JP2841933B2 - Manufacturing method of oxide superconducting wire - Google Patents
Manufacturing method of oxide superconducting wireInfo
- Publication number
- JP2841933B2 JP2841933B2 JP3164267A JP16426791A JP2841933B2 JP 2841933 B2 JP2841933 B2 JP 2841933B2 JP 3164267 A JP3164267 A JP 3164267A JP 16426791 A JP16426791 A JP 16426791A JP 2841933 B2 JP2841933 B2 JP 2841933B2
- Authority
- JP
- Japan
- Prior art keywords
- wire
- oxide superconducting
- oxide
- superconducting wire
- metal sheath
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Superconductors And Manufacturing Methods Therefor (AREA)
Description
【0001】[0001]
【産業上の利用分野】この発明は、酸化物超電導線材の
製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an oxide superconducting wire.
【0002】[0002]
【従来の技術】近年、より高い臨界温度を示す超電導材
料として、セラミック系のもの、すなわち、酸化物超電
導材料が注目されている。その中で、Bi系は110K
程度、Tl系は120K程度の高い臨界温度を示してお
り、その実用化が期待されている。2. Description of the Related Art In recent years, ceramic superconducting materials, that is, oxide superconducting materials, have attracted attention as superconducting materials exhibiting higher critical temperatures. Among them, Bi system is 110K
The Tl system shows a high critical temperature of about 120K, and its practical use is expected.
【0003】このような超電導材料には、異なる結晶構
造および臨界温度を有する複数の超電導相の存在するこ
とが知られている。また、原料粉末を熱処理してこのよ
うな超電導材料を製造しようとするとき、いくつかの超
電導相が混在しやすいことや、非超電導相が一部におい
て現われることも知られている。また、このような超電
導材料を用いて、超電導線材を得る方法として、原料粉
末を金属シースで被覆したり、あるいは基材上にコーテ
ィングしたり、またあるいは原料粉末をファイバ化し、
これを熱処理することにより、原料粉末を超電導化し
て、超電導線材にする製造方法が知られている。It is known that such a superconducting material has a plurality of superconducting phases having different crystal structures and critical temperatures. It is also known that when such a superconducting material is manufactured by heat-treating a raw material powder, some superconducting phases are likely to be mixed, and some non-superconducting phases appear. Further, using such a superconducting material, as a method of obtaining a superconducting wire, coating the raw material powder with a metal sheath, or coating on the substrate, or or the raw material powder into a fiber,
There is known a method for producing a superconducting wire by heat-treating the raw material powder to make it superconductive.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、超電導
線材をケーブルやマグネットに応用しようとする場合、
高い臨界温度に加えて、高い臨界電流密度を有しかつ大
電流を流せることが必要である。これまで得られている
酸化物超電導線材では、高い臨界電流密度で大電流を安
定に流すという点において未だ不十分であった。However, when applying a superconducting wire to a cable or a magnet,
In addition to a high critical temperature, it is necessary to have a high critical current density and a large current. The oxide superconducting wires obtained so far are still insufficient in that a large current can be stably passed at a high critical current density.
【0005】この発明の目的は、高い臨界電流密度を有
し、かつ大電流を安定に流すことのできる酸化物超電導
線材の製造方法を提供することにある。An object of the present invention is to provide a method for producing an oxide superconducting wire having a high critical current density and capable of stably flowing a large current.
【0006】[0006]
【課題を解決するための手段】この発明の酸化物超電導
線材の製造方法は、金属シースで被覆された酸化物超電
導体を調整するステップと、酸化物超電導体を複数積み
重ね、これを200〜700℃で熱処理すると同時に圧
力加重50〜1000kg/cm2で加圧加工して、酸
化物超電導体が金属シースを介して複数積層された酸化
物超電導線材を形成するステップとを備えている。According to the method for manufacturing an oxide superconducting wire of the present invention, a step of adjusting an oxide superconductor covered with a metal sheath, a step of stacking a plurality of oxide superconductors, and placing the superconductors in a range of 200 to 700 Forming an oxide superconducting wire in which a plurality of oxide superconductors are laminated via a metal sheath while simultaneously performing a heat treatment at a temperature of 50 ° C. and a pressure load of 50 to 1000 kg / cm 2 .
