JPH0461279A - Vertical mos field effect transistor - Google Patents

Vertical mos field effect transistor

Info

Publication number
JPH0461279A
JPH0461279A JP17230490A JP17230490A JPH0461279A JP H0461279 A JPH0461279 A JP H0461279A JP 17230490 A JP17230490 A JP 17230490A JP 17230490 A JP17230490 A JP 17230490A JP H0461279 A JPH0461279 A JP H0461279A
Authority
JP
Japan
Prior art keywords
conductivity type
region
impurity concentration
semiconductor
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17230490A
Other languages
Japanese (ja)
Inventor
Yoshihiro Enjiyou
啓裕 円城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP17230490A priority Critical patent/JPH0461279A/en
Publication of JPH0461279A publication Critical patent/JPH0461279A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs

Abstract

PURPOSE:To easily apply a high voltage surge from a P-channel region corner to a P<+> type high impurity concentration region by providing a P<+> type high impurity concentration region for allowing a depleted layer extending toward an N<-> type epitaxial layer in the high impurity concentration region to be brought into contact with an N<-> type substrate at a lower voltage than the withstand voltage of a P-N junction at the corner of the P-channel region when a reverse bias voltage is applied to an N<+> type substrate to press it to a depth for causing a reach-through. CONSTITUTION:After a P<+> type high impurity concentration region 3 is formed in an epitaxial layer 2, a P-channel region 4 is formed. The region 3 is so formed that, when a voltage is applied to an N<+> type substrate 1, a depleted layer extended toward the layer 2 is pressed to a depth in contact with the substrate 1 by a lower voltage than the withstand voltage of a P-N junction at the corner (a) of the region 4 in the region 3.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は半導体装置に関し、特にDSA構造を持つ縦形
MOS電界効果トランジスタ(FET)に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device, and particularly to a vertical MOS field effect transistor (FET) having a DSA structure.

[従来の技術] この種の従来の縦形MOSFETの断面図を第3図に示
す。半導体基板はドレイン耐圧を高めるため、n1基板
1上にこれより不純物濃度が低いn−エビタキシャル層
2を形成したものが用いられている。n−エピタキシャ
ル層2内には、P4高不純物濃度領域3を形成Lノだ後
、これより不純物濃度が低いPチヤンネル領域4が形成
され、このI’チャンネル領域4内に、n+ソース領域
5が形成されている。ここでP1高不純物濃度領域3.
I)チャンネル領域4と、n″エピタキシヤルN2の間
に形成されるPN接合により、トレイン耐圧が定まる。
[Prior Art] A cross-sectional view of a conventional vertical MOSFET of this type is shown in FIG. In order to increase the drain breakdown voltage, the semiconductor substrate used is one in which an n-evitaxial layer 2 having a lower impurity concentration is formed on an n1 substrate 1. After forming a P4 high impurity concentration region 3 in the n- epitaxial layer 2, a P channel region 4 with a lower impurity concentration is formed in the I' channel region 4, and an n+ source region 5 is formed in this I' channel region 4. It is formed. Here, P1 high impurity concentration region 3.
I) The train breakdown voltage is determined by the PN junction formed between the channel region 4 and the n'' epitaxial layer N2.

n゛ソース領域5及びil−エピタキシャル層2と1)
チャンネル領域4上には、ゲート酸化膜(絶縁膜)6を
介して、多結晶シリコンを用いたゲート電極7が形成さ
れている。
n゛source region 5 and il-epitaxial layer 2 and 1)
A gate electrode 7 made of polycrystalline silicon is formed on the channel region 4 with a gate oxide film (insulating film) 6 in between.

中間絶縁層8がゲート酸化膜6とゲート電極7を被うよ
うここ形成され、その上にソース電極9がPチヤンネル
領域4と、n゛ソース領域5に接続″する杉で形成され
ている。
An intermediate insulating layer 8 is formed here to cover the gate oxide film 6 and the gate electrode 7, and thereon a source electrode 9 is formed of cedar which is connected to the P channel region 4 and the source region 5.

