JPH0651036A - Short line fault testing device - Google Patents

Short line fault testing device

Info

Publication number
JPH0651036A
JPH0651036A JP4203765A JP20376592A JPH0651036A JP H0651036 A JPH0651036 A JP H0651036A JP 4203765 A JP4203765 A JP 4203765A JP 20376592 A JP20376592 A JP 20376592A JP H0651036 A JPH0651036 A JP H0651036A
Authority
JP
Japan
Prior art keywords
voltage
current
breaker
time
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4203765A
Other languages
Japanese (ja)
Inventor
Kenji Kamei
健次 亀井
Shuichi Sakuma
秀一 佐久間
Toshiaki Yoshizumi
敏昭 吉積
Tsutomu Sugiyama
勉 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4203765A priority Critical patent/JPH0651036A/en
Publication of JPH0651036A publication Critical patent/JPH0651036A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To perform tests continuously by connecting a breaking resistance in parallel between two terminals of a simulation line, and eliminating shortage of the wave height in the transient recovery voltage. CONSTITUTION:When a shortcircuit current i1 is fed from a current source 2, a start gap 5 is closed at a time immediately before the time To when the current i1 goes the final zero value, and electric charges on a voltage source capacitor 4 are discharged. With this discharge, a high frequency current i2 is generated, and a current i1+i2 flows in a breaker to be tested 11. Because the current i1 goes zero at the time T0, only current i2 flows thereafter through the main breaking part 11a. The breaker 11 is broken at a time half wave after the time To, and between its terminals a voltage VA appears which bears such a waveform that the oscillative voltage VA-B (voltage between points A, B) in the simulation line 9 is superposed over the transient recovery voltage VB. Therein the voltage VA-B takes approx. the same value as where the breaking resistance 11b is in parallel connection with the main breaking part 11a, and there is no risk of the electric charges being discharged to permit the wave height of the voltage VB to be maintained satisfactorily. Thus continuous tests are carried out.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、抵抗遮断方式遮断器
の近距離線路故障遮断性能を検証するために用いられる
近距離線路故障試験装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a short-distance line fault tester used for verifying short-distance line fault interruption performance of a resistance interruption type circuit breaker.

【0002】[0002]

【従来の技術】図3は例えばJEC−2300に示され
た従来のワイルードプケ法による遮断器の近距離線路故
障遮断合成試験回路を示す回路図である。図において、
1は供試遮断器で、並列接続された主遮断部1aと遮断
抵抗1bとで構成されている。2は補助遮断器3に直列
接続され、短絡電流i1を供給する電流電源で、補助遮
断器3とともに電流源回路10を構成し、供試遮断器1
に並列接続されている。
2. Description of the Related Art FIG. 3 is a circuit diagram showing a short-distance line fault interrupting synthetic test circuit for a circuit breaker according to the conventional Wiroud-Puke method shown in JEC-2300, for example. In the figure,
Reference numeral 1 is a test circuit breaker, which comprises a main circuit breaker 1a and a circuit breaker resistance 1b connected in parallel. Reference numeral 2 denotes a current power source that is connected in series to the auxiliary circuit breaker 3 and supplies a short-circuit current i 1 and forms a current source circuit 10 together with the auxiliary circuit breaker 3 and
Are connected in parallel.

【0003】4は過渡回復電圧を供給する電圧源コンデ
ンサ、5は短絡電流i1の最終零値直前で回路を閉成す
る始動ギャップ、6はこの始動ギャップ5とともに電圧
源コンデンサ4に直列接続されるリアクトル、7、8は
直列接続される電源側過渡回復電圧波形調整用の抵抗お
よびコンデンサで、直列接続される電圧源コンデンサ
4、始動ギャップ5およびリアクトル6に対して並列接
続されている。そして、これら4〜8で電圧源回路20
を構成している。9は電圧源回路20に直列接続され例
えばリアクトル、コンデンサ等を組み合わせて近距離線
路に近似させた模擬線路で、電圧源回路20とともに供
試遮断器1に並列接続されている。
Reference numeral 4 is a voltage source capacitor for supplying a transient recovery voltage, 5 is a starting gap for closing the circuit immediately before the final zero value of the short circuit current i 1 , and 6 is a series connection with the starting gap 5 to the voltage source capacitor 4. The reactors 7 and 8 are resistors and capacitors for power supply side transient recovery voltage waveform adjustment which are connected in series, and are connected in parallel to the voltage source capacitor 4, the starting gap 5 and the reactor 6 which are connected in series. Then, with these 4 to 8, the voltage source circuit 20
Are configured. Reference numeral 9 is a simulated line that is connected in series to the voltage source circuit 20 and is approximated to a short-distance line by combining, for example, a reactor and a capacitor, and is connected in parallel to the circuit breaker 1 under test together with the voltage source circuit 20.

