JP3621294B2 - Oxide superconducting compression molded conductor and manufacturing method thereof - Google Patents

Oxide superconducting compression molded conductor and manufacturing method thereof Download PDF

Info

Publication number
JP3621294B2
JP3621294B2 JP15730699A JP15730699A JP3621294B2 JP 3621294 B2 JP3621294 B2 JP 3621294B2 JP 15730699 A JP15730699 A JP 15730699A JP 15730699 A JP15730699 A JP 15730699A JP 3621294 B2 JP3621294 B2 JP 3621294B2
Authority
JP
Japan
Prior art keywords
oxide superconducting
superconducting wire
substrate
oxide
barrier material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15730699A
Other languages
Japanese (ja)
Other versions
JP2000348546A (en
Inventor
勉 小泉
隆代 長谷川
Original Assignee
昭和電線電纜株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電線電纜株式会社 filed Critical 昭和電線電纜株式会社
Priority to JP15730699A priority Critical patent/JP3621294B2/en
Publication of JP2000348546A publication Critical patent/JP2000348546A/en
Application granted granted Critical
Publication of JP3621294B2 publication Critical patent/JP3621294B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【0001】
【発明の属する技術分野】
本発明は酸化物超電導線材およびその製造方法に係り、さらに詳しくは、主として、電力貯蔵、発電機、モーター、限流器。変圧器、超電導ケーブル等の酸化物超電導線材を用いた応用機器に使用される酸化物超電導線材とその製造方法に関する。
【0002】
【従来の技術】
従来、大容量用の酸化物超電導線材として各種の線材が開発されている。このような大容量線材のなかでも、複数の酸化物超電導層の間に基板を配置した積層体の外周を金属板で包囲した酸化物超電導線材がその臨界電流密度(Jc)の高いことで実用線材として注目されている。
【0003】
この線材1は、図2に示すように、複数のBi系(2212)相(Bi:Sr:Ca:Cu=2:2:1:2の元素数比を有するBi−Sr−Ca−Cu−O系酸化物超電導体)からなる超電導層2の間に銀または銀合金からなる基板3を配置した積層体4の外周を金属板(金属フォイル)5で包囲したものである。
【0004】
このような線材1は、基板3の両面にBi系(2212)相を構成する元素を所定の比率で含むペーストを塗布したものの上に、基板3の片面に同様のペーストを塗布したものの複数本を積層して、複数のペースト層の間に基板3が配置されるようにした後、この外周を銀または銀合金からなる金属フォイル5で包囲し、次いで超電導体生成の熱処理を施すものである。この熱処理により、金属フォイル5と超電導層2および基板3は一体化する。
【0005】
この場合、金属フォイル5の突合わせ部5aが開放されているため、熱処理工程で発生するCO2、H2O、CO2等のガスが容易に外部に放出され、ガスの発生による線材の膨れを防止することができる。
【0006】
しかしながら、以上の酸化物超電導線材においては、上述のように、金属フォイル5の突合わせ部5aが開放されており、また熱処理工程に、部分溶融−徐冷過程(部分溶融温度域に加熱した後、徐冷する過程)を含むため、パンケーキ状に巻回してバッチ式の熱処理炉で熱処理を施す場合、金属フォイル5の突合わせ部5aから溶融酸化物が溶出してしまい、組成が変動する結果、所定の均一な特性を有する長尺の線材を得ることが困難であった。
【0007】
さらに、金属フォイル5外に溶出した凝固酸化物の生成や熱処理時に隣接する線材同志の融着により、線材としての使用が不可能となるという問題があった。
【0008】
【発明が解決しようとする課題】
本発明は以上の問題を解決するためになされたもので、複数の酸化物超電導層の間に基板を配置した積層体の外周を金属板で包囲した酸化物超電導線材およびその製造方法において、その熱処理時に金属フォイル5の突合わせ部5aからの溶融酸化物の溶出を防止し、組成変動がなく、かつ所定の均一な特性を有する長尺の線材を得ることをその目的とする。
