JPS6158123A - Method of testing equivalent of dc breaker - Google Patents
Method of testing equivalent of dc breakerInfo
- Publication number
- JPS6158123A JPS6158123A JP17835084A JP17835084A JPS6158123A JP S6158123 A JPS6158123 A JP S6158123A JP 17835084 A JP17835084 A JP 17835084A JP 17835084 A JP17835084 A JP 17835084A JP S6158123 A JPS6158123 A JP S6158123A
- Authority
- JP
- Japan
- Prior art keywords
- circuit breaker
- breaker
- voltage
- equivalent
- test
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
- Keying Circuit Devices (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は高電圧直流遮断器の等価試験法に係シ、特に、
供試遮断器に直流高電圧を印加するに好適な等価試験法
に関する。[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to an equivalence test method for high voltage DC circuit breakers, and in particular,
This invention relates to an equivalent test method suitable for applying a DC high voltage to a test circuit breaker.
直流送電系統と同程度の試験設備建設には膨大な費用が
必要になる。このため、現有の交流試験設備を流用して
信頼性のある等価試験法を開発することが、直流遮断器
開発の重要な課題になる。Constructing test equipment comparable to that of a DC transmission system would require enormous costs. Therefore, developing a reliable equivalent test method by utilizing existing AC test equipment is an important issue in the development of DC circuit breakers.
第4図は、直流送電系統の一部に設置された直流遮断器
の構成例を示す。変換器1より線路のインダクタンスを
含む直流リアクトル2、転流遮断器3を通して直流を通
電している。図示直流遮断器は、転流遮断器3と並列に
振動電流発生用のりアクドル4、コンデンサ5および投
入器6の直列回路と酸化亜鉛を含む非線形抵抗(以下Z
nOと略す)が並列に接続されて他励振動方式直流遮断
器20を構成している。第5図は、直流遮断器遮断時の
動作波形を示す。地絡事故などにより直流電流を遮断す
るi合は、転流遮断器3を開極し、あらかじめコンデン
サ5に充電しておいた電荷を、投入器6から時刻t!で
投入する。転流遮断器3には直流LgにL−Cの振動電
流が重畳され、時刻t2の電流零点で転流遮断器3は遮
断し、Id*はコンデンサCに転流する。コンデンサ5
の充電電圧が高くなり、系統の保護レベル(例えば定格
電圧の1.6倍)に達する時刻t3でZn07が導通し
、転流遮断器3の極間電圧は2Ω07の制限電圧で制限
されたはソ直流に近い電圧が印加される。Zn07で直
流リアクトル2のエネルギを吸収し、ZnO7の電流工
、を限流遮断する時刻t4後は、電@電圧に戻ることに
なる。Zn07の通電時間は、直流系統の線路を含む直
流リアクトル2の値で左右されるが、一般に直流リアク
トルの値は大きく、等価試験で模擬することは困難であ
る。このため、直流遮断器20の等価試験では、ZnO
7の限流特性を模擬した電圧V波形を印加する方法で検
討している。(例えば特公昭59−7945号公報)
〔発明の目的〕
本発明の目的は、インダクテイブ直流等価試験法を採用
し、実系統と等価な信頼性ある高電圧印加可能な試験法
を提供するにある。FIG. 4 shows a configuration example of a DC circuit breaker installed in a part of a DC power transmission system. Direct current is supplied from the converter 1 through a DC reactor 2 including the line inductance and a commutation breaker 3. The illustrated DC circuit breaker includes a series circuit of a commutating circuit breaker 3, an oscillating current generating glue handle 4, a capacitor 5, and a closing device 6 in parallel, and a nonlinear resistor (hereinafter referred to as Z) containing zinc oxide.
