JPH0461207A - Conductor for electric-current lead use - Google Patents

Conductor for electric-current lead use

Info

Publication number
JPH0461207A
JPH0461207A JP2171392A JP17139290A JPH0461207A JP H0461207 A JPH0461207 A JP H0461207A JP 2171392 A JP2171392 A JP 2171392A JP 17139290 A JP17139290 A JP 17139290A JP H0461207 A JPH0461207 A JP H0461207A
Authority
JP
Japan
Prior art keywords
circumferential face
ceramic
fins
conductor
outer circumferential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2171392A
Other languages
Japanese (ja)
Other versions
JP2846419B2 (en
Inventor
Masanao Mimura
三村 正直
Shoji Shiga
志賀 章二
Naoki Uno
直樹 宇野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2171392A priority Critical patent/JP2846419B2/en
Publication of JPH0461207A publication Critical patent/JPH0461207A/en
Application granted granted Critical
Publication of JP2846419B2 publication Critical patent/JP2846419B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To reduce the evaporation of liquid He or the like for cooling a superconducting magnet or the like by a method wherein ceramic superconductor layer is formed continuously in the lengthwise direction on the inner or/ and the outer circumferential face of a metal pipe on which fins have been formed on the inner circumferential face or/and the outer circumferential face. CONSTITUTION:A metal pipe 1 on which fins 3 have been installed rectlinearly on the outer circumferential face is filled with a ceramic super-conductor layer 2. A conductor for electric-current lead use is formed in such a way that a metal hollow body is filled with a raw material substance which can be changed to a ceramic superconductor. The conductor is extended and worked; after that, a prescribed heat treatment is executed; the raw-material substance is reacted with the ceramic superconductor. The fins are manufactured by being welded onto the metal pipe. As a method to continuously form the ceramic superconductor layers in the lengthwise direction on the inner circumferential face or/and the outer circumferential face of the metal pipe on which the fins have been formed on the inner circumferential face or/and the outer circumferential face, a tapelike ceramic superconducting wire material manufactured by metal-sheathing the ceramic superconductor layer is soldered to the inner circumferential face or the outer circumferential face of said metal pipe.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、室温に置かれた電流供給源から液体He等で
冷却されたマグネット、限流器等の超電導機器又は装置
へ1を流を供給する為に用いられるit電流リード用導
体関する。
Detailed Description of the Invention [Industrial Application Field] The present invention provides a method for supplying a current from a current supply source placed at room temperature to a superconducting device or device such as a magnet or current limiter cooled with liquid He or the like. Concerning the conductor for the IT current lead used for supplying it.

(従来の技術〕 超電導を利用したマグネット、送電ケーブル又は5QL
IIDやジ町セフソン素子等を組込んだ電子機器等は液
体He等により冷却し“ζ用いられるもので、これら電
子機器等−・の電流の供給は運転開始又は運転中に外部
を源よりt流す−ドを通してなされる。
(Conventional technology) Magnet, power transmission cable or 5QL using superconductivity
Electronic equipment, etc. incorporating IID, Jimachi Sefson elements, etc. are cooled with liquid He, etc., and the current supply to these electronic equipment, etc. is carried out from an external source at the start of operation or during operation. It is done through flowing - de.

ところで電流リード用導体には従来、鋼材が用いられて
いるが、超電導マグネット等では人it′/kが必要な
ため電流リード用導体はサイズを太くして、ジュール発
熱の低減や過を流による溶断防止が計られている。しか
しながら電流リード用導体を太くすると外部からの流入
熱量が増加して■(0等の冷媒の蒸発量が増え冷却コス
トが増大するという問題があった。
By the way, steel has conventionally been used for current lead conductors, but since superconducting magnets and the like require an electric current, the current lead conductors are made thicker to reduce Joule heat generation and reduce overflow. Measures are taken to prevent fusing. However, when the current lead conductor is made thicker, the amount of heat flowing in from the outside increases, causing the problem that (1) the amount of evaporation of the refrigerant, such as 0, increases and the cooling cost increases.