【0009】
さらに本発明の他の目的は、機械的強度をより向上させた酸化物超電導線材およびその製造方法を提供することにある。
【0010】
【課題を解決するための手段】
以上の目的を達成するために、本発明の請求項1に係る酸化物超電導線材は、複数の酸化物超電導層の間に基板を配置した積層体の外周を金属板で包囲した酸化物超電導線材において、この積層体の一側の面に、AgにMg、Sb、Mn、Alから選択されたいずれか1種以上の元素を添加した銀合金からなるバリア材を配置して、その外周を金属板で包囲するとともに、金属板の突合わせ部分がバリア材側に位置するように構成したものである。
【0011】
また、本発明の請求項5に係る酸化物超電導線材の製造方法は、AgにMg、Sb、Mn、Alから選択されたいずれか1種以上の元素を添加した銀合金からなるバリア材上にビスマス系酸化物超電導体を構成する元素を所定の比率で含むペーストを塗布した積層板(A)と、銀または銀合金からなる基板上に酸化物超電導体を構成する元素を所定の比率で含むペーストを塗布した積層板(B)とを準備し、積層板(A)のペースト層の上側に積層板(B)の複数本を基板とペースト層とが交互に位置するように配置した後、この外側を、その突合わせ部分がバリア材側に位置するように金属板で包囲し、次いでビスマス系酸化物超電導体の部分溶融温度域に加熱した後、徐冷するようにしたものである。
【0012】
以上の発明において、金属板として、AgにMg、Sb、Mn、Alから選択されたいずれか1種以上の元素を添加した銀合金を用いることが好ましい。
【0013】
以上の発明におけるバリア材および金属板として用いられる銀合金は、その添加元素量が、0.1〜1.0at%の範囲内のものを使用することが好ましい。その理由は、添加元素量が0.1at%未満であるとバリア材としては機能するが、同時に強度を向上させることはできず、また、添加元素量が1.0at%を越えると添加元素の拡散により酸化物超電導体が汚染され、その結果、超電導特性が低下するためである。
【0014】
上記の基板としては、銀または銀合金を用いることができ、また、酸化物超電導層または酸化物超電導体としては、Bi系(2212)相を選択することが好ましい。このBi系(2212)相は、部分溶融−徐冷過程で容易に結晶が配向して超電導特性を向上させることができる。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態について説明する。
【0016】
図1は本発明の酸化物超電導線材10を示したもので、酸化物超電導線材10は、複数のBi系(2212)相からなる酸化物超電導層11の間にAg基板12を配置した積層体13の一側の面にAg−Mg合金板からなるバリア材15を配置して、その外周をフォイル14で包囲するとともに、フォイル14の突合わせ部分14aがバリア材15側に位置するように構成したものである。
【0017】
このような、酸化物超電導線材10は以下の方法により製造される。
【0018】
即ち、Ag−Mg合金板からなるバリア材15の片面にBi系(2212)相を構成する元素を所定の比率で含むペーストを塗布した積層板(A)と、Ag基板上にBi系(2212)相を構成する元素を所定の比率で含むペーストを塗布した積層板(B)とを準備し、積層板(A)のペースト層の上側に積層板(B)の複数本を基板とペースト層とが交互に位置するように配置した後、この外側を、その突合わせ部分14aがバリア材15側に位置するようにAg−Mg合金フォイル14で包囲し、次いでビスマス系酸化物超電導体の部分溶融温度域に加熱した後、徐冷して酸化物超電導線材10を製造する。
【0019】
【実施例】
以下、本発明の一実施例および比較例について説明する。
【0020】
実施例
幅4mm、厚さ15μmのAg−0.22at%Mg合金からなるバリア材の片面にBi系(2212)相を構成する元素を所定の比率で含むペーストを50μmの厚さに塗布して積層板(A)を形成し、一方、幅4mm、厚さ20μmのAg基板上にBi系(2212)相を構成する元素を所定の比率で含むペーストを50μmの厚さに塗布して積層板(B)を形成した。
【0021】
この超電導ペーストは、Bi2O3、SrCO3、CaCO3およびCuOの各粉末を、Bi:Sr:Ca:Cu=2:2:1:2の元素数比で配合し有機バインダーで混合したものである。
【0022】
次に、積層板(A)のペースト層の上側に積層板(B)の3本をバリア材およびAg基板とペースト層とが交互に位置するように配置した後、この外側を幅10mm、厚さ20μmのAg−0.22at%Mg合金からなるフォイルで包囲した。このとき、フォイルの突合わせ部分がバリア材側に位置するようにフォイルで包囲した。
【0023】
次いで、860℃で30時間の予備焼成した後、冷間圧延加工を施した。
【0024】
その後、890℃の部分溶融温度域に加熱した後、冷却速度1℃/hrで徐冷して長さ200mの酸化物超電導線材を製造した。
【0025】
このようにして製造した図1に示す構造の酸化物超電導線材の有効条長(線材として使用可能長さ)、臨界電流密度(Jc:4.2K、0T)および引張り強度を表1に示す。
【0026】
【表1】

