JP2843447B2 - Superconducting current lead - Google Patents

Superconducting current lead

Info

Publication number
JP2843447B2
JP2843447B2 JP3015921A JP1592191A JP2843447B2 JP 2843447 B2 JP2843447 B2 JP 2843447B2 JP 3015921 A JP3015921 A JP 3015921A JP 1592191 A JP1592191 A JP 1592191A JP 2843447 B2 JP2843447 B2 JP 2843447B2
Authority
JP
Japan
Prior art keywords
oxide superconductor
current lead
superconducting current
molded body
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3015921A
Other languages
Japanese (ja)
Other versions
JPH04241404A (en
Inventor
靖三 田中
祐行 菊地
正直 三村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP3015921A priority Critical patent/JP2843447B2/en
Publication of JPH04241404A publication Critical patent/JPH04241404A/en
Application granted granted Critical
Publication of JP2843447B2 publication Critical patent/JP2843447B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、外部電源から液体He
等で冷却した超電導マグネット等の超電導機器へ電流を
供給するのに用いる超電導電流リードに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid He
The present invention relates to a superconducting current lead used to supply a current to a superconducting device such as a superconducting magnet cooled by the above method.

【0002】[0002]

【従来の技術】超電導マグネットを用いた低温機器とし
てSMES発電機,MHD発電機,核融合炉,磁気浮上
列車,医療用MRI,加速器用マグネット等が開発され
ている。而して、上記のような低温機器への電流の供給
は、外部電源から電流リードを介して行い、この電流リ
ードには主にCu系の金属材料が用いられていた。しか
しながら、上記の如き金属製電流リードではジュール発
熱や外部からの熱流入により、低温機器が配置されたク
ライオスタット内の冷媒が大量に蒸発してしまうという
問題があった。かかる問題を解決する方法として、電流
リードに液体He温度(4.2K)で抵抗が0になり、
ジュール熱を生じないNb−TiやNb3 Snの金属系
超電導体を用いることが提案されたが、これらの超電導
々体は液体He温度に冷却される低温機器近傍でしか、
その効果が発現されず実用性に乏しいものであった。こ
のようなことから、金属系超電導体に替えて、近年開発
された液体窒素温度(77K)で超電導となるY−Ba
−Cu−O系やBi−Sr−Ca−Cu−O系等の酸化
物超電導体の応用が提案された。
2. Description of the Related Art SMES generators, MHD generators, fusion reactors, magnetic levitation trains, medical MRI, magnets for accelerators, and the like have been developed as low-temperature devices using superconducting magnets. The supply of current to the low-temperature equipment as described above is performed from an external power supply via a current lead, and the current lead is mainly made of a Cu-based metal material. However, the metal current lead as described above has a problem that a large amount of refrigerant in a cryostat in which a low-temperature device is disposed evaporates due to Joule heat or external heat inflow. As a method for solving this problem, the resistance of the current lead becomes zero at the liquid He temperature (4.2 K),
It has been proposed to use a metal-based superconductor of Nb-Ti and Nb 3 Sn, which does not cause Joule heat, these superconducting s body only at a low temperature equipment near to be cooled to liquid He temperature,
The effect was not exhibited and the utility was poor. For this reason, instead of a metal-based superconductor, a recently developed Y-Ba that becomes superconductive at a liquid nitrogen temperature (77 K) is developed.
Applications of oxide superconductors such as -Cu-O-based and Bi-Sr-Ca-Cu-O-based have been proposed.