[発明が解決しようどする課題] この従来の縦形MOSFETは、その内部に、n〜エピ
タキシャル層2の11−層をコレクタ、■)チャンネル
領域4の■)領域をベース、n°ソー・ス領域5のn゛
領域ニーミッタとする寄生バ、イボーラトランジスタが
形成される構造とな−)こおり、」フージの発生により
次のような問題が牛じバζしJ、・λ(いた。
[Problem to be solved by the invention] This conventional vertical MOSFET has an n~11- layer of epitaxial layer 2 as a collector, ■) a channel region 4 as a base, and an n° source region. In the structure in which an Ibora transistor and a parasitic barrier are formed as n-region knee emitters of 5, the following problems arise due to the occurrence of fuges.

サージ印加時の電流針路1ジ1を第71[イjに示す。The current course 1 when a surge is applied is shown in the 71st [Ij.

負荷電流を遮断した際、ドレイン耐141を超える高電
圧のす・−ジが発生すると、このサージはn エピタキ
シャル層2と、■)チャンネル領域、、/1の間のPN
接合のニーづ一部aに加わりやすい。ぞ−して、ぞのコ
ーナ一部a、で、アバランシェ降伏を起ff”、、 L
7、そのブレークダウン電流l〕がr)チャネル領域1
1を経てソース電極9に池、れる4、 Pチヤンネル領域4は、前記のよ・うに寄生バイポーラ
トランジスタのベース領域に半H当するので、そのベー
ス抵抗が大きいと、ブレークダウン電流すによる電圧効
果で、寄生バイポーラトランジスタのエミッタ・へ゛−
ス開が順バイアスされ、この結果、寄生バイポーラトラ
ンジスタはオン状態どなり、発熱り、ざらζこ電流が増
大するといった内部現象により破壊傾向が生じるとい・
う問題があった。
When the load current is cut off, if a high voltage surge exceeding the drain resistance 141 occurs, this surge will cause the PN between the epitaxial layer 2 and the channel region, /1
It is easy to join the joint knee part a. Then, avalanche surrender occurred at part a of the corner.ff",,L
7, its breakdown current l] is r) channel region 1
As mentioned above, the P channel region 4, which is connected to the source electrode 9 through the P channel region 4, corresponds to half the base region of the parasitic bipolar transistor, so if its base resistance is large, the voltage effect due to the breakdown current will be reduced. Then, the emitter of the parasitic bipolar transistor
As a result, the parasitic bipolar transistor turns on, generates heat, and tends to break down due to internal phenomena such as increased current.
There was a problem.

[課題を解決するための丁段コ 本発明の縦形MOSFE’l”は、n1工ピタキシヤル
層とPチャンネル領域とのPN接合の:2−ナー部での
アバランシェ降伏を起こしにくくするために、n+基板
に逆バイアス電圧を加えたとぎ、P゛高不純物濃度領域
でn−エピタキシャル層の方にのびる空乏層が、Pチャ
ンネル領域のコーナ一部でのPN接合の耐圧より、低い
電圧で、n−基板にぶつかり、リーチスルーを起こす様
な深さに押し込んだP4高不純物濃度領域を備えている
[To solve the problem] The vertical MOSFE'l'' of the present invention has an n+ When a reverse bias voltage is applied to the substrate, the depletion layer extending toward the n- epitaxial layer in the P high impurity concentration region forms an n- It has a P4 high impurity concentration region that is pushed to a depth that hits the substrate and causes reach-through.

すなわち、第1導電形の半導体基板と、この半導体基板
上に、形成された当該半導体基板よりは、不純物濃度の
低い第1導電形の半導体層と、この半導体層内に形成さ
れた第2導電形の半導体領域と前記第1導電形の半導体
層の輪状の内部の前記第2導電形の半導体領域下部に接
して形成されて当該第2導電形の半導体領域より、不純
物濃度が高い、第2導電形の高不純物濃度領域と第2導
電形の半導体領域に輪状に形成された第1導電形の半導
体領域と、この輪状に形成された第1導電形の゛1′、
導体領域及び前記第2導電形の半導体領域ト。
That is, a semiconductor substrate of a first conductivity type, a semiconductor layer of a first conductivity type formed on this semiconductor substrate and having a lower impurity concentration than the semiconductor substrate, and a second conductivity type formed in this semiconductor layer. a second conductivity type semiconductor region formed in contact with a lower part of the second conductivity type semiconductor region inside the ring-shaped semiconductor layer of the first conductivity type and having a higher impurity concentration than the second conductivity type semiconductor region; a semiconductor region of a first conductivity type formed in a ring shape in a high impurity concentration region of a conductivity type and a semiconductor region of a second conductivity type;
a conductor region and the second conductivity type semiconductor region;