【0004】次に上記のように構成された従来の近距離
線路故障試験装置の動作について説明する。まず、予め
別電源により電圧源コンデンサ4には所定の電荷が充電
される。そして、電流電源2から短絡電流i1が供給さ
れると、図4に示すように、短絡電流i1の最終零値の
時点T0の直前の時点T1で、始動ギャップ5が閉成さ
れ、電圧源コンデンサ4に充電されていた電荷が放電さ
れる。この放電により、電圧源コンデンサ4、リアクト
ル6および模擬線路9内のリアクトルと、電圧源コンデ
ンサ4の充電電圧とによって決まる周波数および大きさ
の高周波電流i2が発生する。
Next, the operation of the conventional short-distance line fault testing apparatus configured as described above will be described. First, the voltage source capacitor 4 is previously charged with a predetermined charge by another power source. Then, when the short-circuit current i 1 is supplied from the current power supply 2, the starting gap 5 is closed at a time point T 1 immediately before the time point T 0 of the final zero value of the short-circuit current i 1 , as shown in FIG. The electric charge charged in the voltage source capacitor 4 is discharged. Due to this discharge, a high frequency current i 2 having a frequency and a magnitude determined by the reactor in the voltage source capacitor 4, the reactor 6 and the simulated line 9 and the charging voltage of the voltage source capacitor 4 is generated.

【0005】このため、供試遮断器1の主遮断部1aに
はi1+i2の電流が流れる。この電流の内、短絡電流i
1は時点T0において零値となり、補助遮断器3によって
遮断されるため、時点T0以降は高周波電流i2のみが主
遮断部1aを流れる。そして、供試遮断器1は短絡電流
1が補助遮断器3によって遮断される時点T0より半波
後の時点T2において遮断され、供試遮断器1の端子間
には電圧源コンデンサ4、リアクトル6、抵抗7および
コンデンサ8によって決まる周波数の過渡回復電圧VB
(図3中B点の電圧)に、模擬線路9内の振動電圧V
A-B(図3中A−B点間の電圧)が重畳された波形の電
圧VA(図3中A点の電圧)が現れる。この時、主遮断
部1aに並列接続された遮断抵抗1bが電圧源回路20
に接続され並列ダンピング回路を構成して、遮断抵抗1
bが接続されない場合と比較し、電圧の波高値や電圧上
昇率は緩和される。
Therefore, a current of i 1 + i 2 flows through the main breaker 1a of the test breaker 1. Of this current, short circuit current i
Since 1 has a zero value at time T 0 and is interrupted by the auxiliary circuit breaker 3, only the high-frequency current i 2 flows through the main circuit breaker 1a after time T 0 . Then, the test breaker 1 is cut off at a time point T 2 which is a half wave after the time point T 0 when the short circuit current i 1 is cut off by the auxiliary breaker 3, and the voltage source capacitor 4 is provided between the terminals of the test breaker 1. , The transient recovery voltage V B of the frequency determined by the reactor 6, the resistor 7 and the capacitor 8.
(Voltage at point B in FIG. 3) is the oscillation voltage V in the simulated line 9.
A voltage V A (voltage at point A in FIG. 3) having a waveform on which AB (voltage between points A and B in FIG. 3) is superimposed appears. At this time, the breaking resistor 1b connected in parallel to the main breaking unit 1a is connected to the voltage source circuit 20.
Connected in parallel to form a parallel damping circuit with a cut-off resistance 1
As compared with the case where b is not connected, the peak value of voltage and the rate of voltage rise are alleviated.

【0006】[0006]

【発明が解決しようとする課題】従来の近距離線路故障
試験装置は以上のように構成されているので、供試遮断
器1の主遮断部1aが遮断後、電圧源回路20に遮断抵
抗1bが挿入されることによって、電圧源コンデンサ4
の電荷が、電圧源コンデンサ4の容量値と遮断抵抗1b
の抵抗値とで決まる時定数(数msec)で急速に放電
されるため、図3中B点における電圧、すなわち過渡回
復電圧VBの波高値が不足して、以降の回復電圧が印加
できなくなり、連続して試験ができないという問題点が
あった。
Since the conventional short-distance line failure testing apparatus is constructed as described above, the breaking resistance 1b is applied to the voltage source circuit 20 after the main breaking section 1a of the test breaker 1 is cut off. By inserting the voltage source capacitor 4
Of the voltage source capacitor 4 and the cutoff resistance 1b
Since the discharge is performed rapidly with a time constant (several msec) determined by the resistance value of the voltage, the peak value of the voltage at point B in FIG. 3, that is, the transient recovery voltage V B is insufficient, and the subsequent recovery voltage cannot be applied. However, there was a problem that tests could not be performed continuously.