【0003】この酸化物超電導体を用いた電流リード
は、例えば図5及び図6にそれぞれ、その斜視図及び口
金部の横断面図を示したように、複数本の酸化物超電導
体製棒状成形体5を並列配置し、その両端に真鍮製の口
金A13及び口金B14をそれぞれ半田6で接続したもの
で、この超電導電流リードは口金A13に接続した銅ブス
バー7を外部電源に接続し、口金B14に接続した銅ブス
バー8は液体He中に浸漬した超電導機器に接続して用
いられる。又この酸化物超電導体製棒状成形体5は、通
常、酸化物超電導体となし得る原料物質を圧粉成形し、
これを酸素含有雰囲気中で酸素と界面反応させつつ加熱
焼結する粉末焼結法により製造される。
A current lead using this oxide superconductor is, for example, shown in FIG. 5 and FIG. 6 in a perspective view and a cross-sectional view of a base portion, respectively. The body 5 is arranged in parallel, and a brass base A13 and a base B14 are connected to both ends thereof by solder 6, respectively. This superconducting current lead connects the copper bus bar 7 connected to the base A13 to an external power supply, and the base B14. Is connected to a superconducting device immersed in liquid He for use. The oxide superconductor rod-shaped compact 5 is usually formed by compacting a raw material that can be made into an oxide superconductor.
It is manufactured by a powder sintering method in which it is heated and sintered while undergoing an interfacial reaction with oxygen in an oxygen-containing atmosphere.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うな酸化物超電導体製の超電導電流リードには、酸化
物超電導体製棒状成形体の製造過程において、酸素との
界面反応を要するが、大電流通電用の大型の棒状成形体
では内部まで反応が進まず、従って超電導特性の低いも
のしか作製できない。棒状成形体は大型になる程断面
積に比して表面積が減少する為、使用時の熱的損失が大
きくなる。棒状成形体を口金に半田付けして接続する
為、繰返し冷却して使用する間に半田層が割れたり剥離
したりして信頼性に欠ける。等というような問題があっ
た。
However, such a superconducting current lead made of an oxide superconductor requires an interfacial reaction with oxygen in the process of producing a rod-shaped formed body made of an oxide superconductor, but it requires a large current. The reaction does not proceed to the inside of a large-sized rod-shaped molded product for energization, so that only a product having low superconductivity can be manufactured. The larger the rod-shaped molded body, the smaller the surface area as compared with the cross-sectional area, so that the heat loss during use increases. Since the rod-shaped molded body is connected to the die by soldering, the solder layer is cracked or peeled off during repeated cooling and use, resulting in poor reliability. There was such a problem.

【0005】[0005]

【課題を解決する為の手段及び作用】本発明はかかる状
況に鑑み鋭意研究を行った結果なされたもので、その目
的とするところは、液体Heの蒸発損失量を少なく抑え
て、大電流を信頼性高く通電できる超電導電流リードを
提供することにある。即ち、本発明は、酸化物超電導体
製成形体として、接合界面の長手方向に貫通孔が形成さ
れるように成形された縦割れ型の酸化物超電導体製成形
体相互を接合してなる長手方向に貫通孔を有する酸化物
超電導体製中空成形体の所望数が両端で低融点金属製口
金にて束ねられていることを特徴とするものである。本
発明において使用する酸化物超電導体製成形体に、接合
界面の長手方向に貫通孔が形成されるように成形された
縦割れ型の酸化物超電導体製成形体相互を接合してなる
長手方向に貫通孔を有する酸化物超電導体製中空成形体
を用いる理由は、個々の分割酸化物超電導体製成形体は
縦に多分割した状態で作製できるので原料物質の圧粉が
高密度になされ、又圧粉成形体の加熱焼結時の酸素との
界面反応が内外両面からなされるので、酸化物超電導体
製中空成形体が大型のものであっても、超電導特性に優
れたものが製造できる為である。又上記分割体を突き合
わせてなる酸化物超電導体製中空成形体は、使用時に液
体He蒸気が接合界面の長手方向に形成された貫通孔を
通って上方へ放出される為、酸化物超電導体製中空成形
体は内側からも冷却されて冷却効率が向上する。
SUMMARY OF THE INVENTION The present invention has been made as a result of intensive studies in view of the above-mentioned circumstances, and its object is to reduce the amount of evaporation loss of the liquid He and reduce a large current. It is an object of the present invention to provide a superconducting current lead which can supply electricity with high reliability. That is, the present invention relates to an oxide superconductor molded article, which is formed by joining longitudinally cracked oxide superconductor molded articles formed so that through holes are formed in the longitudinal direction of the bonding interface. A desired number of oxide superconductor hollow molded bodies having through holes in the directions are bundled at both ends by low melting point metal bases. In the oxide superconductor molded product used in the present invention, a longitudinal direction formed by joining the vertically cracked oxide superconductor molded products formed so that through holes are formed in the longitudinal direction of the bonding interface. The reason for using an oxide superconductor hollow molded body having through holes is that each divided oxide superconductor molded body can be produced in a vertically multi-divided state, so that the compaction of the raw material is made at a high density, In addition, since the interface reaction with oxygen during heat sintering of the green compact is performed from both inside and outside, even if the oxide superconductor hollow molded body is large, it can be manufactured with excellent superconducting properties. That's why. In addition, in the oxide superconductor hollow molded body formed by abutting the divided bodies, the liquid He vapor is released upward through a through hole formed in the longitudinal direction of the bonding interface during use. The hollow molded body is also cooled from the inside, and the cooling efficiency is improved.