【0007】金属シースが銀シースである場合には、熱
処理の温度は100℃〜800℃が好ましく、さらに好
ましくは200℃〜700℃である。また加圧加工の荷
重は30〜2000kg/cm2 が好ましく、さらに好
ましくは50〜1000kg/cm2 である。[0007] When the metal sheath is a silver sheath, the temperature of the heat treatment is preferably 100 ° C to 800 ° C, more preferably 200 ° C to 700 ° C. Further, the load of the pressing is preferably 30 to 2000 kg / cm 2 , more preferably 50 to 1000 kg / cm 2 .
【0008】[0008]
【作用】この発明の製法による酸化物超電導線材は、2
00〜700℃で熱処理すると同時に圧力加重50〜1
000kg/cm2で加圧加工によって、酸化物超電導
体が複数層金属シースを介して積層して形成されてい
る。このため、各酸化物超電導体の層は配向性が高く、
高い臨界電流密度を有する。また、複数の酸化物超電導
体の層が積層されているので、大電流を安定に流すこと
ができ、金属シースを介して積層さえているので、安定
に大電流を流すころができる。The oxide superconducting wire produced by the method of the present invention has the following properties:
Heat treatment at 00-700 ° C and pressure loading 50-1
The oxide superconductor is formed by laminating through a multi-layer metal sheath by pressure processing at 000 kg / cm 2 . For this reason, each oxide superconductor layer has high orientation,
It has a high critical current density. In addition, since a plurality of oxide superconductor layers are stacked, a large current can flow stably, and since the layers are even laminated via a metal sheath, a large current can flow stably.
【0009】[0009]
【発明の効果】この発明の製法に従えば、大電流を安定
して流すことができる酸化物超電導線材を得ることがで
きる。従って、この発明の製法による酸化物超電導線材
は、ケーブルおよびマグネットなどへのの実用化の可能
性が期待されるものである。According to the manufacturing method of the present invention, it is possible to obtain an oxide superconducting wire capable of stably flowing a large current. Therefore, it is expected that the oxide superconducting wire produced by the method of the present invention can be put to practical use in cables, magnets and the like.
【0010】[0010]
実施例1 Tl−Pb−Ba−Ca−Cu−O系酸化物超電導材料
粉末を、銀シース内に充填した後、テープ状に加工し
た。このテープ状線材を、800℃で4時間熱処理し
た。この線材を10層に積み重ね、400℃に加熱して
熱処理しながら、100kg/cm2 の荷重をかけて加
圧加工した。Example 1 A Tl-Pb-Ba-Ca-Cu-O-based oxide superconducting material powder was filled in a silver sheath and then processed into a tape shape. This tape-shaped wire was heat-treated at 800 ° C. for 4 hours. The wires were stacked in 10 layers, and were subjected to pressure processing while applying a load of 100 kg / cm 2 while being heated to 400 ° C. and heat-treated.
【0011】図1は、このようにして得られたこの発明
に従う酸化物超電導線材の一実施例を示す断面斜視図で
ある。図1を参照して、酸化物超電導線材1は、金属シ
ース3を介して積層された、酸化物超電導体層2から形
成されている。なお、矢印Aは線材の長手方向であり、
電流方向である。この実施例の線材の液体窒素温度(7
7.3K)における臨界電流値を測定し、表1にその結
果を示した。FIG. 1 is a sectional perspective view showing one embodiment of the oxide superconducting wire according to the present invention thus obtained. Referring to FIG. 1, an oxide superconducting wire 1 is formed from an oxide superconductor layer 2 laminated via a metal sheath 3. The arrow A is the longitudinal direction of the wire,
Current direction. The liquid nitrogen temperature (7
The critical current value at 7.3K) was measured, and the results are shown in Table 1.
【0012】なお、比較として、図2に示すような1つ
の酸化物超電導体12の周りを金属シース13が覆った
ような酸化物超電導線材11についても、同様に臨界電
流値を測定した。この比較例のNo.0の線材の超電導
体の部分の断面積および線材全体の厚さは表1に示すと
おりであり、この発明に従うNo.1の実施例とほぼ同
じである。For comparison, a critical current value was similarly measured for an oxide superconducting wire 11 in which a metal sheath 13 covered one oxide superconductor 12 as shown in FIG. No. of this comparative example. The cross-sectional area of the superconductor portion of the wire of No. 0 and the thickness of the entire wire are as shown in Table 1. This is almost the same as the first embodiment.