(abbreviated as nO) are connected in parallel to form a separately excited vibration type DC breaker 20. FIG. 5 shows operating waveforms when the DC circuit breaker is disconnected. When the DC current is cut off due to a ground fault or the like, the commutation breaker 3 is opened and the electric charge previously charged in the capacitor 5 is transferred from the charger 6 to the time t! Insert it. An oscillating current of LC is superimposed on the DC Lg in the commutation breaker 3, the commutation breaker 3 is cut off at the current zero point at time t2, and Id* is commutated to the capacitor C. capacitor 5
Zn07 becomes conductive at time t3 when the charging voltage of Zn07 becomes high and reaches the system protection level (for example, 1.6 times the rated voltage), and the voltage between the poles of the commutation breaker 3 is limited by the limiting voltage of 2Ω07. A voltage close to direct current is applied. After time t4 when the Zn07 absorbs the energy of the DC reactor 2 and the ZnO7 current is cut off, the voltage returns to the current voltage. The energization time of Zn07 is influenced by the value of the DC reactor 2 including the line of the DC system, but the value of the DC reactor is generally large and difficult to simulate in an equivalence test. Therefore, in the equivalent test of the DC breaker 20, ZnO
A method of applying a voltage V waveform that simulates the current-limiting characteristics of No. 7 is being considered. (For example, Japanese Patent Publication No. 59-7945) [Object of the Invention] An object of the present invention is to provide a test method that employs an inductive DC equivalent test method and is capable of applying a reliable high voltage equivalent to that of an actual system. .
電流遮断後の過電圧をZnOで制限し、補助遮断器を用
いて電源側と切離し、供試直流遮断器に実系統と等価な
直流電圧を印加する方法について、計算と実測により検
討した結果、供試遮断器に印加される直流電圧は、補助
遮断器の電源側と供試遮断器側に設けたZnOの制限電
圧の値で左右され、両者の制限電圧比を調整する方法で
実系統と等価な電圧が印加できることがわかった。As a result of calculations and actual measurements, we investigated a method of limiting the overvoltage after current interruption with ZnO, separating it from the power supply side using an auxiliary circuit breaker, and applying a DC voltage equivalent to that of the actual system to the DC circuit breaker under test. The DC voltage applied to the test circuit breaker depends on the value of the ZnO limit voltage installed on the power supply side of the auxiliary circuit breaker and the test circuit breaker side, and it can be made equivalent to the actual system by adjusting the ratio of the limit voltages between the two. It was found that a certain voltage can be applied.
以下、本発明の一実施例を第1図、第2図により説明す
る。本発明は、電源として短絡発電機8、保護遮断器9
、投入スイッチ10.昇圧用変圧器11、直流リアクト
ル12、を設けたものである。An embodiment of the present invention will be described below with reference to FIGS. 1 and 2. The present invention uses a short-circuit generator 8 and a protective circuit breaker 9 as power sources.
, closing switch 10. A step-up transformer 11 and a DC reactor 12 are provided.
補助遮断器13の図示右側が直流遮断器20である。直
流遮断器20のZnO15は、実系統と同じに配置され
るが、ZnO自体の制限電圧特性が若干具なる。このZ
ooと補助遮断器13の電源側に設けたZn014の制
限電圧比を変えて、実系統と等価な直流電圧を印加する
ことができる。The DC breaker 20 is on the right side of the auxiliary breaker 13 in the drawing. The ZnO 15 of the DC breaker 20 is arranged in the same manner as in the actual system, but the limiting voltage characteristics of ZnO itself are slightly different. This Z
By changing the limiting voltage ratio between oo and Zn014 provided on the power supply side of the auxiliary circuit breaker 13, it is possible to apply a DC voltage equivalent to that of the actual system.
第2図は動作波形例を示すもので転流遮断器3の遮断過
程までは、第5図と同じである。但し、等価試験では、
電流通電回路に補助遮断器13を追加してちゃ、補助遮
断器13は、転流遮断器3と同時に開極する。転流遮断
器3で遮断後の電流は、コンデンサ5に転流され、転流
遮断器の極間電圧Vは上昇する。この電圧上昇途中の時
刻t5でZnO14が導通開始し、転流遮断器3の極間
電圧を制限する。ZnO14の電流工、/が増し、Zn
O14の電圧、電流特性(以下V−I特性と略す)によ
り遮断器3の極間電圧が上昇する時刻t3でZnO15
が導通開始する。この時刻では、電源からコンデンサに
充電した′51荷が、逆に、ZnO14,ZnO15を
通して放電するため、補助遮断器13を流れる電流の方
向が逆になシ、電流零点で補助遮断器13が時刻t6で
遮断する。FIG. 2 shows an example of operating waveforms, and the process up to the breaking process of the commutation breaker 3 is the same as FIG. 5. However, in the equivalence test,
When the auxiliary breaker 13 is added to the current carrying circuit, the auxiliary breaker 13 opens simultaneously with the commutation breaker 3. The current after being cut off by the commutation breaker 3 is commutated to the capacitor 5, and the voltage V between poles of the commutation breaker increases. At time t5 during this voltage rise, ZnO 14 starts conducting and limits the voltage between electrodes of commutation breaker 3. ZnO14 electric current, / increases, Zn
ZnO15 at time t3 when the voltage between the poles of the circuit breaker 3 increases due to the voltage and current characteristics (hereinafter abbreviated as VI characteristics) of O14.