【0006】又本発明において、所望数の前記酸化物超
電導体製中空成形体を束ねる口金に低融点金属を用いる
のは、低融点金属は軟質で加工性に富み、使用中の繰り
返し冷却によって割れ等を生じない上、酸化物超電導体
製中空成形体との接続がかしめ等により容易になされ、
半田層の割れや剥離を回避し得る為である。而して、接
続方法を具体的に示すと、例えば口金にInやPb等の
低融点金属を用いた場合は、口金にあけた接続穴に前記
分割体を接合して形成した所望数の酸化物超電導体製中
空成形体を通し、口金を外方から圧縮し、かしめて接続
する。又低融点金属がHgのように常温で液状のものの
場合は、酸化物超電導体製中空成形体を通す穴をあけた
皿状の器にHgを入れて口金となして用いられる。又、
接続にあたり、酸化物超電導体製中空成形体と口金との
間にAgペーストを介在させておくと接触抵抗が低減で
きて好ましい。又、本発明の超電導電流リードにおい
て、酸化物超電導体製成形体の突合わせ面に低融点金属
を層状に被覆しておくと、低融点金属は軟質の為、前記
突合わせ面の気密性が保持されるとともに、冷却時の熱
膨張差による歪みが低融点金属層に吸収されて割れ等の
発生が防止できる。又、本発明の超電導電流リードにお
いて、酸化物超電導体製中空成形体は複数本を並列に配
置して用いると断面積に比して表面積が増加して冷却性
が向上し好ましい。又上記中空成形体の形状並びに配列
の仕方は任意に設計することができる。
In the present invention, the use of a low-melting-point metal in a die for bundling a desired number of the hollow molded bodies made of oxide superconductor is because the low-melting-point metal is soft and has good workability, and is broken by repeated cooling during use. In addition to the above, the connection with the oxide superconductor hollow molded body is easily made by caulking or the like,
This is because cracking or peeling of the solder layer can be avoided. Thus, when the connection method is specifically shown, for example, when a low melting point metal such as In or Pb is used for the base, a desired number of oxidations formed by joining the divided bodies to the connection holes formed in the base are provided. The base is compressed from outside through a hollow molded body made of a superconductor, and the connection is made by caulking. When the low-melting-point metal is liquid at room temperature, such as Hg, Hg is put into a dish-shaped vessel having a hole through which a hollow molded body made of an oxide superconductor is passed and used as a base. or,
In connection, it is preferable that an Ag paste is interposed between the hollow molded body made of the oxide superconductor and the die, because the contact resistance can be reduced. Further, in the superconducting current lead of the present invention, if the low-melting-point metal is coated in a layer on the abutting surface of the molded body made of an oxide superconductor, the low-melting-point metal is soft. While being held, the distortion due to the difference in thermal expansion during cooling is absorbed by the low melting point metal layer, thereby preventing the occurrence of cracks and the like. In the superconducting current lead of the present invention, it is preferable to use a plurality of oxide superconductor hollow molded bodies arranged in parallel because the surface area is increased as compared with the cross-sectional area and the cooling property is improved. The shape and arrangement of the hollow molded body can be arbitrarily designed.