【0013】[0013]
【表1】 [Table 1]
【0014】実施例2 上記の実施例1と同様にして酸化物超電導材料粉末を銀
シースに充填した後テープ状に加工し、熱処理した線材
を表2に示す加熱温度および荷重の熱処理および加圧加
工条件で、実施例1と同様にして図1に示すような酸化
物超電導線材を作製した。Example 2 In the same manner as in Example 1 above, the oxide superconducting material powder was filled into a silver sheath, processed into a tape shape, and the heat-treated wire was heat-treated at the heating temperature and load shown in Table 2 and pressed. Under the processing conditions, an oxide superconducting wire as shown in FIG. 1 was produced in the same manner as in Example 1.
【0015】このようにして得られた線材の液体窒素温
度(77.3K)での臨界電流値を測定し、表2に示
す。The critical current value of the thus obtained wire at liquid nitrogen temperature (77.3K) was measured and is shown in Table 2.
【0016】[0016]
【表2】 [Table 2]
【0017】表2から明らかなように、加圧加工の際の
荷重は、30〜2000kg/cm 2 が好ましく、さら
に好ましくは50〜1000kg/cm2 である。 実施例3 上記の実施例1と同様にして、テープ状の線材を作製し
て熱処理し、この線材を用いて、表3に示す加熱温度お
よび荷重の熱処理および加圧加工条件で、図1に示すよ
うな酸化物超電導線材を作製した。As is clear from Table 2, the pressure processing
Load is 30-2000kg / cm TwoIs preferred, and
Preferably 50 to 1000 kg / cmTwoIt is. Example 3 A tape-shaped wire was produced in the same manner as in Example 1 above.
Heat treatment, and using this wire, the heating temperature and
Fig. 1 shows the conditions of heat treatment and load
Such an oxide superconducting wire was produced.
【0018】このようにして得られた線材の液体窒素温
度(77.3K)での臨界電流値を測定し、その結果を
表3に示した。The critical current value of the thus obtained wire at liquid nitrogen temperature (77.3K) was measured. The results are shown in Table 3.
【0019】[0019]
【表3】 [Table 3]
【0020】表3から明らかなように、加圧加工する際
の熱処理の温度としては、100〜800℃が好まし
く、さらに好ましくは200〜700℃である。 実施例4 Bi−Pb−Sr−Ca−Cu−O系酸化物超電導材料
粉末を銀シース内に充填した後、テープ状に加工し、こ
のテープ状線材を800℃で10時間熱処理した。この
線材を用いて、400℃の加熱温度で熱処理しながら、
100kg/cm2 の荷重で加圧加工し、図1に示すよ
うな酸化物超電導線材を作製した。As is clear from Table 3, the temperature of the heat treatment at the time of press working is preferably from 100 to 800 ° C., and more preferably from 200 to 700 ° C. Example 4 A Bi-Pb-Sr-Ca-Cu-O-based oxide superconducting material powder was filled in a silver sheath, processed into a tape shape, and this tape-shaped wire was heat-treated at 800 ° C for 10 hours. Using this wire, while heat-treating at a heating temperature of 400 ° C,
Pressure processing was performed with a load of 100 kg / cm 2 to produce an oxide superconducting wire as shown in FIG.
【0021】この線材の液体窒素温度(77.3K)で
の臨界電流値を測定し、その結果を表4に示した。な
お、比較として、図2に示すような1つの超電導体層か
らなる酸化物超電導線材を作製し、同様にして臨界電流
値を測定し表4にその結果を示した。なお、この比較例
のNo.0の酸化物超電導体の断面積および線材の厚さ
は表4に示すとおりであり、この発明に従うNo.1と
ほぼ同じである。The critical current value of this wire at a liquid nitrogen temperature (77.3K) was measured. The results are shown in Table 4. For comparison, an oxide superconducting wire composed of one superconductor layer as shown in FIG. 2 was produced, and the critical current value was measured in the same manner. The results are shown in Table 4. It should be noted that the comparative example No. Table 4 shows the cross-sectional area of the oxide superconductor of No. 0 and the thickness of the wire rod. It is almost the same as 1.