【0007】この発明は上記のような問題点を解消する
ためになされたもので、過渡回復電圧の波高値が不足す
ることなく、連続して試験をすることが可能な近距離線
路故障試験装置を提供することを目的とするものであ
る。
The present invention has been made in order to solve the above problems, and is a short-distance line failure test device capable of continuous testing without the peak value of the transient recovery voltage being insufficient. It is intended to provide.

【0008】[0008]

【課題を解決するための手段】この発明に係る近距離線
路故障試験装置は、主遮断部とともに供試遮断器を構成
する遮断抵抗を、電圧源回路に直列接続され且つ電圧源
回路とともに供試遮断器に並列接続される模擬線路の両
端子間に並列接続させたものである。
In the short-distance line fault testing apparatus according to the present invention, a breaking resistance which constitutes a test breaker together with a main breaker is connected in series to a voltage source circuit and is tested together with the voltage source circuit. It is connected in parallel between both terminals of the simulated line that is connected in parallel to the circuit breaker.

【0009】[0009]

【作用】この発明における近距離線路故障試験装置の遮
断抵抗は、模擬線路の両端子間に並列接続されることに
より、主遮断部遮断後における電圧源コンデンサからの
放電回路の形成を防止する。
The breaking resistance of the short-distance line fault testing apparatus according to the present invention is connected in parallel between both terminals of the simulated line to prevent the formation of a discharge circuit from the voltage source capacitor after breaking the main breaking portion.

【0010】[0010]

【実施例】【Example】

実施例1.以下、この発明の実施例を図について説明す
る。図1はこの発明の実施例1における近距離線路故障
試験装置の回路構成を示す回路図である。図において、
図3に示す従来装置と同様な部分は同一符号を付して説
明を省略する。11は供試遮断器で、主遮断部11aは
従来装置の主遮断部1aと同様に電流源回路10および
電圧源回路20に並列接続されているが、遮断抵抗11
bは従来装置の遮断抵抗1bと異なり、模擬線路9の両
端子に並列接続されている。
Example 1. Embodiments of the present invention will be described below with reference to the drawings. 1 is a circuit diagram showing a circuit configuration of a short-distance line failure test apparatus according to a first embodiment of the present invention. In the figure,
The same parts as those of the conventional device shown in FIG. Reference numeral 11 is a circuit breaker under test, and the main breaking unit 11a is connected in parallel to the current source circuit 10 and the voltage source circuit 20 in the same manner as the main breaking unit 1a of the conventional device.
Unlike the breaking resistance 1b of the conventional device, b is connected in parallel to both terminals of the simulated line 9.

【0011】次に上記のように構成されたこの発明の実
施例1における近距離線路故障試験装置の動作について
説明する。まず従来装置と同様に、予め別電源により電
圧源コンデンサ4には所定の電荷が充電される。そし
て、電流電源2から短絡電流i1が供給されると、図2
に示すように、短絡電流i1の最終零値の時点T0の直前
の時点T1で、始動ギャップ5が閉成され、電圧源コン
デンサ4に充電されていた電荷が放電される。この放電
により、電圧源コンデンサ4、リアクトル6および模擬
線路9内のリアクトルと、電圧源コンデンサ4の充電電
圧とによって決まる周波数および大きさの高周波電流i
2が発生する。
Next, the operation of the short-distance line fault testing apparatus in the first embodiment of the present invention constructed as described above will be explained. First, as in the case of the conventional device, the voltage source capacitor 4 is previously charged with a predetermined charge by another power source. When the short-circuit current i 1 is supplied from the current power source 2,
As shown in, the starting gap 5 is closed and the electric charge stored in the voltage source capacitor 4 is discharged at time T 1 immediately before time T 0 when the final zero value of the short-circuit current i 1 is reached. Due to this discharge, a high frequency current i having a frequency and magnitude determined by the voltage source capacitor 4, the reactor 6 and the reactor in the simulated line 9 and the charging voltage of the voltage source capacitor 4.
2 occurs.