にケート絶縁膜を介して配設されたゲート電極とを有゛
4る縦形MOS電界効果トランジスタにおいて、前記第
1導電形の半導体層と0月)N接合の前記半導体基板に
電圧を加えたときに、前記第2導電形の高不純物濃度領
域から第1導電形の半導体層へのびる空乏層が、第2導
電形の半導体領域のコーナ一部と第1導電形の半導体層
とのPN接合の耐圧より低い電圧で、第1導電形の半導
体基板に到達する深さに前記第2導電形の高不純物濃度
領域を形成したことを特徴とする。
In a vertical MOS field effect transistor having a gate electrode disposed through a gate insulating film, when a voltage is applied to the semiconductor layer of the first conductivity type and the semiconductor substrate in an N junction. The depletion layer extending from the second conductivity type high impurity concentration region to the first conductivity type semiconductor layer forms a PN junction between a part of the corner of the second conductivity type semiconductor region and the first conductivity type semiconductor layer. The semiconductor device is characterized in that the high impurity concentration region of the second conductivity type is formed at a depth that reaches the semiconductor substrate of the first conductivity type at a voltage lower than the breakdown voltage.

[実施例コ 次に本発明について、図面を参照して説明する。[Example code] Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例に係る縦形MO3FETの断
面図である。半導体基板はn゛基板1上に、n−エピタ
キシャル層2を形成したものを用いている。
FIG. 1 is a sectional view of a vertical MO3FET according to an embodiment of the present invention. The semiconductor substrate used is one in which an n-epitaxial layer 2 is formed on an n-substrate 1.

エピタキシャル層2の内には、P″高不純物濃度領域3
を形成した後、Pチヤンネル領域4を形成し1・である
。このP+高不純物濃度領域3は、11゛茫析1に電月
、を加えたどき、P′高不純物濃度領域ニオで、1〕 
エピタキシA・ル層2の方(・”のびる空乏層が、I−
〉チャンネル領域4の一ノーナー・部a、ての)’N按
aの耐圧より、低い電圧て′、丁ビ基板」にぶつか4様
な深さに押し込み形成しである。
In the epitaxial layer 2, there is a P″ high impurity concentration region 3.
After forming P channel region 4, step 1. This P+ high impurity concentration region 3 is P′ high impurity concentration region 1]
The epitaxy A/L layer 2 (・”The extending depletion layer is I-
〉One corner part a of the channel region 4 is pressed into the substrate at a voltage lower than the withstand voltage of 〉N㉉a〉to a different depth.

そしy”’C,Pチャンネル領域71内ここ、i”l+
ソース領域5が形成され、11″′ソース領域らおよび
ii エピタキシ4・ノL層2とPチャンネル領域71
1Jには、ケ゛゛−I−酸化膜(絶縁膜)6を介し・で
多結晶シリ−7ンを用いたゲート電極7が形成し、で゛
ある。・ぞし・で。
Then y'''C, P here in the channel area 71, i''l+
A source region 5 is formed, 11'' source region et al. and ii epitaxial layer 2 and a P channel region 71.
A gate electrode 7 using polycrystalline silicon 7 is formed on the gate electrode 1J with a silicon oxide film (insulating film) 6 interposed therebetween.・Zoshi・de.

中間絶縁層8をゲー用・酸化1m(3ど、ゲ・〜叫・電
極゛iを被うように形成し・、そのj、に、ソース電極
9をPベース領域4ど114ソース領域ζこ接続4”る
形て形成しマある。
An intermediate insulating layer 8 is formed with 1 m of oxidation layer (3, 3, 3, 3, 4, 4, 5, 4, 5, 4 layers, covering the 114 source regions ζ). It is possible to form a connection 4".

次に、その動作についで説明する。Next, its operation will be explained.