begins to conduct. At this time, the '51 load charged in the capacitor from the power source is discharged through ZnO14 and ZnO15, so the direction of the current flowing through the auxiliary circuit breaker 13 is reversed, and the auxiliary circuit breaker 13 is at the current zero point. Cut off at t6.
補助遮断器13が遮断後は、直流遮断器20が電源と切
離されるため、コンデンサ5の残留電荷はZnO15を
通して放電し、時刻t4でznoisは限流遮断する。After the auxiliary circuit breaker 13 is disconnected, the DC circuit breaker 20 is disconnected from the power supply, so the residual charge in the capacitor 5 is discharged through the ZnO 15, and the current limit circuit of ZNOIS is disconnected at time t4.
このため、直流遮断器20には、この時点のコンデンサ
の残留電圧が印加されることになる。コンデンサ5の残
留電圧は、Zn015のV−I特性で低下するが、この
時点での電流はmAオーダで抵抗値も高く、減衰時定数
の長い等価直流が印加できる。実系統ではznOで電流
遮断後は1.0PUの電源電圧に戻るが、本等価試験で
は、はソ直流と等価な過電圧(例えば定格電圧の1.6
倍)が印加され、苛酷側の試験になる。等価試験では転
流遮断直後の転流遮断器極間の電圧上昇率と、直流等価
電圧V a e印加が実系統と等価になる、電圧印加が
目標になる。この等価試験の場合、ZnO14,15の
制限電圧設定値により、目標とするVd、の値が変化し
、目標とするVa eの印加ができなくなる。原因は、
ZnO15を流れる重流工、の大きさKより、リアクト
ル4とコンデンサ5に振動電圧が発生するだめで、この
工。Therefore, the residual voltage of the capacitor at this point is applied to the DC breaker 20. The residual voltage of the capacitor 5 decreases due to the V-I characteristic of Zn015, but the current at this point is on the order of mA and the resistance value is high, so that an equivalent direct current with a long decay time constant can be applied. In the actual system, the power supply voltage returns to 1.0 PU after the current is cut off at ZnO, but in this equivalence test, the overvoltage equivalent to
times) is applied, resulting in a severe test. In the equivalence test, the goal is to apply a voltage such that the rate of voltage rise between the poles of the commutation breaker immediately after commutation is interrupted and the applied DC equivalent voltage V ae are equivalent to the actual system. In the case of this equivalence test, the target value of Vd changes depending on the limit voltage setting value of the ZnOs 14 and 15, and the target value of Vae cannot be applied. The cause is
Due to the size K of the heavy current flowing through the ZnO 15, an oscillating voltage is generated in the reactor 4 and capacitor 5, so this construction is not possible.
の大きさと転流遮断器3の極間電圧ピーク値V。and the voltage peak value V between the poles of the commutation breaker 3.
と直流電圧Vanの関係を調べた結果、■、が増すほど
V、は、ZnO15のV−1特性で上昇するが、Vd。As a result of examining the relationship between and the DC voltage Van, it was found that as ■ increases, V increases due to the V-1 characteristic of ZnO15, but Vd.
は低下する傾向を示す。目標とするvd。shows a decreasing tendency. Target vd.
を印加するためにV、の値を高めることは、絶縁上好ま
しくないため、Vd、の値は、できるだけV、に近い値
にすることが望ましい。このため、■、の値を小さくす
ることが必要である。■、の値は、遮断電流Iasの大
きさに関係する。Idsの。Increasing the value of V to apply V is not desirable in terms of insulation, so it is desirable that the value of Vd be as close to V as possible. Therefore, it is necessary to reduce the value of ■. The value of (2) is related to the magnitude of the interrupting current Ias. Ids.