【0022】[0022]
【表4】 [Table 4]
【0023】表4から明らかなように、この発明に従
い、酸化物超電導体層を複数積層したNo.1の線材
は、No.0の比較例に比べ高い臨界電流を示してい
る。 実施例5 上記の実施例4と同様にしてテープ状線材を作製し、こ
れを熱処理した後、以下の表5に示す加熱温度および荷
重の条件でこの線材を熱処理しながら加圧加工して、図
1に示すような酸化物超電導線材を作製した。As is clear from Table 4, according to the present invention, No. 2 having a plurality of stacked oxide superconductor layers. No. 1 wire is No. 0 indicates a higher critical current than the comparative example. Example 5 A tape-shaped wire was produced in the same manner as in Example 4 described above, and after this was heat-treated, the wire was subjected to pressure processing while being heat-treated under the conditions of a heating temperature and a load shown in Table 5 below. An oxide superconducting wire as shown in FIG. 1 was produced.
【0024】このようにして得られた線材の液体窒素温
度(77.3K)での臨界電流値を測定し、その結果を
表5に示した。The critical current value of the thus obtained wire at liquid nitrogen temperature (77.3K) was measured. The results are shown in Table 5.
【0025】[0025]
【表5】 [Table 5]
【0026】表5から明らかなように、加圧加工の際の
荷重条件としては、30〜2000kg/cm2 が好ま
しく、さらに好ましくは50〜1000kg/cm2 で
ある。 実施例6 実施例4と同様にしてテープ状線材を作製して熱処理
し、この線材を用いて、表6に示す条件で、熱処理およ
び加圧加工して、図1に示すような酸化物超電導線材を
作製した。As is apparent from Table 5, the load condition during the pressing is preferably 30 to 2000 kg / cm 2 , more preferably 50 to 1000 kg / cm 2 . Example 6 A tape-shaped wire was prepared and heat-treated in the same manner as in Example 4, and this wire was heat-treated and pressed under the conditions shown in Table 6 to obtain an oxide superconductor as shown in FIG. A wire was produced.
【0027】このようにして得られた線材の液体窒素温
度(77.3K)での臨界電流値を測定し、その結果を
表6に示した。The critical current value of the thus obtained wire at liquid nitrogen temperature (77.3K) was measured. The results are shown in Table 6.
【0028】[0028]
【表6】 [Table 6]
【0029】表6の結果から明らかなように、熱処理の
加熱温度としては、100〜800℃が好ましく、さら
に好ましくは200〜700℃である。 実施例7 Tl−Bi−Sr−Ca−Cu−O系酸化物超電導材料
の粉末を銀シース内に充填した後、テープ状に加工し、
このテープ状線材を800℃で8時間熱処理した。この
線材を用いて、加熱温度400℃荷重100kg/cm
2 の条件で熱処理および加圧加工を同時に行ない、図1
に示すような酸化物超電導線材を作製した。As is clear from the results in Table 6, the heating temperature of the heat treatment is preferably from 100 to 800 ° C, more preferably from 200 to 700 ° C. Example 7 A powder of Tl-Bi-Sr-Ca-Cu-O-based oxide superconducting material was filled in a silver sheath, and then processed into a tape shape.
This tape-shaped wire was heat-treated at 800 ° C. for 8 hours. Using this wire, heating temperature 400 ° C, load 100kg / cm
Heat treatment and pressure processing were performed simultaneously under the conditions of 2 , and FIG.
An oxide superconducting wire as shown in FIG.
【0030】この線材について、液体窒素温度(77.
3K)での臨界電流値を測定し、その結果を表7に示し
た。なお、比較として、図2に示すような1つの酸化物
超電導体の周りを金属シースで覆った線材を作製し、こ
の線材についても臨界電流値を測定し表7にその結果を
示した。なお、この比較例のNo.0の線材の酸化物超
電導体の断面積および線材の厚さは、表7に示すよう
に、この発明に従うNo.1とほぼ同じものである。For this wire, the temperature of liquid nitrogen (77.
3K) was measured, and the results are shown in Table 7. As a comparison, a wire was prepared in which the periphery of one oxide superconductor was covered with a metal sheath as shown in FIG. 2, and the critical current value was measured for this wire, and the results are shown in Table 7. It should be noted that the comparative example No. As shown in Table 7, the cross-sectional area of the oxide superconductor of the wire of No. 0 and the thickness of the wire were as follows. It is almost the same as 1.