【0007】以下に本発明を図を参照して具体的に説明
する。図1及び図2は、本発明の超電導電流リードの態
様例を示すそれぞれ斜視図及び図1のa−aを透視した
口金部の横断面図である。2本の断面半円状の内面に半
円溝が設けられた酸化物超電導体製成形体1を、内部に
円形中空孔が形成されるように突合わせた酸化物超電導
体製中空成形体2の両端に、低融点金属製の口金A3及
び口金B4が、それぞれかしめて接続されており、前記
中空成形体2の突合わせ部分には、気密性を保つ為低融
点金属がメッキしてある。図3は本発明の超電導電流リ
ードの第2の態様例を示す口金部分の横断面図で、2本
の断面が正三角形状で一辺の長手方向に半円溝が設けら
れた酸化物超電導体製成形体1を、内部に円形中空孔が
形成されるように突き合わせてなる断面四角形の酸化物
超電導体製中空成形体2を7本、口金3に間隔をあけて
設けた7個の接続穴にそれぞれ通し、この口金3を外側
から圧縮し、かしめて接続したものである。又図4は、
本発明の超電導電流リードの第3の態様例を示す口金部
分の横断面図で、2本の断面台形で底辺の長手方向に半
円溝が設けられた酸化物超電導体製成形体1を内部に円
形中空孔が形成されるように突き合わせてなる断面六角
形の酸化物超電導体製中空成形体2を7本、口金3に設
けた1個の接続穴に束ねて通し、この口金3を外方から
圧縮し、かしめて接続したものである。本発明において
用いる酸化物超電導体製成形体は、酸化物超電導体とな
し得る原料物質を圧粉成形して所望形状の成形体とな
し、これに酸素含有雰囲気中で所定の加熱処理を施すと
いう通常の粉末焼結法により製造されるものである。
Hereinafter, the present invention will be specifically described with reference to the drawings. FIGS. 1 and 2 are a perspective view and a cross-sectional view of a base portion of the superconducting current lead according to the present invention, respectively. An oxide superconductor hollow molded body 2 in which two oxide superconductor molded bodies 1 each having a semicircular groove formed in a semicircular cross section are joined so as to form a circular hollow hole therein. A base A3 and a base B4 made of a low melting point metal are connected by caulking to both ends, respectively. The abutting portion of the hollow molded body 2 is plated with a low melting point metal to maintain airtightness. FIG. 3 is a cross-sectional view of a base portion showing a second embodiment of a superconducting current lead according to the present invention. The oxide superconductor has two triangular cross sections each having a semicircular groove in one longitudinal direction. 7 molded holes 1 made of an oxide superconductor having a square cross section formed by abutting the molded bodies 1 such that circular hollow holes are formed therein, and 7 connection holes provided at intervals in a base 3 , And the base 3 is compressed from the outside, caulked and connected. Also, FIG.
FIG. 6 is a cross-sectional view of a base portion showing a third embodiment of the superconducting current lead of the present invention, in which an oxide superconductor molded body 1 having two trapezoidal cross sections and provided with semicircular grooves in the longitudinal direction of the bottom is provided. Seven hollow molded bodies 2 made of oxide superconductor having a hexagonal cross section and joined together so as to form a circular hollow hole are bundled and passed through one connection hole provided in the base 3, and the base 3 Compressed from the side, crimped and connected. The oxide superconductor molded product used in the present invention is obtained by compacting a raw material that can be converted into an oxide superconductor into a molded product having a desired shape, and performing a predetermined heat treatment in an oxygen-containing atmosphere. It is manufactured by a usual powder sintering method.