値を一定にしてZnO14とZflO15の比N(Zn
O15の制限電圧/Z n Oの制限電圧)を大きくす
ると、Irは低下し、■、と■−6の差が小さくなるこ
とがわかった。即ち、本発明による等価試験では、直流
遮断器のZnO15の制限電圧を、補助遮断器の電源側
のZnO14の制限電圧より高めることで、■、とVd
、の差を小さくして目標とするV6.を印加することが
できる。実験および計算による解析結果ではN = 1
.1程度が望ましいことがわかった。Keeping the value constant, the ratio N of ZnO14 and ZflO15 (Zn
It was found that when increasing the limiting voltage of O15/limiting voltage of ZnO, Ir decreased and the difference between ■ and ■-6 became smaller. That is, in the equivalence test according to the present invention, by increasing the limiting voltage of ZnO15 of the DC circuit breaker higher than the limiting voltage of ZnO14 on the power supply side of the auxiliary circuit breaker,
, the target is V6. can be applied. According to experimental and computational analysis results, N = 1
.. It was found that a value of about 1 is desirable.
第3図は、他の実施列を示したものである。補助遮断器
の遮断責務が厳しく、遮断できない場合補助遮断器13
の極間にコンデンサ16を挿入して補助遮断器の遮断責
務を軽減する方法がある。FIG. 3 shows another implementation sequence. Auxiliary circuit breaker 13 is used when the auxiliary circuit breaker has a strict interrupting duty and cannot interrupt the circuit.
There is a method of reducing the breaking duty of the auxiliary circuit breaker by inserting a capacitor 16 between the poles of the auxiliary circuit breaker.
この場合、補助遮断器13の極間電圧を制限するZn0
17が設けられている。このZn017の制限電圧が低
い場合は、補助遮断器13で遮断したあとのコンデン′
9″5の残留電荷が、ZnO17を通して通電されるた
め、zno15の制限電圧を高めても目標とするv4.
が印加できなくなる。In this case, Zn0 that limits the voltage between poles of the auxiliary circuit breaker 13
17 are provided. If the limiting voltage of this Zn017 is low, the capacitor's
Since the residual charge of 9"5 is energized through ZnO17, the target v4.
cannot be applied.
このため、Zn017の制限電圧をZnO14の制限電
圧より高<、ZnO15の制限電圧と同程度に設定する
ことで、目標とするV4gが印加できる。Therefore, by setting the limiting voltage of Zn017 to be higher than the limiting voltage of ZnO14 and approximately the same as the limiting voltage of ZnO15, the target V4g can be applied.
本発明のように、補助遮断器の極間、あるいは、供試直
流遮断器のZnOの制限電圧を、電源側のZnOの制限
電圧より高く設定することで、実系統と等価な信頼性あ
る等価試験ができる。As in the present invention, by setting the limiting voltage of ZnO between the poles of the auxiliary circuit breaker or the DC breaker under test to be higher than the limiting voltage of ZnO on the power supply side, reliable equivalent voltage equivalent to that of the actual system can be achieved. I can take the test.
第1図は本発明による一実施例を示す等価試験回路図、
第2図は第1図の説明図、第3図は本発明による他の実
施例を示す回路図、第4図は実系統模擬回路図、第5図
は第1図の説明図である。
3・・・転流遮断器、4・・・リアクトル、5・・・コ
ンデンサ、6・・・投入スイッチ、12・・・直流リア
クトル、13−=補助遮断器、14,15.17−Zr
1O。
16・・・コンデンサ。FIG. 1 is an equivalent test circuit diagram showing an embodiment according to the present invention;
2 is an explanatory diagram of FIG. 1, FIG. 3 is a circuit diagram showing another embodiment of the present invention, FIG. 4 is an actual system simulation circuit diagram, and FIG. 5 is an explanatory diagram of FIG. 1. 3... Commutation breaker, 4... Reactor, 5... Capacitor, 6... Closing switch, 12... DC reactor, 13-=Auxiliary circuit breaker, 14, 15.17-Zr
1O. 16... Capacitor.