【0012】このため、供試遮断器11の主遮断部11
aにはi1+i2の電流が流れる。この電流の内、短絡電
流i1は時点T0において零値となり、補助遮断器3によ
って遮断されるため、時点T0以降は高周波電流i2のみ
が主遮断部11aを流れる。そして、供試遮断器11は
短絡電流i1が補助遮断器3によって遮断される時点T0
より半波後の時点T2において遮断され、供試遮断器1
の端子間には電圧源コンデンサ4、リアクトル6、抵抗
7およびコンデンサ8によって決まる周波数の過渡回復
電圧VB(図1中B点の電圧)に、模擬線路9内の振動
電圧VA-B(図1中A−B点間の電圧)が重畳された波
形の電圧VA(図1中A点の電圧)が現れる。この時、
図1中A−B点間の電圧は、遮断抵抗11bが主遮断部
11aに並列接続される場合とほぼ同様の電圧値とな
り、しかも、電圧源コンデンサ4の電荷を放電する回路
の形成は防止されているので、主遮断部11a遮断後に
電荷が放電されることもなく、過渡回復電圧VBの波高
値は十分に維持されて連続試験が可能になる。
Therefore, the main breaker 11 of the test breaker 11
A current of i 1 + i 2 flows through a. Of this current, the short-circuit current i 1 has a zero value at the time point T 0 and is cut off by the auxiliary circuit breaker 3, so that after the time point T 0, only the high-frequency current i 2 flows through the main breaker 11a. Then, the test breaker 11 has a time T 0 when the short circuit current i 1 is cut off by the auxiliary breaker 3.
Blocked in a more time T 2 of the following half-wave, the test circuit breaker 1
Between the terminals of the voltage source capacitor 4, the reactor 6, the resistor 7 and the capacitor 8 to the transient recovery voltage V B (voltage at point B in FIG. 1) and the oscillation voltage V AB in the simulated line 9 (FIG. 1). A voltage V A (voltage at point A in FIG. 1) having a waveform in which a voltage between points A and B in the middle is superimposed appears. At this time,
The voltage between points A and B in FIG. 1 has almost the same voltage value as when the breaking resistor 11b is connected in parallel to the main breaking portion 11a, and moreover, the formation of a circuit for discharging the electric charge of the voltage source capacitor 4 is prevented. Therefore, the electric charge is not discharged after the main cutoff portion 11a is cut off, the peak value of the transient recovery voltage V B is sufficiently maintained, and the continuous test becomes possible.

【0013】[0013]

【発明の効果】以上のように、この発明によれば主遮断
部とともに供試遮断器を構成する遮断抵抗を、電圧源回
路に直列接続され且つ電圧源回路とともに供試遮断器に
並列接続される模擬線路の両端子間に並列接続させるよ
うにしたので、過渡回復電圧の波高値が不足することな
く、連続して試験をすることが可能な近距離線路故障試
験装置を提供することができる。
As described above, according to the present invention, the breaking resistance that constitutes the test breaker together with the main breaker is connected in series to the voltage source circuit and in parallel to the test breaker together with the voltage source circuit. Since it is configured to be connected in parallel between both terminals of the simulated line, it is possible to provide a short-distance line failure test device capable of continuous testing without the peak value of the transient recovery voltage being insufficient. .

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例1における近距離線路故障試
験装置の回路構成を示す回路図である。
FIG. 1 is a circuit diagram showing a circuit configuration of a short-distance line failure test device according to a first embodiment of the present invention.

【図2】図1における近距離線路故障試験装置の供試遮
断器を流れる電流および端子間電圧の状態を示す波形図
である。
FIG. 2 is a waveform diagram showing the states of current and terminal voltage flowing through the test breaker of the short-distance line fault testing apparatus in FIG.

【図3】従来の近距離線路故障試験装置の回路構成を示
す回路図である。
FIG. 3 is a circuit diagram showing a circuit configuration of a conventional short-distance line failure test device.

【図4】図3における近距離線路故障試験装置の供試遮
断器を流れる電流および端子間電圧の状態を示す波形図
である。
FIG. 4 is a waveform diagram showing the states of current and terminal voltage flowing through the test breaker of the short-distance line fault testing apparatus in FIG.