【0008】[0008]

【実施例】以下に本発明を実施例により詳細に説明す
る。 実施例1 予め焼成した(Bi1.6 Pb0.4 2 Sr2 Ca2 Cu
3 10-yの仮焼成粉と平均粒径8μm の銀粉を8対2の
割合で混合し、この混合粉体を円筒状パイプを縦に2分
割した断面半円状の形材に200MPaの圧力をかけて
圧粉成形した。この断面半円状で内面に半円溝を有する
圧粉成形体2本を長手方向内部に中空孔が形成されるよ
うに突き合わせて長さ30cm,外径11mm,内径1.5mm
の筒状圧粉成形体を7本作製した。しかるのち、この7
本の筒状圧粉成形体を、大気中で840℃×50Hrの
加熱処理を施して酸化物超電導体製中空成形体となし、
次いでこの7本の中空成形体を厚さ20mmのIn製口金
に間隔をあけて設けた接続孔にそれぞれ通し、口金をか
しめて接続して、図1に示したのと同じ形状の酸化物超
電導体製の超電導電流リードを2本作製した。尚、前記
断面半円状で内面に半円溝を有する圧粉成形体の突合わ
せ面にはAgペーストを塗布し、又前記中空成形体と口
金の接続長さは口金の厚さ分の20mmとした。このよう
にして作製した2本の超電導電流リードの口金A及び口
金Bにそれぞれ長さ70cmの銅製ブスバーを接続し、口
金B側のブスバーをクライオスタット内の液体He中に
浸漬した断面積10mm2 のCu/Nb−Tiの複合超電
導線の両端に接続し、口金A側のブスバーをクライオス
タットから引き出して外部電源に接続した。上記におい
て、超電導電流リードは液体Heの直上に配置した。こ
のように配線したのち、外部電源から、前記液体He中
の複合超電導線に直流を通電して液体Heの蒸発量を損
失熱量(ワット、W)に換算して計測した。損失熱量
は、電流を200Aステップで上げ、所定電流値で20
分間保持したのち求めた。
The present invention will be described below in detail with reference to examples. Example 1 (Bi 1.6 Pb 0.4 ) 2 Sr 2 Ca 2 Cu fired in advance
A calcined powder of 3 O 10-y and a silver powder having an average particle size of 8 μm are mixed at a ratio of 8: 2, and the mixed powder is cut into a semicircular cross section obtained by vertically dividing a cylindrical pipe into two sections at 200 MPa. The powder was compacted under pressure. The two compacts having a semicircular cross section and having a semicircular groove on the inner surface are abutted so that a hollow hole is formed in the longitudinal direction, and the length is 30 cm, the outer diameter is 11 mm, and the inner diameter is 1.5 mm.
7 compacted green compacts were prepared. After this, this 7
The cylindrical green compact is subjected to a heat treatment at 840 ° C. × 50 hr in the atmosphere to form an oxide superconductor hollow molded body,
Next, these seven hollow formed bodies were passed through connection holes provided at intervals in an In-made base having a thickness of 20 mm, and the bases were caulked and connected to form an oxide superconductor having the same shape as that shown in FIG. Two body-made superconducting current leads were produced. An ag paste was applied to the butted surface of the green compact having a semicircular cross section and a semicircular groove on the inner surface, and the connection length between the hollow molded body and the die was 20 mm, which is the thickness of the die. And A 70 cm long copper busbar was connected to each of the bases A and B of the two superconducting current leads manufactured in this manner, and the busbar on the base B side was immersed in liquid He in a cryostat to have a cross-sectional area of 10 mm 2 . It was connected to both ends of the Cu / Nb-Ti composite superconducting wire, the bus bar on the base A side was pulled out of the cryostat, and connected to an external power supply. In the above, the superconducting current lead was disposed immediately above the liquid He. After wiring in this manner, a direct current was applied to the composite superconducting wire in the liquid He from an external power supply, and the amount of evaporation of the liquid He was converted into a calorific value (watts, W) and measured. The heat loss can be calculated by increasing the current in 200 A steps and
Determined after holding for minutes.