Claims (1)
電圧を印加し、遮断時は、前記両遮断器を開極し、前記
補助遮断器の電源側と前記供試遮断器側にそれぞれ設け
たインピーダンス素子を介して前記供試遮断器に高電圧
を印加するインダクテイブ等価試験法において、 前記供試遮断器側のインピーダンス値を電源側より高め
たことを特徴とする直流遮断器の等価試験法。 2、特許請求の範囲第1項において、前記補助遮断器の
極間に設けた前記インピーダンス素子の値を、前記電源
側の前記インピーダンス素子の値より高めたことを特徴
とする直流遮断器の等価試験法。 3、特許請求の範囲第1項または第2項において、前記
インピーダンス素子として酸化亜鉛を主成分とする非線
形抵抗を用いたことを特徴とする直流遮断器の等価試験
法。[Claims] 1. The auxiliary circuit breaker and the test circuit breaker are connected in series and voltage is applied from the power supply, and when interrupting, both circuit breakers are opened and the circuit breaker is connected to the power supply side of the auxiliary circuit breaker. In the inductive equivalent test method in which a high voltage is applied to the test circuit breaker through impedance elements provided on the test circuit breaker, the impedance value of the test circuit breaker is higher than that of the power supply side. Equivalent test method for DC circuit breakers. 2. Equivalent of the DC breaker according to claim 1, characterized in that the value of the impedance element provided between the poles of the auxiliary breaker is higher than the value of the impedance element on the power source side. Test method. 3. An equivalent testing method for a DC circuit breaker according to claim 1 or 2, characterized in that a nonlinear resistor whose main component is zinc oxide is used as the impedance element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17835084A JPS6158123A (en) | 1984-08-29 | 1984-08-29 | Method of testing equivalent of dc breaker |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17835084A JPS6158123A (en) | 1984-08-29 | 1984-08-29 | Method of testing equivalent of dc breaker |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6158123A true JPS6158123A (en) | 1986-03-25 |
Family
ID=16046951
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17835084A Pending JPS6158123A (en) | 1984-08-29 | 1984-08-29 | Method of testing equivalent of dc breaker |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6158123A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015040862A1 (en) * | 2013-09-20 | 2015-03-26 | 株式会社 東芝 | Test device for dc circuit breaker and testing method using test device for dc circuit breaker |
WO2018146748A1 (en) * | 2017-02-08 | 2018-08-16 | 三菱電機株式会社 | Testing device and testing method for dc circuit breaker |
-
1984
- 1984-08-29 JP JP17835084A patent/JPS6158123A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015040862A1 (en) * | 2013-09-20 | 2015-03-26 | 株式会社 東芝 | Test device for dc circuit breaker and testing method using test device for dc circuit breaker |
JP2015059891A (en) * | 2013-09-20 | 2015-03-30 | 株式会社東芝 | Testing device for dc breaker and testing method by testing device of dc breaker |
WO2018146748A1 (en) * | 2017-02-08 | 2018-08-16 | 三菱電機株式会社 | Testing device and testing method for dc circuit breaker |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0108279A1 (en) | High-voltage DC circuit breaker apparatus | |
Ibrahim et al. | A knowledge base for switching surge transients | |
US4147975A (en) | Synthetic test circuit for a metal encapsulated high voltage circuit breaker | |
CN114325360A (en) | Short circuit on-off test method and system for high-voltage alternating current circuit breaker | |
JPS6158123A (en) | Method of testing equivalent of dc breaker | |
EP1279212A1 (en) | Method for protecting a dc generator against overvoltage | |
CN205544984U (en) | Power supply unit with wide developments input adaptability | |
Marukatat et al. | Design and Construction of a Combination Wave Generator | |
JP2003115242A (en) | Breaker testing circuit | |
JPS59141079A (en) | Equivalence tester for dc breaker | |
JP2818063B2 (en) | Earth leakage breaker | |
JP2941513B2 (en) | Undervoltage trip device | |
JP2675649B2 (en) | Switchgear test method and device | |
JPH0735831A (en) | Method and apparatus for testing breaker | |
JP3063526U (en) | Surge generator | |
JPH063425A (en) | Testing circuit for switch | |
JPH09258837A (en) | Secondary voltage restricting circuit of power source ct | |
US4168692A (en) | Multiple energy modulation ignition system | |
JPH0563748B2 (en) | ||
SU1647469A1 (en) | Device for testing heavy-duty transformers under short-circuit conditions | |
JPH0738014B2 (en) | Step-out synthesis tester for circuit breaker | |
JPS60200180A (en) | Equivalent test of high voltage dc breaker | |
JPH058533Y2 (en) | ||
JPH0634028B2 (en) | Switchgear test method and device | |
GB1072982A (en) | A synthetic testing installation for electric circuit breakers |