Figure 0003621294
【0027】
比較例
実施例の積層板(A)の代わりに、幅4mm、厚さ20μmのAg基板の両面にBi系(2212)相を構成する元素を所定の比率で含むペーストを50μmの厚さに塗布して積層板(C)を形成し、一方、実施例と同様の方法により積層板(B)を形成した。
【0028】
次いで、積層板(C)と積層板(B)の2本をAg基板とペースト層とが交互に位置するように配置した他は、実施例と同様の方法により酸化物超電導線材を製造した。
【0029】
このようにして製造した図2に示す構造の酸化物超電導線材の有効条長、臨界電流密度(Jc:4.2K、0T)および引張り強度を表1に示した。
【0030】
【発明の効果】
以上の説明で明らかなように、本発明の酸化物超電導線材およびその製造方法によれば、熱処理時に金属フォイルの突合わせ部側にバリア材を配置したことにより、部分溶融温度域の加熱時に突合わせ部からの溶融酸化物の溶出を防止することができるため、酸化物超電導体の組成変動を防止することができ、これにより所定の均一な特性を有する長尺の線材を得ることができる。さらに、バリア材として銀合金を用いることにより、線材の機械的強度をより向上させることができ、熱処理後のハンドリングも容易になるため、超電導特性を劣化させることなく長尺の線材を取扱いが可能となる。
【0031】
以上により、本発明の酸化物超電導線材およびその製造方法によれば、その臨界電流密度が極めて高い長尺線材が得られ、その工業的価値は非常に高いものである。
【図面の簡単な説明】
【図1】本発明の酸化物超電導線材の一実施例を示す横断面図である。
【図2】従来の酸化物超電導線材の一比較例を示す横断面図である。
【符号の説明】
1、10………酸化物超電導線材
2………超電導層
3………基板
4、13………積層体
5………金属フォイル
5a、14a……突合せ部
11……Bi系(2212)相
12……Ag基板
14……Ag−Mg合金フォイル
15……バリア材[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an oxide superconducting wire and a method for manufacturing the same, and more specifically, mainly a power storage, a generator, a motor, and a current limiter. The present invention relates to an oxide superconducting wire used for applied equipment using an oxide superconducting wire such as a transformer and a superconducting cable, and a manufacturing method thereof.
[0002]
[Prior art]
Conventionally, various wires have been developed as high-capacity oxide superconducting wires. Among such large-capacity wires, oxide superconducting wires in which the outer periphery of a laminate in which a substrate is arranged between a plurality of oxide superconducting layers are surrounded by a metal plate are practical because of their high critical current density (Jc). It is attracting attention as a wire rod.
[0003]
As shown in FIG. 2 , the wire 1 has a plurality of Bi-based (2212) phases (Bi: Sr: Ca: Cu = 2: 2: 1: 2 element ratio of Bi—Sr—Ca—Cu—). The outer periphery of a laminate 4 in which a substrate 3 made of silver or a silver alloy is disposed between superconducting layers 2 made of an O-based oxide superconductor) is surrounded by a metal plate (metal foil) 5.
[0004]
Such a wire 1 has a plurality of wires in which the same paste is applied to one side of the substrate 3 on the surface of the substrate 3 coated with a paste containing an element constituting the Bi-based (2212) phase in a predetermined ratio. Are laminated so that the substrate 3 is disposed between a plurality of paste layers, and the outer periphery thereof is surrounded by a metal foil 5 made of silver or a silver alloy, and then subjected to heat treatment for generating a superconductor. . By this heat treatment, the metal foil 5, the superconducting layer 2, and the substrate 3 are integrated.
[0005]
In this case, since the butting portion 5a of the metal foil 5 is opened, CO2, H2O, CO2 and other gases generated in the heat treatment process are easily released to the outside, and the expansion of the wire due to the generation of the gas is prevented. Can do.
[0006]
However, in the above oxide superconducting wire, the butt portion 5a of the metal foil 5 is opened as described above, and in the heat treatment step, a partial melting-slow cooling process (after heating to a partial melting temperature range) In this case, when the heat treatment is performed in a batch-type heat treatment furnace, the molten oxide is eluted from the butt portion 5a of the metal foil 5 and the composition varies. As a result, it was difficult to obtain a long wire having predetermined uniform characteristics.
[0007]
Further, there is a problem that the use as a wire becomes impossible due to the generation of solidified oxide eluted out of the metal foil 5 and the fusion of adjacent wires during heat treatment.
[0008]
[Problems to be solved by the invention]
The present invention has been made to solve the above problems, and in an oxide superconducting wire in which the outer periphery of a laminate in which a substrate is arranged between a plurality of oxide superconducting layers is surrounded by a metal plate, and a method for manufacturing the same, It is an object of the present invention to obtain a long wire rod which prevents elution of molten oxide from the butt portion 5a of the metal foil 5 during heat treatment, has no composition variation, and has predetermined uniform characteristics.