【0009】比較例1 実施例1で用いた仮焼成粉と銀粉の混合粉体を圧粉成形
して、長さ30cm,断面9.6mm角の棒状成形体を7本
作製した。この棒状成形体を用いて、実施例1と同じ方
法により超電導電流リードを2本作製し、この2本の超
電導電流リードを用いて、実施例1と同じ方法により配
線し、通電して損失熱量を計測した。結果は表1に示し
た。
Comparative Example 1 A mixture of the calcined powder and the silver powder used in Example 1 was compacted to obtain seven rod-shaped compacts each having a length of 30 cm and a cross section of 9.6 mm square. Using this rod-shaped compact, two superconducting current leads were produced in the same manner as in Example 1, and using these two superconducting current leads, wiring was performed in the same manner as in Example 1, and electricity was supplied by conducting electricity. Was measured. The results are shown in Table 1.

【0010】[0010]

【表1】 [Table 1]

【0011】表1より明らかなように、本発明品を用い
た場合の損失熱量は、通電電流が2000A程度までは
電流の増加にほぼ比例して増大し、比較例品と大差なか
ったが、2000A時をピークに本発明品は損失熱量が
横這いに転じたのに対し、比較例品は電流の増加に比例
してそのまま増加し続け、本発明品との間に大きな差が
生じた。本発明品を用いた場合、損失熱量が2000A
時をピークに横這いに転じた理由は、電流容量の増大に
伴う温度上昇が液体Heの蒸発を促進し、この液体He
の蒸気が大量に超電導電流リードの酸化物超電導体製中
空成形体の中空部を通過し、その結果、超電導成形体全
長が抵抗零に保たれ、超電導電流リード本来の効果が十
分に発現された為である。これに対し比較例品の場合
は、酸化物超電導体製成形体に中空部がなく、冷却が十
分なされなかったことの他に、酸化物超電導体製成形体
がむくの状態で作製された為、酸素との界面反応が十分
になされず、その結果超電導特性が低位のものとなった
ことも原因している。
As is apparent from Table 1, the heat loss when the product of the present invention is used increases almost in proportion to the increase in current up to a current flow of about 2000 A, which is not much different from that of the comparative product. At the peak at 2000 A, the heat loss of the product of the present invention turned flat, while the product of the comparative example continued to increase in proportion to the increase in the current, and a large difference occurred from the product of the present invention. When the product of the present invention is used, the heat loss is 2,000 A
The reason for the plateau turning to the peak at the time is that the temperature rise accompanying the increase in the current capacity accelerates the evaporation of the liquid He, and this liquid He
A large amount of the vapor passed through the hollow portion of the oxide superconductor hollow molded body of the superconducting current lead, and as a result, the overall length of the superconducting molded body was kept at zero resistance, and the original effect of the superconducting current lead was sufficiently exhibited. That's why. On the other hand, in the case of the comparative example product, since the oxide superconductor molded body did not have a hollow portion and was not sufficiently cooled, the oxide superconductor molded body was manufactured in a peeled state. In addition, the interfacial reaction with oxygen was not sufficiently performed, and as a result, the superconductivity was lowered.

【0012】[0012]

【効果】以上述べたように、本発明の超電導電流リード
は、液体Heの蒸発損失量を少なく抑えて、大電流を信
頼性高く通電できるので工業上顕著な効果を奏する。
As described above, the superconducting current lead of the present invention has a remarkable industrial effect because a large amount of current can be supplied with high reliability while suppressing the evaporation loss of the liquid He.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の超電導電流リードの第1の態様例を示
す斜視図である。
FIG. 1 is a perspective view showing a first embodiment of a superconducting current lead according to the present invention.

【図2】図1に示した超電導電流リードの口金部の横断
面図である。
FIG. 2 is a cross-sectional view of a mouth portion of the superconducting current lead shown in FIG.

【図3】本発明の超電導電流リードの第2の態様例を示
す口金部の横断面図である。
FIG. 3 is a cross-sectional view of a base showing a second embodiment of the superconducting current lead of the present invention.

【図4】本発明の超電導電流リードの第3の態様例を示
す口金部の横断面図である。
FIG. 4 is a cross-sectional view of a base showing a third embodiment of the superconducting current lead of the present invention.

【図5】従来の超電導電流リードの斜視図である。FIG. 5 is a perspective view of a conventional superconducting current lead.

