04-25 Alstom Technology Ltd HIGH VOLTAGE CIRCUIT CIRCUIT FOR HIGH CONTINUOUS CURRENT CIRCUIT CIRCUIT BREAKER
WO2014064000A1 (en) * 2012-10-22 2014-05-01 Alstom Technology Ltd Test circuit for a high-voltage direct current circuit breaker

Similar Documents

Publication Publication Date Title
Sybille et al. Transformer saturation effects on EHV system overvoltages
US4843515A (en) Surge undershoot eliminator
JPS5931283B2 (en) 2-pole grounding fault type circuit disconnector
JPS59141079A (en) Equivalence tester for dc breaker
Oliveira et al. On-line diagnostics of transformer winding insulation failures, by Parks vector approach
Shein et al. Domains of ferroresonance occurrence in voltage transformers with or without damping reactors
Tokuyama et al. Simulations on interruption of circuit breaker in HVDC system with two parallel transmission lines
Berger et al. Proposal of a time-domain platform for short-circuit protection analysis in rapid transit train DC auxiliary systems
JPS6158123A (en) Method of testing equivalent of dc breaker
RU1795393C (en) Device for electrodynamic testing power transformers
SU1277293A1 (en) Device for protection of voltage transformer in isolated neutral system
JPH0738014B2 (en) Step-out synthesis tester for circuit breaker
Liu et al. Analysis of fault-induced inrush current of converter transformers in MMC-HVDC systems
JPH0563748B2 (en)
CN114355253A (en) Split column short circuit test method for extra-high voltage transformer
Takanashi et al. Operating duty test of surge arresters for HVDC transmission systems
SU136813A1 (en) The method of protection of voltage transformers in installations for monitoring the state of isolation of the high-voltage network
SU760279A1 (en) Ferroprobe current supply unit
JPH0782080B2 (en) Circuit breaker test equipment
SU197754A1 (en) DEVICE FOR TESTING SWITCHES FOR INCLUDING ABILITY
SU907681A1 (en) Device for limiting overvoltages and short-circuiting current at high-voltage substation
SU811386A1 (en) Device for differential protection of transformer
SU1319160A1 (en) Electric network
SU612332A1 (en) Arrangement for protection against shorting to the housing of electric apparatus in ac network
SU107164A1 (en) Device for the protection of asynchronous electric motors