[0009]
Still another object of the present invention is to provide an oxide superconducting wire having improved mechanical strength and a method for producing the same.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, an oxide superconducting wire according to claim 1 of the present invention is an oxide superconducting wire in which the outer periphery of a laminate in which a substrate is disposed between a plurality of oxide superconducting layers is surrounded by a metal plate. In this case, a barrier material made of a silver alloy in which one or more elements selected from Mg, Sb, Mn, and Al are added to Ag is disposed on one side surface of the laminate, and the outer periphery is made of metal. While being surrounded by a plate, the abutting portion of the metal plate is positioned on the barrier material side.
[0011]
Moreover, the manufacturing method of the oxide superconducting wire which concerns on Claim 5 of this invention is on the barrier material which consists of a silver alloy which added any 1 or more types of elements selected from Mg, Sb, Mn, and Al to Ag. A laminate (A) coated with a paste containing elements constituting a bismuth-based oxide superconductor at a predetermined ratio, and an element constituting the oxide superconductor on a substrate made of silver or a silver alloy at a predetermined ratio After preparing a laminate (B) coated with paste, and arranging a plurality of laminates (B) on the upper side of the paste layer of the laminate (A) so that the substrate and the paste layer are alternately positioned, The outside is surrounded by a metal plate so that the butt portion is located on the barrier material side, and then heated to a partial melting temperature range of the bismuth-based oxide superconductor and then gradually cooled.
[0012]
In the above invention, as the metal plate, it is preferable to use a silver alloy obtained by adding one or more elements selected from Mg, Sb, Mn, and Al to Ag.
[0013]
The silver alloy used as the barrier material and metal plate in the above invention preferably has an additive element amount in the range of 0.1 to 1.0 at%. The reason is that if the amount of additive element is less than 0.1 at%, it functions as a barrier material, but at the same time the strength cannot be improved, and if the amount of additive element exceeds 1.0 at%, This is because the oxide superconductor is contaminated by the diffusion, and as a result, the superconducting characteristics are deteriorated.
[0014]
Silver or a silver alloy can be used as the substrate, and a Bi-based (2212) phase is preferably selected as the oxide superconducting layer or the oxide superconductor. In this Bi-based (2212) phase, crystals are easily oriented in the partial melting-slow cooling process, and the superconducting properties can be improved.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention are described below.
[0016]
FIG. 1 shows an oxide superconducting wire 10 according to the present invention. The oxide superconducting wire 10 is a laminate in which an Ag substrate 12 is disposed between oxide superconducting layers 11 composed of a plurality of Bi (2212) phases. A barrier material 15 made of an Ag—Mg alloy plate is disposed on one side of the steel sheet 13 so that the outer periphery thereof is surrounded by the foil 14, and the butted portion 14 a of the foil 14 is positioned on the barrier material 15 side. It is a thing.
[0017]
Such an oxide superconducting wire 10 is manufactured by the following method.
[0018]
That is, a laminated plate (A) in which a paste containing an element constituting a Bi-based (2212) phase in a predetermined ratio is applied to one side of a barrier material 15 made of an Ag—Mg alloy plate, and a Bi-based (2212) on an Ag substrate. ) A laminate (B) coated with a paste containing elements constituting the phase in a predetermined ratio is prepared, and a plurality of laminates (B) are placed on the upper side of the paste layer of the laminate (A) with the substrate and the paste layer. Are arranged so as to be alternately positioned, and the outside is surrounded by the Ag-Mg alloy foil 14 so that the butt portion 14a is positioned on the barrier material 15 side, and then the bismuth oxide superconductor portion. After heating to the melting temperature range, the oxide superconducting wire 10 is manufactured by slow cooling.