【0031】[0031]
【表7】 [Table 7]
【0032】表7から明らかなように、この発明に従
い、酸化物超電導体層を金属シースを介して複数積層さ
せた線材は、高い臨界電流を示す。 実施例8 実施例7と同様にしてテープ状線材を作製してこれを熱
処理し、表8に示すような熱処理および加圧加工条件
で、図1に示すような酸化物超電導線材を作製した。As is clear from Table 7, a wire in which a plurality of oxide superconductor layers are laminated via a metal sheath according to the present invention exhibits a high critical current. Example 8 A tape-shaped wire was produced and heat-treated in the same manner as in Example 7, and an oxide superconducting wire as shown in FIG. 1 was produced under the heat treatment and pressure processing conditions shown in Table 8.
【0033】このようにして得られた線材の液体窒素温
度(77.3K)での臨界電流値を測定し、その結果を
表8に示した。The critical current value of the thus obtained wire at liquid nitrogen temperature (77.3K) was measured. The results are shown in Table 8.
【0034】[0034]
【表8】 [Table 8]
【0035】表8から明らかなように、加圧加工の荷重
としては、30〜2000kg/cm2 が好ましく、さ
らには50〜1000kg/cm2 が好ましい。 実施例9 実施例7と同様にしてテープ状線材を作製し、これを熱
処理した後、表9に示す条件で熱処理および加圧加工
し、図1に示すような酸化物超電導線材を作製した。As is clear from Table 8, the load for the pressing is preferably 30 to 2000 kg / cm 2 , more preferably 50 to 1000 kg / cm 2 . Example 9 A tape-shaped wire was produced in the same manner as in Example 7, and after heat-treating it, it was heat-treated and pressed under the conditions shown in Table 9 to produce an oxide superconducting wire as shown in FIG.
【0036】このようにして得られた線材の液体窒素温
度(77.3K)での臨界電流値を測定し、その結果を
表9に示した。The critical current value of the thus obtained wire at liquid nitrogen temperature (77.3K) was measured. The results are shown in Table 9.
【0037】[0037]
【表9】 [Table 9]
【0038】表9から明らかなように、熱処理の加熱温
度としては、100〜800℃が好ましく、さらに好ま
しくは200〜700℃である。As apparent from Table 9, the heating temperature for the heat treatment is preferably from 100 to 800 ° C., and more preferably from 200 to 700 ° C.
【図1】この発明の製法による酸化物超電導線材の一実
施例を示す断面斜視図である。FIG. 1 is a cross-sectional perspective view showing one embodiment of an oxide superconducting wire manufactured by the method of the present invention.
【図2】比較例の酸化物超電導線材を示す断面斜視図で
ある。FIG. 2 is a sectional perspective view showing an oxide superconducting wire of a comparative example.
1 酸化物超電導線材 2 酸化物超電導体層 3 金属シース層 DESCRIPTION OF SYMBOLS 1 Oxide superconducting wire 2 Oxide superconductor layer 3 Metal sheath layer
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−134822(JP,A) 特開 平2−247906(JP,A) 特開 昭64−12415(JP,A) 特開 平2−227918(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01B 12/10 H01B 13/00 565 D──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-1-134822 (JP, A) JP-A-2-247906 (JP, A) JP-A-64-12415 (JP, A) JP-A-2-124 227918 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01B 12/10 H01B 13/00 565 D
Claims (2)
酸化物超電導線材を製造する方法であって、金属シース
で被覆された酸化物超電導体を調整するステップと、前
記酸化物超電導体を複数積み重ね、これを200〜70
0℃で熱処理すると同時に圧力加重50〜1000kg
/cm2で加圧加工して、酸化物超電導体が金属シース
を介して複数積層された酸化物超電導線材を形成するス
テップとを備える、酸化物超電導線材の製造方法。1. A method for producing an oxide superconducting wire in which an oxide superconductor is covered with a metal sheath, comprising: adjusting an oxide superconductor covered with a metal sheath; Stack this, 200-70
Heat treatment at 0 ° C and at the same time pressurized 50-1000kg
/ Cm 2 to form an oxide superconducting wire in which a plurality of oxide superconductors are laminated via a metal sheath, to form an oxide superconducting wire.