このようなことから、近年液体N1温度で超電導を示す
セラミックス超電導体を電気良導体の金属と複合したi
i電流リード用導体提案された。
For this reason, in recent years, ceramic superconductors that exhibit superconductivity at liquid N1 temperature have been combined with metals that are good electrical conductors.
iA conductor for current leads was proposed.

この電流リード用導体においては、電流は液体He等で
冷却された超電導素子側では主にセラミックス超電導体
を通り、又常温の電流供給源側では金属被覆層を通って
供給されるもので、セラミックス超電導体は、液体He
等で冷却された超電導素子側では抵抗ゼロの為通電によ
るジュール発熱がなく、又セラミックス超電導体は熱伝
導性が低い為外部からの熱流入が少なく、かくしてt流
リード用導体としては優れた特性を有するものである。
In this current lead conductor, current is supplied mainly through the ceramic superconductor on the superconducting element side cooled with liquid He, etc., and through the metal coating layer on the current supply source side at room temperature. Superconductor is liquid He
On the superconducting element side, which is cooled by It has the following.

〔発明が解決しようとする課8] しかしながら、前記の如きセラミックス超電導体製の電
流リード用導体は1、−lQに超電導機器冷却用の液体
HeからでるHe蒸気によ51.7て冷却ず−るもので
、冷却効果が十分に得られず超電導体層がクエンチを起
こして焼損したり、外部からの熱が電流リード用導体を
伝達し2て液体Heが多重に蒸発してしまうというよう
な問題があった。
[Problem 8 to be solved by the invention] However, the current lead conductor made of ceramic superconductor as described above is not cooled by He vapor emitted from liquid He used for cooling superconducting equipment. If the cooling effect is insufficient, the superconductor layer may quench and burn out, or heat from the outside may be transmitted through the current lead conductor, causing liquid He to evaporate multiple times. There was a problem.

〔課題を解決する為の手段] 本発明はかかる状況に鑑み鋭意研究を行った結果なされ
たもので、その目的とするところは、超電導マグネット
等の冷却に用いる液体He等の蒸発量を低減L2得る電
流リード用導体を提供することにある。
[Means for Solving the Problems] The present invention was made as a result of intensive research in view of the above situation, and its purpose is to reduce the amount of evaporation of liquid He, etc. used for cooling superconducting magnets, etc. L2 An object of the present invention is to provide a conductor for a current lead.

即ち、本発明は、内周面又は/及び外周面にフィンを設
けた金属製パイプの内周面又は/及び外周面上にセラミ
ックス超電導体層を長f方向に連続して設けたことを特
徴とするものである。
That is, the present invention is characterized in that a ceramic superconductor layer is continuously provided in the longitudinal direction on the inner circumferential surface and/or outer circumferential surface of a metal pipe having fins on the inner circumferential surface and/or outer circumferential surface. That is.

以Fに本発明を回を参照して具体的に説明−づる。Hereinafter, the present invention will be specifically explained with reference to the following sections.

第1図〜3図は本発明のit;tYkリード用導体の態
様例を示嬢゛横断面図、ヌ第4回は同一部切欠き斜視図
である。
FIGS. 1 to 3 are cross-sectional views showing embodiments of the tYk lead conductor of the present invention, and FIG. 4 is a partially cutaway perspective view of the same.

第1図に示した電流リード用導体では、夕(周面にツイ
ン3が直線状に設(11られた金属製パイプ1内Rヤラ
ミノクス超電導体層2が充填されこいる。
In the current lead conductor shown in FIG. 1, a metal pipe 1 in which twins 3 are arranged linearly on the circumference is filled with a Yaraminox superconductor layer 2.