【図6】図5に示した従来の超電導電流リードの口金部
の横断面図である。
FIG. 6 is a cross-sectional view of a base portion of the conventional superconducting current lead shown in FIG.

【符号の説明】[Explanation of symbols]

1 酸化物超電導体製成形体 2 酸化物超電導体製中空成形体 3,13 口金A 4,14 口金B 5 酸化物超電導体製棒状成形体 6 半田 7,8 銅ブスバー DESCRIPTION OF SYMBOLS 1 Molded body made of oxide superconductor 2 Hollow molded body made of oxide superconductor 3,13 Cap A 4,14 Cap B5 Bar-shaped molded article made of oxide superconductor 6 Solder 7,8 Copper busbar

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 酸化物超電導体製成形体として、接合界
面の長手方向に貫通孔が形成されるように成形された縦
割れ型の酸化物超電導体製成形体相互を接合してなる長
手方向に貫通孔を有する酸化物超電導体製中空成形体の
所望数が両端で低融点金属製口金にて束ねられているこ
とを特徴とする超電導電流リード。
1. A longitudinal direction obtained by joining longitudinally cracked oxide superconductor molded articles formed so that through holes are formed in the longitudinal direction of the joining interface as an oxide superconductor molded article. A superconducting current lead characterized in that a desired number of hollow molded bodies made of an oxide superconductor having through holes are bundled at both ends with low melting point metal bases.
JP3015921A 1991-01-16 1991-01-16 Superconducting current lead Expired - Lifetime JP2843447B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3015921A JP2843447B2 (en) 1991-01-16 1991-01-16 Superconducting current lead

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3015921A JP2843447B2 (en) 1991-01-16 1991-01-16 Superconducting current lead

Publications (2)

Publication Number Publication Date
JPH04241404A JPH04241404A (en) 1992-08-28
JP2843447B2 true JP2843447B2 (en) 1999-01-06

Family

ID=11902249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3015921A Expired - Lifetime JP2843447B2 (en) 1991-01-16 1991-01-16 Superconducting current lead

Country Status (1)

Country Link
JP (1) JP2843447B2 (en)

Also Published As

Publication number Publication date
JPH04241404A (en) 1992-08-28

Similar Documents

Publication Publication Date Title
US5051397A (en) Joined body of high-temperature oxide superconductor and method of joining oxide superconductors
US5321003A (en) Connection between high temperature superconductors and superconductor precursors
US6194226B1 (en) Junction between wires employing oxide superconductors and joining method therefor
JP4995284B2 (en) Joining method of oxide superconductor tube and superconducting joint
JP2843447B2 (en) Superconducting current lead
JPH04218215A (en) Superconductive conductor
EP0409150B1 (en) Superconducting wire
JP2898713B2 (en) Current lead
JP3143932B2 (en) Superconducting wire manufacturing method
JPH0574551B2 (en)
JP2843448B2 (en) Superconducting current lead
KR101499807B1 (en) A process for the preparation of oxide superconducting rods
JP3621294B2 (en) Oxide superconducting compression molded conductor and manufacturing method thereof
JP3831307B2 (en) Low resistance conductor and method of manufacturing the same
JP3029153B2 (en) Manufacturing method of multilayer ceramic superconductor
JP3011962B2 (en) Method for manufacturing multi-core or multilayer ceramic superconductor
JPH04171871A (en) Oxide superconductor and manufacture thereof
JPH0668729A (en) Manufacture of multilayer ceramic superconducting conductor
JPH0888117A (en) Current lead for refrigerator cooling type superconductive coil
JPS63276826A (en) Manufacturing of superconductor
JPH04286104A (en) Superconducting current lead
Hartwig Fabrication Studies of a Strengthened Al/Nb-Ti Composite Conductor
JPH0554735A (en) Manufacture of ceramic superconductor
JPH05236649A (en) Transmitting method for power in oxide high temperature superconducting conductor
Wei et al. JOINING OF HIGH TEMPERATURE SUPERCONDUCTING BSCCO/AG TAPES