[0019]
【Example】
Examples of the present invention and comparative examples will be described below.
[0020]
Example A paste containing an element constituting a Bi-based (2212) phase in a predetermined ratio on one side of a barrier material made of an Ag-0.22 at% Mg alloy having a width of 4 mm and a thickness of 15 μm is applied to a thickness of 50 μm. On the other hand, a laminate (A) is formed, and a paste containing an element constituting a Bi-based (2212) phase in a predetermined ratio is applied to an Ag substrate having a width of 4 mm and a thickness of 20 μm to a thickness of 50 μm. (B) was formed.
[0021]
In this superconducting paste, powders of Bi2O3, SrCO3, CaCO3 and CuO are blended at an element number ratio of Bi: Sr: Ca: Cu = 2: 2: 1: 2 and mixed with an organic binder.
[0022]
Next, after arranging the three laminates (B) on the upper side of the paste layer of the laminate (A) so that the barrier material and the Ag substrate and the paste layer are alternately arranged, the outside is 10 mm wide and thick. It was surrounded by a foil made of an Ag-0.22 at% Mg alloy having a thickness of 20 μm. At this time, the foil was surrounded so that the butted portion of the foil was positioned on the barrier material side.
[0023]
Next, after preliminary firing at 860 ° C. for 30 hours, cold rolling was performed.
[0024]
Then, after heating to the partial melting temperature range of 890 ° C., the oxide superconducting wire having a length of 200 m was manufactured by gradually cooling at a cooling rate of 1 ° C./hr.
[0025]
Table 1 shows the effective length (length that can be used as a wire), critical current density (Jc: 4.2K, 0T), and tensile strength of the oxide superconducting wire having the structure shown in FIG.
[0026]
[Table 1]
Figure 0003621294
[0027]
Instead of the laminate (A) of the comparative example, a paste containing an element constituting a Bi-based (2212) phase in a predetermined ratio is applied to both sides of an Ag substrate having a width of 4 mm and a thickness of 20 μm to a thickness of 50 μm. Then, a laminated plate (C) was formed, while a laminated plate (B) was formed by the same method as in the example.
[0028]
Next, an oxide superconducting wire was manufactured by the same method as in the example except that the two laminates (C) and (B) were arranged so that the Ag substrate and the paste layer were alternately positioned.
[0029]
The effective length, critical current density (Jc: 4.2K, 0T) and tensile strength of the oxide superconducting wire having the structure shown in FIG.
[0030]
【The invention's effect】
As is apparent from the above description, according to the oxide superconducting wire and the manufacturing method thereof of the present invention, the barrier material is disposed on the butt portion side of the metal foil at the time of heat treatment, so that the bump at the time of heating in the partial melting temperature range is achieved. Since elution of the molten oxide from the mating portion can be prevented, composition fluctuation of the oxide superconductor can be prevented, and thereby a long wire having predetermined uniform characteristics can be obtained. In addition, by using a silver alloy as a barrier material, the mechanical strength of the wire can be further improved, and handling after heat treatment becomes easy, allowing handling of long wires without degrading superconducting properties. It becomes.
[0031]
As described above, according to the oxide superconducting wire of the present invention and the method for producing the same, a long wire having an extremely high critical current density can be obtained, and its industrial value is very high.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an embodiment of an oxide superconducting wire according to the present invention.
FIG. 2 is a cross-sectional view showing a comparative example of a conventional oxide superconducting wire.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1,10 ......... Oxide superconducting wire 2 ......... Superconducting layer 3 ......... Substrate 4,13 ......... Laminated body 5 ......... Metal foil 5a, 14a ... Butting part 11 ... Bi system (2212) Phase 12 ... Ag substrate 14 ... Ag-Mg alloy foil 15 ... Barrier material