酸化物超電導線材を製造する方法であって、酸化物超電
導材料粉末を金属パイプ内に充填した後、テープ状に加
工し、テープ状線材を熱処理するステップと、前記テー
プ状線材を複数積み重ね、これを200〜700℃で熱
処理すると同時に圧力加重50〜1000kg/cm2
で加圧加工して、酸化物超電導体が金属シースを介して
複数積層された酸化物超電導線材を形成するステップと
を備える、酸化物超電導線材の製造方法。2. A method for producing an oxide superconducting wire in which an oxide superconductor is covered with a metal sheath, comprising: filling a metal pipe with an oxide superconducting material powder; Heat treating at a temperature of 200 to 700 ° C. and simultaneously applying a pressure of 50 to 1000 kg / cm 2.
Forming an oxide superconducting wire in which a plurality of oxide superconductors are laminated via a metal sheath.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3164267A JP2841933B2 (en) | 1991-07-04 | 1991-07-04 | Manufacturing method of oxide superconducting wire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3164267A JP2841933B2 (en) | 1991-07-04 | 1991-07-04 | Manufacturing method of oxide superconducting wire |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0512933A JPH0512933A (en) | 1993-01-22 |
JP2841933B2 true JP2841933B2 (en) | 1998-12-24 |
Family
ID=15789841
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3164267A Expired - Lifetime JP2841933B2 (en) | 1991-07-04 | 1991-07-04 | Manufacturing method of oxide superconducting wire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2841933B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10249550A1 (en) * | 2002-10-23 | 2004-05-06 | Nexans Superconductors Gmbh | Superconducting cable conductor with SEBCO coated conductor elements |
KR102707508B1 (en) * | 2020-11-03 | 2024-09-19 | 한국전기연구원 | Bulk type high temperature superconducting permanent magnet |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6412415A (en) * | 1987-07-06 | 1989-01-17 | Fujikura Ltd | Superconducting wire and manufacture thereof |
JP2583538B2 (en) * | 1987-11-19 | 1997-02-19 | 株式会社フジクラ | Method for producing oxide-based superconducting wire |
JPH02247906A (en) * | 1989-03-17 | 1990-10-03 | Hitachi Cable Ltd | Manufacture of oxide superconducting wire |
-
1991
- 1991-07-04 JP JP3164267A patent/JP2841933B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0512933A (en) | 1993-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3450328B2 (en) | Improved processing of oxide superconductors | |
JP2636049B2 (en) | Method for producing oxide superconductor and method for producing oxide superconducting wire | |
JP3149441B2 (en) | Method for producing bismuth-based oxide superconducting wire | |
JPH04310597A (en) | Method of manufacturing article made of metallic body having superconductor layer | |
Ren et al. | Improvement of transport critical current density in in-situ synthesized silver-sheathed superconducting tape of Tl0. 78Bi0. 22Sr1. 6Ba0. 4Ca2Cu3O9− δ by intermediate annealing and pressing | |
JP2841933B2 (en) | Manufacturing method of oxide superconducting wire | |
US6194352B1 (en) | Multifilament composite BSCCO oxide superconductor | |
JPH04218215A (en) | Superconductive conductor | |
JP3522306B2 (en) | Bi-based oxide superconducting wire and method for producing the same | |
JP3369225B2 (en) | Method for producing oxide high-temperature superconducting wire | |
JPH0536317A (en) | Manufacture of bismuth-based oxide superconductive wire material | |
WO1997028557A2 (en) | Superconducting wires for magnet applications | |
Motowidlo et al. | Multifilament BPSCCO superconductor: fabrication and heat treatment study | |
Kovac et al. | Critical current recovery in Ag-sheathed Bi (2223) tapes after bending and straightening | |
JPH06243745A (en) | Manufacture of high temperature superconducting wire material and high temperature superconducting coil | |
JP3143932B2 (en) | Superconducting wire manufacturing method | |
Balachandran et al. | Development of Ag-clad Bi-2223 superconductors for electric power applications | |
JP3029153B2 (en) | Manufacturing method of multilayer ceramic superconductor | |
JPH05234626A (en) | Connection method for superconductive wire | |
JP2757575B2 (en) | Method for manufacturing high-temperature superconducting wire | |
JPH07282659A (en) | Manufacture of high temperature superconducting wire rod | |
JP3257569B2 (en) | Method for producing Tl-based oxide superconductor | |
WO1998014961A1 (en) | High temperature superconducting composite conductor and a method for manufacture of same | |
JP3149170B2 (en) | Method for producing bismuth-based oxide superconductor | |
JPH04329218A (en) | Superconductive wire material |