この実施例こ(,41、トしイン耐圧を越える高電汀6
(ノーンが加わると、■)チャンネル領域l]、の−ズ
ー・ナ一部2Iの耐圧より、低い電圧でP+高不純物濃
度領域3がリーチスルーを起ごずようにしまたたぎ〕、
こ′の1ノ・〜ジがP゛高不純物濃度領域、;3に加わ
り易くなり、■戸高不純物濃度領域:3−(アバ−〉ン
シ1.険法を起こし!、そのブL/−クダウン電治、は
曲線的な経路てぞのJ:まソース電極94Q’−;■れ
る。
This example (, 41, high voltage exceeding the input breakdown voltage 6
(When non is added, ■) the channel region l], the -zu na part 2I straddled so that the P+ high impurity concentration region 3 does not reach through at a voltage lower than the withstand voltage of the part 2I],
This '1 No. ~ ji easily joins P゛ high impurity concentration region; Denji's curved path leads to the source electrode 94Q'-;

[発明の効果コ 以上説明したよ・−)に、本発明の縦形M OS F 
FTは、高電圧サージが1L′f?・ンネル領域ニー 
l・−813より1〉°高不純物濃度領域ζ1:加わり
易< L、y、イーの鈷宋ブ1./−クダウン電流か、
P゛高不純物濃追領域から1)・Jヤンネル領域どノ・
−スミ極どの接合部を通り、ソース電極へ)が[、れる
の(、寄仕ハイボー″ントランジスタがオン状態(、、
−なりにくくなり、このためによる発熱は起こらず、破
壊傾向が生じここくくなるという効果を有する。
[The effects of the invention have been explained above], the vertical MOSFET of the present invention
FT has a high voltage surge of 1L'f?・Nel area knee
1〉°high impurity concentration region ζ1 from l・-813: easy to add < L, y, E's Gongsongbu 1. /-down current,
From P゛high impurity concentration region 1), J channel region,
- Through which junction of the sumi electrodes and the source electrodes pass through (to the source electrodes).
- This has the effect of making it less likely to cause heat generation due to this, and making it more difficult to cause a tendency to break.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の断m図、第一2.図は本発
明の一実施例の1ノ一ジ印加時の電d1.経銘を説明”
する概念図、第:3図はiN来の縦形MOΣ−; F 
E Tの断面図、第41ffl :i i’+′IT、
E t;っh’t 形1’i (い−; F E Tの
1カー何、印加時の電流経路4]・説明する侃、’6H
lイlでL;5 ’S (。 1 ・ ・ ・ ・ ・ ・ ・ ri ″基+反2′
)・・・・・・・ri ’エビタギジャル1蕾、3・・
・・・・・1)″高不純物濃度領域、!■・・・・・・
・Pチャンネル領域、5・・・・・・・丁)゛ソース領
域、 〔逼・・・・・・・ゲー ト酸化膜、 7・・・・・・・ケート電極、8 8・・・・・・・中間絶縁膜、 9・・・・・・・ソース電極。 第、ろ囚 特許出願人  日本電気株式会社
FIG. 1 is a sectional view of one embodiment of the present invention. The figure shows the voltage d1 when one voltage is applied according to an embodiment of the present invention. Explaining the sutra inscription”
Figure 3 is a conceptual diagram of the vertical MOΣ-; F
ET cross-sectional view, 41st ffl: i i'+'IT,
E t; っ h't form 1'i (I-; 1 car of F E T, current path 4 when applied)・Explain, '6H
1 ・ ・ ・ ・ ・ ・ ri ″ group + anti 2′
)・・・・・・ri 'Evitagijaru 1 bud, 3...
・・・・・・1) ″High impurity concentration region,!■・・・・・・
・P channel region, 5....... Source region, 〼... Gate oxide film, 7... Gate electrode, 8 8... ...Intermediate insulating film, 9...Source electrode. No. 1 patent applicant: NEC Corporation

Claims (1)

【特許請求の範囲】[Claims]  第1導電形の半導体基板と、この半導体基板上に、形
成された当該半導体基板よりは、不純物濃度の低い第1
導電形の半導体層と、この半導体層内に形成された第2
導電形の半導体領域と前記第1導電形の半導体層の輪状
の内部の前記第2導電形の半導体領域下部に接して形成
されて当該第2導電形の半導体領域より、不純物濃度が
高い、第2導電形の高不純物濃度領域と第2導電形の半
導体領域に輪状に形成された第1導電形の半導体領域と
、この輪状に形成された第1導電形の半導体領域及び前
記第2導電形の半導体領域上にゲート絶縁膜を介して配
設されたゲート電極とを有する縦形MOS電界効果トラ
ンジスタにおいて、前記第1導電形の半導体層とのPN
接合の前記半導体基板に電圧を加えたときに、前記第2
導電形の高不純物濃度領域から第1導電形の半導体層へ
のびる空乏層が、第2導電形の半導体領域のコーナー部
と第1導電形の半導体層とのPN接合の耐圧より低い電
圧で、第1導電形の半導体基板に到達する深さに前記第
2導電形の高不純物濃度領域を形成したことを特徴とす
る縦形MOS電界効果トランジスタ。
a first conductivity type semiconductor substrate; a first conductivity type semiconductor substrate formed on the semiconductor substrate;
A conductive type semiconductor layer and a second semiconductor layer formed within this semiconductor layer.
A second conductivity type semiconductor region is formed in contact with a lower part of the second conductivity type semiconductor region inside the ring-shaped semiconductor layer of the first conductivity type and has a higher impurity concentration than the second conductivity type semiconductor region. a semiconductor region of a first conductivity type formed in a ring shape in a high impurity concentration region of a second conductivity type and a semiconductor region of a second conductivity type; a semiconductor region of the first conductivity type formed in a ring shape and the second conductivity type; a vertical MOS field effect transistor having a gate electrode disposed on a semiconductor region of the semiconductor layer with a gate insulating film interposed therebetween;
When a voltage is applied to the semiconductor substrate of the junction, the second
The depletion layer extending from the high impurity concentration region of the conductivity type to the semiconductor layer of the first conductivity type is at a voltage lower than the breakdown voltage of the PN junction between the corner part of the semiconductor region of the second conductivity type and the semiconductor layer of the first conductivity type, A vertical MOS field effect transistor, characterized in that the high impurity concentration region of the second conductivity type is formed at a depth that reaches a semiconductor substrate of the first conductivity type.
JP17230490A 1990-06-28 1990-06-28 Vertical mos field effect transistor Pending JPH0461279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17230490A JPH0461279A (en) 1990-06-28 1990-06-28 Vertical mos field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17230490A JPH0461279A (en) 1990-06-28 1990-06-28 Vertical mos field effect transistor

Publications (1)

Publication Number Publication Date
JPH0461279A true JPH0461279A (en) 1992-02-27

Family

ID=15939443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17230490A Pending JPH0461279A (en) 1990-06-28 1990-06-28 Vertical mos field effect transistor

Country Status (1)

Country Link
JP (1) JPH0461279A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997016853A1 (en) * 1995-11-02 1997-05-09 National Semiconductor Corporation Insulated gate semiconductor devices with implants for improved ruggedness
US5701023A (en) * 1994-08-03 1997-12-23 National Semiconductor Corporation Insulated gate semiconductor device typically having subsurface-peaked portion of body region for improved ruggedness

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5701023A (en) * 1994-08-03 1997-12-23 National Semiconductor Corporation Insulated gate semiconductor device typically having subsurface-peaked portion of body region for improved ruggedness
US5897355A (en) * 1994-08-03 1999-04-27 National Semiconductor Corporation Method of manufacturing insulated gate semiconductor device to improve ruggedness
WO1997016853A1 (en) * 1995-11-02 1997-05-09 National Semiconductor Corporation Insulated gate semiconductor devices with implants for improved ruggedness

Similar Documents

Publication Publication Date Title
JPH0621468A (en) Insulated gate semiconductor device
JPS63141375A (en) Insulated gate field effect transistor
JPH10294461A (en) Insulation gate type semiconductor element
KR20180068211A (en) Semiconductor device and method manufacturing the same
US6914270B2 (en) IGBT with PN insulation and production method
JPS6180858A (en) Power mosfet
JPH0461279A (en) Vertical mos field effect transistor
JPH0654796B2 (en) Composite semiconductor device
JP2825038B2 (en) Semiconductor device
JP3211529B2 (en) Vertical MIS transistor
JPS6262069B2 (en)
JPH04125972A (en) Mos semiconductor element and manufacture thereof
JPS5889872A (en) Junction type field effect semiconductor device
JPS63194367A (en) Semiconductor device
JPH07142731A (en) Power device and method for forming it
JPS61116875A (en) Semiconductor device
JPH0493083A (en) Semiconductor device and manufacture thereof
JPH09199721A (en) Field effect transistor
JP2816985B2 (en) Vertical MOS field-effect transistor
JP3217484B2 (en) High voltage semiconductor device
JP2001127287A (en) Insulating gate-type semiconductor device
JP2007134421A (en) Vertical semiconductor device such as power mosfet and igbt, and its manufacturing method
JPH0244776A (en) Insulated gate type bipolar transistor
JPH01290265A (en) Mos type semiconductor device
JP2002110987A (en) Semiconductor device and manufacturing method therefor