この電流リード用導体は、金属製中空体内にセラミック
ス超電導体となし得る原料物質を充填し7、これを伸延
前Iしたのち、所定の加熱処理を施して上記原料物質を
セラミックス超電導体Qこ反応せしめ、しかるのちF記
金属製バイグ19、にフィンを熔接し、″て製造される
2 第2図に示1.また電流、リード用導体は内周面に直線
状にツイン3を有する金属製パイプ]の1−7記内周面
にセラミックス超電導体層2を金属でシースして作った
テープ状セラミックス超電導線材4を半田付けして設け
たものである。
This current lead conductor is made by filling a metal hollow body with a raw material that can be made into a ceramic superconductor (7), and then subjecting it to a pre-elongation process (I) and then subjecting it to a predetermined heat treatment to convert the raw material into a ceramic superconductor (Q). After that, the fins are welded to the metal vig 19 shown in F. A tape-shaped ceramic superconducting wire 4 made by sheathing a ceramic superconductor layer 2 with metal is soldered to the inner peripheral surface of the pipe.

又第3図にボしたt流す−ト′用導体は、内周面及び外
周面に直線状フィン3を有する金属製パイプ1の外周1
lI11に前記のテープ状セラミックス超電導線材4を
半田付けして設け、更にその外周四番、パ保冷用金属管
5を配置したものである。
Further, the conductor for t flowing to 't' shown in FIG.
The tape-shaped ceramic superconducting wire 4 described above is soldered to the II 11, and a cold-insulating metal tube 5 is further placed on the outer periphery thereof.

又第4図に示したitit−リード体は、外周面に螺旋
状のフィン3を有する金属製パイプlの外周面に前記の
テープ状セラミックス超電導線材4を螺旋状に成形しフ
ィン3に沿って半田付けし、更にその周囲に保冷用金属
管5を配置したものである。
The itit-lead body shown in FIG. 4 is made by forming the tape-shaped ceramic superconducting wire 4 in a spiral shape on the outer peripheral surface of a metal pipe l having spiral fins 3 on the outer peripheral surface. It is soldered and furthermore, a cold insulation metal tube 5 is arranged around it.

上記保冷用金属管は、超電導体層を金属製パイプの外周
面に設けた際、その外周囲に配置することによりHe蒸
気の散逸を防止して冷却効率を高める作用を果たすもの
で、材料にはセラミ・1.クスやFRP等のプラスチン
クスも適用することができる。
The above-mentioned cold insulation metal pipe is a material that prevents dissipation of He vapor and increases cooling efficiency by placing the superconductor layer around the outer circumference of the metal pipe. is Cerami・1. Plastics such as plastics and FRP can also be applied.

本発明において、セラミックス超電導体にば、Y−Ba
−Cu−0系、B1−3r−Ca−Cu−〇系、Tl−
Ba−Ca−Cu−0系等任意のセラミックス超IIs
体が用いられる。
In the present invention, the ceramic superconductor includes Y-Ba
-Cu-0 system, B1-3r-Ca-Cu-○ system, Tl-
Any ceramic super IIs such as Ba-Ca-Cu-0 series
The body is used.

本発明において、セラミックス超電導体層を内周面又は
/及び外周面にフィンを設けた金属製バ・イブの内周面
又は/及び外周面上に、長f方向に連続して設ける方法
としては、前述の如くセラミックス超電導体層を金属シ
ースして作ったテープ状セラミックス超電導線材をト記
金属製パイプの内周面又は外liJ面十に半田付けして
設ける方法の他、セラミックス超電導粉体をバインダー
と混練してベース1状物となし、これを」前記フィン付
金属製パイプの内周面又は/及び外周面上に塗布する方
法等が用いられる。
In the present invention, a method of continuously providing a ceramic superconductor layer in the longitudinal direction on the inner circumferential surface and/or outer circumferential surface of a metal vibrator having fins on the inner circumferential surface and/or outer circumferential surface is as follows: In addition to the method described above in which a tape-shaped ceramic superconducting wire made by sheathing a ceramic superconductor layer with a metal sheath is soldered to the inner peripheral surface or outer surface of the metal pipe, ceramic superconducting powder can be used. A method is used in which the base material is kneaded with a binder to form a base material, and this is applied onto the inner peripheral surface and/or outer peripheral surface of the finned metal pipe.