【符号の説明】[Explanation of symbols]

1、11 供試遮断器 1a、11a 主遮断部 1b、11b 遮断抵抗 2 電流電源 4 電圧源コンデンサ 9 模擬線路 10 電流源回路 20 電圧源回路 1, 11 Test breaker 1a, 11a Main breaker 1b, 11b Breaking resistance 2 Current power supply 4 Voltage source capacitor 9 Simulated line 10 Current source circuit 20 Voltage source circuit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 杉山 勉 尼崎市塚口本町8丁目1番1号 三菱電機 株式会社伊丹製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tsutomu Sugiyama 8-1-1 Tsukaguchihonmachi, Amagasaki City Mitsubishi Electric Corporation Itami Works

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 主遮断部に遮断抵抗が並列接続された供
試遮断器と、この供試遮断器に並列接続された電流源回
路と、近距離線路に近似させた模擬線路に直列接続され
且つ上記模擬線路とともに上記供試遮断器に並列接続さ
れた電圧源回路とを備えた近距離線路故障試験装置にお
いて、上記遮断抵抗を上記模擬線路の両端子間に並列接
続させたことを特徴とする近距離線路故障試験装置。
1. A test breaker in which a breaking resistance is connected in parallel to a main breaker, a current source circuit connected in parallel to the test breaker, and a simulated line approximated to a short-distance line are connected in series. And, in the short-distance line failure test device comprising the simulated line and a voltage source circuit connected in parallel to the circuit breaker under test, the breaking resistance is connected in parallel between both terminals of the simulated line. Short-distance line failure test equipment.
JP4203765A 1992-07-30 1992-07-30 Short line fault testing device Pending JPH0651036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4203765A JPH0651036A (en) 1992-07-30 1992-07-30 Short line fault testing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4203765A JPH0651036A (en) 1992-07-30 1992-07-30 Short line fault testing device

Publications (1)

Publication Number Publication Date
JPH0651036A true JPH0651036A (en) 1994-02-25

Family

ID=16479454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4203765A Pending JPH0651036A (en) 1992-07-30 1992-07-30 Short line fault testing device

Country Status (1)

Country Link
JP (1) JPH0651036A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104577945A (en) * 2014-12-26 2015-04-29 常熟开关制造有限公司(原常熟开关厂) Directional current protection method and device
CN110346714A (en) * 2019-08-22 2019-10-18 云南电网有限责任公司电力科学研究院 Mimic-disconnecting switch operating condition operation method, device and line system, test equipment
CN116203355A (en) * 2023-03-23 2023-06-02 山东大学 Method and system for calculating short-circuit current at any position in line

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104577945A (en) * 2014-12-26 2015-04-29 常熟开关制造有限公司(原常熟开关厂) Directional current protection method and device
CN110346714A (en) * 2019-08-22 2019-10-18 云南电网有限责任公司电力科学研究院 Mimic-disconnecting switch operating condition operation method, device and line system, test equipment
CN116203355A (en) * 2023-03-23 2023-06-02 山东大学 Method and system for calculating short-circuit current at any position in line
CN116203355B (en) * 2023-03-23 2024-02-20 山东大学 Method and system for calculating short-circuit current at any position in line

Similar Documents

Publication Publication Date Title
JPH0651036A (en) Short line fault testing device
US3064183A (en) Circuit-breaker testing arrangements
JPH05205849A (en) Testing method for lightning arrester
JP2004245722A (en) Superimposed current adjustment method in weil combination test
US4454476A (en) Method of and apparatus for synthetic testing of a multi-break circuit breaker
JP2675649B2 (en) Switchgear test method and device
JPH04363677A (en) Synthetic test circuit for breaker
JP2787050B2 (en) Insulation recovery test circuit for switchgear
JPH08271596A (en) Synthetic equivalent test method for circuit breaker
JPH0735831A (en) Method and apparatus for testing breaker
JPH06186309A (en) Interruption test circuit for switch
JPS60185178A (en) Composite breaking test circuit of breaker
JPH04351978A (en) Composite short-circuit testing circuit
JPS60207079A (en) Synthesis test of breaker
JP2001343436A (en) Withstand voltage testing method of breaker
JPH03249579A (en) Combined breaking test device for circuit breaker
JPS61195366A (en) Testing instrument for lightening arrestor disconnecting device
SU938223A1 (en) Device for synthetic testing of switches for switching-off capability
JPH01292274A (en) Synthetic tester for small leading current breaking test
JPH08122418A (en) Weyl combination test circuit
JPH0449662B2 (en)
JPH0355110Y2 (en)
JPH0634028B2 (en) Switchgear test method and device
JPH08233915A (en) Cut-off tester for resistance cut-off type breaker and cut-off testing method using the same
JPS6030900B2 (en) Equivalent test method for breaker