Claims (7)

複数の酸化物超電導層の間に基板を配置した積層体の外周を金属板で包囲した酸化物超電導線材において、前記積層体の一側の面に、AgにMg、Sb、Mn、Alから選択されたいずれか1種以上の元素を添加した銀合金からなるバリア材を配置して、その外周を金属板で包囲するとともに、前記金属板の突合わせ部分が前記バリア材側に位置するように構成したことを特徴とする酸化物超電導線材。In an oxide superconducting wire in which the outer periphery of a laminate in which a substrate is disposed between a plurality of oxide superconducting layers is surrounded by a metal plate , Ag is selected from Mg, Sb, Mn, and Al on one side of the laminate. A barrier material made of a silver alloy to which any one or more elements are added is arranged, the outer periphery thereof is surrounded by a metal plate, and the butted portion of the metal plate is positioned on the barrier material side An oxide superconducting wire characterized by comprising. 金属板は、AgにMg、Sb、Mn、Alから選択されたいずれか1種以上の元素を添加した銀合金よりなる請求項1記載の酸化物超電導線材。The oxide superconducting wire according to claim 1 , wherein the metal plate is made of a silver alloy in which at least one element selected from Mg, Sb, Mn, and Al is added to Ag. 基板は、銀からなる請求項1または2記載の酸化物超電導線材。The oxide superconducting wire according to claim 1 or 2, wherein the substrate is made of silver. 酸化物超電導層は、Bi系(2212)相からなる請求項1乃至3いずれか1項記載の酸化物超電導線材。The oxide superconducting wire according to any one of claims 1 to 3, wherein the oxide superconducting layer is made of a Bi-based (2212) phase. AgにMg、Sb、Mn、Alから選択されたいずれか1種以上の元素を添加した銀合金からなるバリア材上にビスマス系酸化物超電導体を構成する元素を所定の比率で含むペーストを塗布した積層板(A)と、銀または銀合金からなる基板上に酸化物超電導体を構成する元素を所定の比率で含むペーストを塗布した積層板(B)とを、前記積層板(A)のペースト層の上側に前記積層板(B)の複数本を基板とペースト層とが交互に位置するように配置した後、この外側を、その突合わせ部分が前記バリア材側に位置するように金属板で包囲し、次いで前記ビスマス系酸化物超電導体の部分溶融温度域に加熱した後、徐冷することを特徴とする酸化物超電導線材の製造方法。A paste containing a predetermined ratio of elements constituting a bismuth-based oxide superconductor on a barrier material made of a silver alloy in which at least one element selected from Mg, Sb, Mn, and Al is added to Ag is applied. The laminated plate (A), and the laminated plate (B) obtained by applying a paste containing an element constituting the oxide superconductor in a predetermined ratio on a substrate made of silver or a silver alloy. After arranging a plurality of the laminates (B) on the upper side of the paste layer so that the substrate and the paste layer are alternately positioned, the outer side is metal so that the butt portion is positioned on the barrier material side. A method for producing an oxide superconducting wire, characterized in that it is surrounded by a plate, then heated to a partial melting temperature range of the bismuth-based oxide superconductor and then gradually cooled. 金属板は、AgにMg、Sb、Mn、Alから選択されたいずれか1種以上の元素を添加した銀合金よりなる請求項5記載の酸化物超電導線材の製造方法。 The method for producing an oxide superconducting wire according to claim 5 , wherein the metal plate is made of a silver alloy in which at least one element selected from Mg, Sb, Mn, and Al is added to Ag. ビスマス系酸化物超電導体は、Bi系(2212)相からなる請求項5または6いずれか1項記載の酸化物超電導線材の製造方法。The method for producing an oxide superconducting wire according to claim 5, wherein the bismuth-based oxide superconductor is composed of a Bi-based (2212) phase.
JP15730699A 1999-06-04 1999-06-04 Oxide superconducting compression molded conductor and manufacturing method thereof Expired - Fee Related JP3621294B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15730699A JP3621294B2 (en) 1999-06-04 1999-06-04 Oxide superconducting compression molded conductor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15730699A JP3621294B2 (en) 1999-06-04 1999-06-04 Oxide superconducting compression molded conductor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2000348546A JP2000348546A (en) 2000-12-15
JP3621294B2 true JP3621294B2 (en) 2005-02-16