又前記のアープ状セラミックス趙電導線材は、例えばセ
ラミックス超電導体とな1−得る原料物質を金属、型中
空体内に充填し7て、これをテープ状に伸延加重し2こ
のテープ状伸延加工材に所定の加熱処理を施してドア記
原料物質をセラミックス超電導体に反応させて製造され
るものである。
The above-mentioned arc-shaped ceramic conductive wire can be made into, for example, a ceramic superconductor by: 1- filling the hollow body of a metal mold with the raw material to be obtained; It is manufactured by subjecting a predetermined heat treatment to reacting the raw material with the ceramic superconductor.

J−記において、伸延加工材の形状はテープ状に限らず
断面が円、楕円、多角形等任意の形状のものが適用され
るが、金S製パイプ面との接M面積を大きくとねるテー
プ状のものが特に好まし2い。
In J-, the shape of the elongated material is not limited to a tape shape, but any cross-sectional shape such as a circle, ellipse, polygon, etc. can be applied, but the contact area M with the surface of the gold S pipe should be made large. A tape-shaped material is particularly preferred.

本発明においど、フィンを有する金属製パイプの材料に
は、熱伝導性に優れたAg、Cu、Affi及びその合
金等が好適である。又フィンの形状は特に限定するもの
ではなく、任意の形状のものが適用される。
In the present invention, Ag, Cu, Affi, alloys thereof, etc., which have excellent thermal conductivity, are suitable for the material of the metal pipe having fins. Further, the shape of the fins is not particularly limited, and any shape can be applied.

〔作用〕[Effect]

本発明のitリード用厚導体、セラミックス超電導体層
をフィンを有する金属製パイプの周面りに密着して設け
たものなので、He蒸気等の冷媒により金属製パイプが
効率よく冷却され、その結果上記金属製パイプの周面上
に設けられたセラミックス超電導体層が1分に冷却され
、セラミックス超電導体層の超電導状態が安定して保持
されるとともに、金属製パイプを介して伝達される外部
熱もフィンの放熱効果により冷却除去される。
Since the IT lead thick conductor and ceramic superconductor layer of the present invention are provided in close contact with the circumferential surface of a metal pipe having fins, the metal pipe is efficiently cooled by a refrigerant such as He vapor, and as a result, The ceramic superconductor layer provided on the circumferential surface of the metal pipe is cooled in one minute, and the superconducting state of the ceramic superconductor layer is stably maintained, and external heat is transferred through the metal pipe. is also cooled and removed by the heat dissipation effect of the fins.

(実施例〕 以下に本発明を実施例により詳細に説明する。(Example〕 The present invention will be explained in detail below using examples.

実施例1 出発原料としてB 1zOs 、  S r CO3、
CaCOa、CuOの粉末を用い、これをBi:Sr:
Ca:Cuが原子比で2 : 2 : 1. : 2と
なるように配合し混合して混合粉体となし、次いでこの
混合粉体を大気中で800°CX20時間仮焼成したの
ち、これを粉砕分級して仮焼成粉となし、次いでこの仮
焼成粉を外径25m、内径15−のAg製パイプ内に充
填したのち、スェージング加工及び溝圧延を施して外径
5閣の線材となj2、次いでこの線材を大気中ご850
’CX50時間加熱処理して内層の仮焼成粉を超電導体
に反応ゼし7めてセラミックス超電導線材となし、しか
るのち、このセラミックス超電導線材」−に、厚さ0.
1腫幅10■の銅製リボンをL字状に折曲げ、曲げ頬部
を上記線材表面に直線状に溶接して高さ8−のフィンを
等間隔に11本直線状に形成して第1図に示した如き構
造のものとなし、これを3本並列に接続して電流リード
用導体となした。
Example 1 B 1zOs, S r CO3, as starting materials
Using powders of CaCOa and CuO, they were mixed into Bi:Sr:
The atomic ratio of Ca:Cu is 2:2:1. : 2 and mix to make a mixed powder, then this mixed powder is pre-calcined in the atmosphere at 800°C for 20 hours, this is pulverized and classified to make a pre-sintered powder, then this pre-sintered powder is After filling the fired powder into an Ag pipe with an outer diameter of 25 m and an inner diameter of 15 mm, it was subjected to swaging processing and groove rolling to become a wire rod with an outer diameter of 5 mm.
'CX heat-treated for 50 hours to react the calcined powder of the inner layer into a superconductor to form a ceramic superconducting wire, and after that, this ceramic superconducting wire was made into a ceramic superconducting wire with a thickness of 0.
A copper ribbon with a width of 10 cm was bent into an L shape, and the bent cheeks were welded in a straight line to the surface of the wire to form 11 straight fins with a height of 8 mm at equal intervals. The structure was as shown in the figure, and three of these were connected in parallel to form a current lead conductor.

実施例2 実施g41で製造した外径5mmの線材を超電導体に反
応ゼしめる為の加熱処理を施さずに更に伸線及び圧延加
工して厚さ0.3閣1幅5■のテープ線材となし、しか
るのち、このテープ線材を実施例1と同様にして大気中
で850℃×50時間加熱処理してテープ状のセラミッ
クス超電導線材となし、次いでこのテープ状線材を、内
周面フィン付銅製パイプの内周面上にフィンに沿って1
6本半田付けして第2図に示した如き構造のitリード
用厚導体製造した。
Example 2 The wire rod with an outer diameter of 5 mm produced in Example g41 was further drawn and rolled without being subjected to heat treatment to react and zeify it into a superconductor, to form a tape wire rod with a thickness of 0.3 mm and a width of 5 mm. After that, this tape wire was heat-treated in the air at 850°C for 50 hours in the same manner as in Example 1 to obtain a tape-shaped ceramic superconducting wire, and then this tape-shaped wire was made into a copper wire with inner peripheral surface fins. 1 along the fins on the inner circumference of the pipe
A thick conductor for an IT lead having the structure shown in FIG. 2 was manufactured by soldering six wires.

]−記の内周面フィン付銅製パイプは、外径31m肉厚
1■の銅製パイプの内周面に厚さ0.1wi、高さ8■
の銅製フィンを等間隔に16本直線状に設けたものであ
る。
] - The copper pipe with inner circumference fins has an outer diameter of 31 m and a wall thickness of 1 inch, and a thickness of 0.1 w and a height of 8 mm on the inner circumference of the pipe.
16 copper fins are arranged in a straight line at equal intervals.

実施例3 外径31■、肉厚1脂の銅製パイプの内周及び外周面に
厚さ0.1閣、高さ8■の銅製フィンをそれぞれ等間隔
に16本直線状に設けたフィン付銅製パイプの外周面上
に実施例2で用いたのと同しテープ線材をフィンに沿っ
て16本半田付けして電流リード用導体となし、更にこ
の銅製パイプの外周囲に、第3図に示した如く内径48
臘、肉厚1■の銅製保冷管を配置した。向上記帳製管は
HefQ気が上記管内を外方へ散逸するのを防止する為
に配置した。
Example 3 A copper pipe with an outer diameter of 31 cm and a wall thickness of 1 cm has 16 copper fins of 0.1 cm thick and 8 cm in height arranged in a straight line at equal intervals on the inner and outer peripheral surfaces of the pipe. On the outer circumferential surface of the copper pipe, 16 wire tapes similar to those used in Example 2 were soldered along the fins to serve as current lead conductors, and the wires shown in Figure 3 were soldered around the outer circumference of the copper pipe. As shown, the inner diameter is 48
A copper cold storage tube with a wall thickness of 1 inch was placed. The improved recording tube was placed to prevent HefQ air from escaping outward within the tube.

実施例4 外径31w+、肉厚l■の銅製パイプの外周面に厚さO
,Iam、高さ8閣の銅製74216本を等間隔に、5
0■ピンチの螺旋状に設け、このフィン付き銅製パイプ
の外周面」−に実施例2で用いたのと同じセラミックス
超電導線材をフィンに沿って16本半田付けして電流リ
ード用導体となし、更にその周囲に、第4図に示した如
く銅製保冷管配置した。
Example 4 Thickness O on the outer peripheral surface of a copper pipe with an outer diameter of 31W+ and a wall thickness of l
,Iam, 74,216 copper rods of 8 heights were placed at equal intervals, 5
16 ceramic superconducting wires, the same as those used in Example 2, were soldered along the fins to the outer circumferential surface of this finned copper pipe in a pinched spiral shape to serve as a current lead conductor. Furthermore, a copper cold storage tube was placed around it as shown in FIG.

比較例1 実施例1で作製した5m−のセラミックス超電導線材を
フィンを溶接せずに3本並列に接続して電流リード用導
体となした。
Comparative Example 1 Three 5 m ceramic superconducting wires produced in Example 1 were connected in parallel without welding fins to form a current lead conductor.

比較例2 実施例2で作製した厚さ0.3閣5幅5■のセラミック
ス超電導線材を外径31■、肉厚1腫のフィンを有さな
い銅製パイプの内周面上に、等間隔に16本直線状に並
べて半田付けし、周囲を内径48■肉厚1−の銅製管に
て覆って、電流リード用導体となした。
Comparative Example 2 Ceramic superconducting wires with a thickness of 0.3 cm and a width of 5 cm produced in Example 2 were placed at equal intervals on the inner peripheral surface of a copper pipe without fins with an outer diameter of 31 cm and a wall thickness of 1 cm. 16 wires were lined up in a straight line and soldered, and the periphery was covered with a copper tube having an inner diameter of 48 cm and a wall thickness of 1 mm to form a current lead conductor.

斯くの如くして得られた各々の電流リード用導体につい
て、一端を液体He中にて冷却されたNb−Ti製趙起
電マグネyl・に接続し、他端を室温の銅製ブスバーと
接続し、、、1流リ一ド用導体全体を上記液体Heから
でるHe蒲気により77に以Fの温度に保持して前記マ
グネ7トに6T、800Aの電流を通電して、上記の液
体Heの1発量を測定した。又通電開始前に電流リード
用導体の銅製ブスバー側の端部温度を測定して、各々の
ii電流リード用導体冷却状態を調査した。
For each current lead conductor thus obtained, one end was connected to a Nb-Ti electromotive magnet cooled in liquid He, and the other end was connected to a copper busbar at room temperature. ,,,The entire conductor for the first current lead is maintained at a temperature of 77 degrees Fahrenheit by He vapor emitted from the liquid He, and a current of 6T and 800A is applied to the magnet 7 to remove the liquid He. The amount per shot was measured. In addition, before starting current supply, the temperature of the end of the current lead conductor on the copper bus bar side was measured to investigate the cooling state of each current lead conductor.

又各々の電流リード用導体についで、77K及び30K
における臨界電流(IC)を測定して、各々の電流リー
ド用導体の通電容量をチエツクし7た。
Also, for each current lead conductor, 77K and 30K
The critical current (IC) was measured to check the current carrying capacity of each current lead conductor.

結果は第1表に示した。尚、液体Heの蒸発量は、無通
電時の蒸発量を差引いた値である。
The results are shown in Table 1. Note that the evaporation amount of liquid He is the value obtained by subtracting the evaporation amount when no current is applied.

待彦F梠 +i20目 第1表より明らかなように本発明品(No、1〜4)は
冷却能に冨み、依ってi(eの蒸発蓋が少ないものであ
った。
As is clear from Table 1, the products of the present invention (Nos. 1 to 4) had a high cooling capacity and therefore had a small amount of evaporation cap of i(e).

中でも階4はフィンが螺旋状に長く取付けらでいるので
、He蒸気による冷却がよく効いて、Heの蒸発蓋が最
小のものとなった。又障1はセラミックス超電導体層の
形状が断面円形で表面比が小さい為冷却されにくく、従
ってHeの蒸発蓋は発明品の中では最大のものとなった
In particular, floor 4 has long spiral fins, so cooling by He vapor is effective and the He evaporation cover is minimized. In addition, problem 1 is difficult to cool because the ceramic superconductor layer has a circular cross-section and a small surface ratio, so the He evaporation lid is the largest among the inventions.

尚、随3.4はセラミックス超1itilA体層をフィ
ン付金属製パイプの外周面に設けるようにしたので、セ
ラミックス超電導線材の半田付は作業がし易く外側に銅
製管を配置したのでHe’l気の散逸も防止できた。
In addition, in Section 3.4, the ceramic superconducting layer was provided on the outer peripheral surface of the finned metal pipe, so it was easier to solder the ceramic superconducting wire, and the copper tube was placed on the outside. I was also able to prevent my mind from escaping.

これに対し、比較例品の阻5はセラミックス超電導体層
の表面比が小さい上、金属製パイプにフィンを取付けな
かった為セラミックス超電導体層がクエンチを起こして
焼損してしまい、又に6は銅製パイプにフィンを取付け
てなかった為冷却能が乏り、<Heが多量に蒸発したい 尚、各々の電流リード用導体の77K及び30Kにおけ
る臨界it渣(1,、)には大差がなく、一方電流リー
ド用導体の無通電時の室温側温度は導体のフィンの有無
Cごよって大きな差が見られ、1で記温度と液体Heの
蒸発量との間には相関が認められる。液体Heの蒸発量
に及ぼすフィンの効果が実証されている。
On the other hand, Comparative Example Product No. 5 had a small surface ratio of the ceramic superconductor layer and no fin was attached to the metal pipe, so the ceramic superconductor layer was quenched and burned out. Since no fins were attached to the copper pipe, the cooling capacity was poor, and a large amount of He would evaporate.However, there is no significant difference in the critical IT residue (1,,) at 77K and 30K for each current lead conductor. On the other hand, the room temperature side temperature of the current lead conductor when no current is applied varies greatly depending on whether or not the conductor has fins, and in 1, a correlation is recognized between the temperature and the amount of evaporation of liquid He. The effect of fins on the evaporation of liquid He has been demonstrated.

尚、1.2wφの銅線を10本束ねた従来の電流リド用
導体を、前記と同し条件で用いてHeの蒸発蓋を測定し
たところ2.Oj2/Hであった。
In addition, when a conventional current lead conductor made of 10 bundled 1.2wφ copper wires was used under the same conditions as above, the evaporation cap of He was measured.2. It was Oj2/H.

以1セラミックス超電導体層をフィンを有する銅製パイ
プの内周面又は外周面の何れかにのみ設けた場合につい
て説明したが、内周面に設けた場合についても同様の効
果が得られることは言うまでもない。
Although the case where the ceramic superconductor layer is provided only on either the inner circumferential surface or the outer circumferential surface of a copper pipe having fins has been described above, it goes without saying that the same effect can be obtained when the ceramic superconductor layer is provided on the inner circumferential surface. stomach.

〔効il) 以ト述べたように本発明の電流リード用導体は冷却能に
冨み、超電導機器冷却用の液体)−1e等の冷媒の蒸発
量4人幅に低減し2得るもので、丁”業−1顕著な効犀
を奏寸”る8
[Effects] As mentioned above, the current lead conductor of the present invention has a rich cooling capacity, and can reduce the amount of evaporation of a refrigerant such as liquid (1e) for cooling superconducting equipment to 4 times the width. Ding-1: Demonstrates remarkable efficacy 8

【図面の簡単な説明】[Brief explanation of the drawing]

第1図−3図は、本発明の電流リード用導体の態様例を
示す横断面間、第4図は同〜部切欠き斜視図である。 1・・・金属製パイプ、2・・・セラミックス超電導体
層、3・・・フィン、4・・・セラミックス超電導線材
、5・・・保冷用金属管。
1-3 are cross-sectional views showing embodiments of the current lead conductor of the present invention, and FIG. 4 is a cut-away perspective view of the same. DESCRIPTION OF SYMBOLS 1... Metal pipe, 2... Ceramic superconductor layer, 3... Fin, 4... Ceramic superconducting wire, 5... Metal tube for cold storage.

Claims (1)

【特許請求の範囲】[Claims] 内周面又は/及び外周面にフィンを設けた金属製パイプ
の内周面又は/及び外周面上にセラミックス超電導体層
を長手方向に連続して設けたことを特徴とする電流リー
ド用導体。
A conductor for a current lead, characterized in that a ceramic superconductor layer is continuously provided in the longitudinal direction on the inner circumferential surface and/or outer circumferential surface of a metal pipe having fins on the inner circumferential surface and/or outer circumferential surface.
JP2171392A 1990-06-29 1990-06-29 Conductor for current lead Expired - Lifetime JP2846419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2171392A JP2846419B2 (en) 1990-06-29 1990-06-29 Conductor for current lead

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2171392A JP2846419B2 (en) 1990-06-29 1990-06-29 Conductor for current lead

Publications (2)

Publication Number Publication Date
JPH0461207A true JPH0461207A (en) 1992-02-27
JP2846419B2 JP2846419B2 (en) 1999-01-13

Family

ID=15922313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2171392A Expired - Lifetime JP2846419B2 (en) 1990-06-29 1990-06-29 Conductor for current lead

Country Status (1)

Country Link
JP (1) JP2846419B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10934923B2 (en) 2019-01-09 2021-03-02 Caterpillar Inc. Heat shield assembly for shielding a wire harness

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10934923B2 (en) 2019-01-09 2021-03-02 Caterpillar Inc. Heat shield assembly for shielding a wire harness

Also Published As

Publication number Publication date
JP2846419B2 (en) 1999-01-13

Similar Documents

Publication Publication Date Title
JP2754564B2 (en) Method for producing superconducting composite
JPH06318409A (en) Superconductor
JPH0461207A (en) Conductor for electric-current lead use
EP0409150B1 (en) Superconducting wire
JP3369225B2 (en) Method for producing oxide high-temperature superconducting wire
EP0428993B2 (en) Use of an oxide superconducting conductor
JP4039049B2 (en) Multi-core oxide superconducting wire manufacturing method
JP2651018B2 (en) High magnetic field magnet
JP3154239B2 (en) Manufacturing method of ceramic superconducting conductor
US5583094A (en) "Method for preparing hollow oxide superconductors"
JP3088833B2 (en) Oxide superconductor for current leads
JP2644433B2 (en) Hollow-cooled multi-core high-temperature superconductor
EP0581366A1 (en) Process of producing a coaxial electrical cable with ceramic superconductor material having a high transition temperature
JP2898713B2 (en) Current lead
JPH01123405A (en) Manufacture of superconducting power lead
JPS63304524A (en) Manufacture of ceramic superconductor
JP2843447B2 (en) Superconducting current lead
JP2667972B2 (en) Bi-based oxide composite superconducting wire
JPH0528850A (en) Ceramic superconductor
JPH0581941A (en) Ceramic superconductor
JPH05211012A (en) Oxide superconductor and manufacture thereof
JPH07169342A (en) Multi-filament oxide superconducting wire
JPS63225410A (en) Compound superconductive wire and its manufacture
JPH0343915A (en) Manufacture of multiple-cored superconductor
JPH01146212A (en) Superconductive cable in oxide series