Family

ID=15646795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15730699A Expired - Fee Related JP3621294B2 (en) 1999-06-04 1999-06-04 Oxide superconducting compression molded conductor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3621294B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101923923A (en) * 2010-09-14 2010-12-22 重庆大学 Laminar structured bismuth-system high temperature superconducting tape and preparation method thereof
CN101923922B (en) * 2010-09-14 2012-10-03 重庆大学 Bismuth-system high-temperature superconducting wire or strip with concentric circle structure and preparation method thereof
KR101484166B1 (en) 2013-08-08 2015-01-21 한국전기연구원 method for manufacturing superconducting cables using superconducting coated conductors and superconducting cables by the manufacturing

Also Published As

Publication number Publication date
JP2000348546A (en) 2000-12-15

Similar Documents

Publication Publication Date Title
US5232908A (en) Method of manufacturing an oxide superconductor/metal laminate
JP2914331B2 (en) Method for producing composite oxide ceramic superconducting wire
US5384307A (en) Oxide superconductor tape having silver alloy sheath with increased hardness
JPS63225409A (en) Compound superconductive wire and its manufacture
JP4299367B2 (en) Method for producing long superconductor with bismuth phase at high critical temperature and superconductor produced by this method
JP3621294B2 (en) Oxide superconducting compression molded conductor and manufacturing method thereof
EP0613192A1 (en) Wire for NB3X superconducting wire
JP4013280B2 (en) Structure having wire rod wound in coil, method for manufacturing the same, and spacer
EP3961658B1 (en) Blank for producing a long nb3 sn-based superconducting wire
JP3369225B2 (en) Method for producing oxide high-temperature superconducting wire
JP3875826B2 (en) Manufacturing method of oxide superconducting wire
JP2951419B2 (en) Method for manufacturing large-capacity oxide superconducting conductor
JP3108543B2 (en) Manufacturing method of multilayer ceramic superconductor
JP4189779B2 (en) Manufacturing method and connecting method of oxide superconductor
JP3848449B2 (en) Manufacturing method of oxide superconducting wire
JP2667972B2 (en) Bi-based oxide composite superconducting wire
JP2841933B2 (en) Manufacturing method of oxide superconducting wire
JP3879183B2 (en) Superconducting composite material and method of manufacturing superconducting composite material
JP2843447B2 (en) Superconducting current lead
JP4002975B2 (en) Manufacturing method of bismuth 2212 superconducting composite multi-core wire
JP2735534B2 (en) Compound superconducting wire and method for producing compound superconducting wire
JPH10125147A (en) Oxide superconducting wire material
JPS63225410A (en) Compound superconductive wire and its manufacture
JPH0712928B2 (en) Superconducting article manufacturing method
JPH01102811A (en) Superconductive electric wire

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040716

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040908

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071126

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees