JPS63304524A - Manufacture of ceramic superconductor - Google Patents

Manufacture of ceramic superconductor

Info

Publication number
JPS63304524A
JPS63304524A JP62138694A JP13869487A JPS63304524A JP S63304524 A JPS63304524 A JP S63304524A JP 62138694 A JP62138694 A JP 62138694A JP 13869487 A JP13869487 A JP 13869487A JP S63304524 A JPS63304524 A JP S63304524A
Authority
JP
Japan
Prior art keywords
ceramic
copper
metal tube
machining
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62138694A
Other languages
Japanese (ja)
Inventor
Hajime Abe
元 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP62138694A priority Critical patent/JPS63304524A/en
Publication of JPS63304524A publication Critical patent/JPS63304524A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To manufacture a superconductor utilizing a hard and fragile ceramic superconductive material by combining the ceramic superconductor material and a stabilizing member and applying swage machining and draw machining. CONSTITUTION:Ceramic is crushed into powder, which is filled into a metal tube made of copper, copper alloy, aluminum, aluminum alloy or the like, and swage machining and drew machining are applied. Or the ceramic powder is coated on a metal plate made of copper, copper alloy, aluminum, aluminum alloy or the like with a binder, and it is rolled into a spiral shape. The preset number of composite materials obtained are bound and inserted into the above metal tube. On the other hand, if the ceramic powder is coated on the above metal plate with the binder, a wire rod spirally rolled with the metal plate is inserted. The metal tube inserted with the composite material is applied with swage machining and draw machining and formed into the preset outer diameter.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はセラミック系超電導々体の製造方法に関し、特
に、セラミック系の超電導材料と安定化部材を複合化し
て長尺線材とするセラミック系超電導々体の製造方法に
関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a ceramic superconductor, and in particular, to a ceramic superconductor in which a ceramic superconductor material and a stabilizing member are combined into a long wire material. The present invention relates to a method of manufacturing a body.

〔従来の技術〕[Conventional technology]

従来の超電導4体はNb−Ti、Nb−Zr、 Nb−
Ti−Zr等の合金系、あるいはNb3Sn、(Nb−
Ti)+Sn 。
The four conventional superconductors are Nb-Ti, Nb-Zr, and Nb-
Alloys such as Ti-Zr, Nb3Sn, (Nb-
Ti)+Sn.

V3Ga等の化合物系が実用化されている。これらの超
電導臨界温度(以下、華にTcとする)は何れも20に
以下である。実用化に至っていないが、Tcの最も高い
Nb3Geにしても高々24に以下である。従って、こ
れらの超電導々体は冷媒として液体Heを使用せざるを
得ない。
Compound systems such as V3Ga have been put into practical use. All of these superconducting critical temperatures (hereinafter referred to as Tc) are below 20. Although it has not been put to practical use, even Nb3Ge, which has the highest Tc, is at most 24 or less. Therefore, these superconductors have no choice but to use liquid He as a coolant.

この液体Heは沸点は低い(4,2K)が非常に高価で
あり、かつ、液体状態に保つためには高度な断熱技術を
必要とする。一方、最近発見されたセラミック系超電導
材、例えば、y−Ba−Cu−0はTcが90に以上と
高温である。このように、Tcが高くなると、冷媒とし
て安価で、かつ、高度な断熱技術を要しない液体N2を
使用することが可能になり、全体的なコストは従来の液
体Heを使用した超電導々体に比べ軽減する。
Although this liquid He has a low boiling point (4.2K), it is very expensive and requires advanced insulation technology to maintain it in a liquid state. On the other hand, recently discovered ceramic superconducting materials, such as y-Ba-Cu-0, have a Tc of 90 or more, which is a high temperature. In this way, when Tc increases, it becomes possible to use liquid N2 as a refrigerant, which is inexpensive and does not require advanced insulation technology, and the overall cost is lower than that of conventional superconductors using liquid He. Compare and reduce.

しかし、このようなセラミック系超電導々体に大電流を
流しているとき、超電導材の超電導状態が破れ、常電導
状態になった場合、セラミック系超電導々体の常電導状
態での比抵抗は約10−3Ωcmと非常に大きいので焼
損する可能性が高い。従って、セラミック系超電導々体
においても従来のNb−Ti 、Nb3Sn超電導々超
電導様に比抵抗の非常に小さい金属、例えば、銅を安定
化部材として使用し、導体の焼損を防止する方法をとら
ざる得ない。例えば、銅は液体N2温度77Kにおいて
比抵抗は約10−7Ωcmであり、セラミック系超電導
材の10、000分の1であり、安定化金属として有力
である。
However, when a large current is passed through such a ceramic superconductor, if the superconducting state of the superconducting material is broken and it becomes a normal conducting state, the specific resistance of the ceramic superconducting material in the normal conducting state is approximately Since it is very large at 10-3 Ωcm, there is a high possibility that it will burn out. Therefore, even in ceramic superconductors, it is necessary to use a metal with a very low resistivity, such as copper, as a stabilizing member in the same way as conventional Nb-Ti and Nb3Sn superconductors to prevent burnout of the conductor. I don't get it. For example, copper has a specific resistance of about 10-7 Ωcm at a liquid N2 temperature of 77 K, which is 1/10,000 of that of ceramic superconducting materials, making it a promising stabilizing metal.

従来の超電辺材と安定化部材の複合化は安定化金属のチ
ューブに超電導材を挿入し、熱間での押出法により所定
のサイズに押出し、それを引抜法により細径化し、更に
これを複数本束ねて安定化金属チューブに挿入し、再度
押出した後引抜きにより細径化する方法が採用されてい
る。
Conventionally, the composite of superconducting sap material and stabilizing member is achieved by inserting superconducting material into a stabilizing metal tube, extruding it to a specified size using hot extrusion, reducing the diameter using pultrusion, and then The method used is to bundle multiple tubes together, insert them into a stabilizing metal tube, extrude them again, and then pull them out to reduce the diameter.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このように従来法では押出法により安定化部材と超電導
材を複合化しているが、超電導材がセラミック系材料に
なると、非常に硬くて脆いため、従来法の如き押出法は
採用出来ない。
As described above, in the conventional method, the stabilizing member and the superconducting material are combined using the extrusion method, but when the superconducting material becomes a ceramic material, it is extremely hard and brittle, so the extrusion method as in the conventional method cannot be used.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記に鑑みてなされたものであり、硬くて脆い
セラミック系材料と安定化材料の複合化を可能にするた
め、スウエージング加工、引抜加工を施すようにしたセ
ラミック系超電導々体の製造方法を提供する。
The present invention has been made in view of the above, and is directed to the production of a ceramic superconductor that is subjected to swaging and drawing in order to make it possible to combine a hard and brittle ceramic material with a stabilizing material. provide a method.

即ち、本発明のセラミック系超電導々体の製造方法は以
下の手段を備えている。
That is, the method for manufacturing a ceramic superconductor of the present invention includes the following means.

(11複合化工程 セラミック系の超電導材料と、常電導状態において比電
気抵抗が前記超電導材料に比較して非常に小さい安定化
部材を複合化する。
(11 Composite step: Composite a ceramic superconducting material and a stabilizing member whose specific electrical resistance in a normal conductive state is much smaller than that of the superconducting material.

例えば、Y−Ba−Cu−0のセラミフクスを粉末化し
、これをt同、1同合金、アルミニウム、アルミニウム
合金等の金属管に充填してスウェージング加工、引抜加
工を施すか、あるいはバインダーを用いて銅、銅合金、
アルミニウム、アルミニウム合金等の金属板上に塗布し
、渦巻状に巻き上げる。
For example, Y-Ba-Cu-0 ceramic fuchs is powdered and filled into a metal tube made of aluminum, aluminum alloy, aluminum, aluminum alloy, etc., and subjected to swaging or drawing, or using a binder. copper, copper alloy,
It is applied onto a metal plate such as aluminum or aluminum alloy and rolled up into a spiral shape.

(2)挿入工程 複合工程において、得られた複合化材料を所定の本数、
例えば、100本束ねて銅、銅合金、アルミニウム、ア
ルミニウム合金等の金属管に挿入する。一方、銅、銅合
金、アルミニウム、アルミニウム合金の金属板上にバイ
ンダーによって前記粉末を塗布したときは金属板を渦巻
状に巻き上げた線材を挿入する。
(2) Insertion process In the composite process, the obtained composite material is inserted into a predetermined number of pieces,
For example, 100 pieces are bundled and inserted into a metal tube made of copper, copper alloy, aluminum, aluminum alloy, or the like. On the other hand, when the powder is applied onto a metal plate of copper, copper alloy, aluminum, or aluminum alloy using a binder, a wire made of a spirally wound metal plate is inserted.

(3)スウェージング加工、引抜加工の工程複合材料を
挿入された金属管にスウェージング加工、引抜加工を施
して所定の外径にする。この後、必要に応じて、所定の
時間にわたって加熱を施す。この加熱は不活性雰囲下で
行われる方が望ましい。
(3) Swaging and drawing process The metal tube into which the composite material has been inserted is subjected to swaging and drawing processes to obtain a predetermined outer diameter. Thereafter, heating is performed for a predetermined period of time, if necessary. Preferably, this heating is performed under an inert atmosphere.

〔実施例〕〔Example〕

以下、本発明のセラミック系超電導々体の製造方法を詳
細に説明する。
Hereinafter, the method for manufacturing a ceramic superconductor of the present invention will be explained in detail.

第1回は本発明の第1の実施例を示し、BaCO3、Y
2O3、CuOの粉末(粒径1〜20μm)をBa、 
Y 、 Cuのモル比率が約0.6:0.4: 1にな
るように秤量、混合し、これを900°Cで大気中で2
4時間加熱した。この得られた−次焼成セラミックスを
粉砕し、粒径0.5〜20μmの粉末1とした。この粉
末1を外径1011、肉厚2龍の無酸素銅管2に挿入し
、スェージング加工、引抜加工を施し、外径2111の
複合材3とした。更にこれを400°C×30分加熱し
、銅を軟化した後これを100本束ねて内径30mm、
肉厚31Mの無酸素銅管4に挿入し、スェージング加工
、引抜加工を施し、外径3IImの長尺体5にした。こ
れを1000℃×30分Ar雰囲気中で加熱した。得ら
れた安定化鋼複合セラミック系超電導々体のTcは約9
0にてあり、又常電導状態でも安定化銅の効果により導
体が焼損することもなく、優れた特性が得られることが
判った。
The first part shows the first embodiment of the present invention, and includes BaCO3, Y
2O3, CuO powder (particle size 1 to 20 μm), Ba,
They were weighed and mixed so that the molar ratio of Y and Cu was approximately 0.6:0.4:1, and this was heated at 900°C in the air for 2 hours.
Heated for 4 hours. The obtained second-sintered ceramic was pulverized to form a powder 1 having a particle size of 0.5 to 20 μm. This powder 1 was inserted into an oxygen-free copper tube 2 with an outer diameter of 1011 and a wall thickness of 2 mm, and subjected to swaging and drawing to obtain a composite material 3 with an outer diameter of 2111. This was further heated at 400°C for 30 minutes to soften the copper, and then 100 pieces were bundled to form an inner diameter of 30mm.
It was inserted into an oxygen-free copper tube 4 with a wall thickness of 31M, and subjected to swaging and drawing processes to form a long body 5 with an outer diameter of 3IIm. This was heated at 1000° C. for 30 minutes in an Ar atmosphere. The Tc of the obtained stabilized steel composite ceramic superconductor is approximately 9.
0, and it was found that even in a normal conductive state, the conductor did not burn out due to the effect of the stabilized copper, and excellent characteristics were obtained.

第2図は本発明の第2の実施例を示し、第1の実施例と
同じようにして得られた一次焼成セラミソクス粉末をメ
タクリル酸原液、トルエン混合液中に重量%て各々60
%、10%、30%の割合で混合し、ペースト状の塗布
11としてこれを厚さ0.5mm、幅500龍の無酸素
銅板12の片面に塗布した。更にこれを自然乾燥した後
、板幅片端から渦巻状に巻き上げて線状体13とした後
、スウェージング加工、引抜加工を施し、外径31mの
長尺体14とした。これを100°C×30分Ar雰囲
気中で加熱した。得られた安定化銅複合セラミック系超
電導々体のTcは約90にであり、又常電導状態でも銅
の安定化効果により導体が焼損することもな(優れた特
性が得られた。
FIG. 2 shows a second embodiment of the present invention, in which primary calcined ceramic powder obtained in the same manner as in the first embodiment was added to a methacrylic acid stock solution and a toluene mixed solution at a concentration of 60% by weight, respectively.
%, 10%, and 30% and applied as a paste coating 11 on one side of an oxygen-free copper plate 12 with a thickness of 0.5 mm and a width of 500 mm. Further, this was air-dried and then spirally rolled up from one end of the board width to form a linear body 13, which was then subjected to swaging and drawing to form a long body 14 having an outer diameter of 31 m. This was heated at 100°C for 30 minutes in an Ar atmosphere. The Tc of the obtained stabilized copper composite ceramic superconductor was approximately 90, and the conductor did not burn out due to the stabilizing effect of copper even in a normal conductive state (excellent characteristics were obtained).

〔発明の効果〕〔Effect of the invention〕

以上説明した通り、本発明のセラミック系超電導々体の
製造方法によると、セラミック系超電導材料と安定化部
材を複合化してスウェージング加工、引抜加工を施すよ
うにしたため、硬くて脆いセラミック系超電導材料を使
用した超電導々体を製造することができる。
As explained above, according to the method for manufacturing a ceramic superconductor of the present invention, the ceramic superconducting material and the stabilizing member are combined and subjected to swaging processing and drawing processing, so that the ceramic superconducting material becomes hard and brittle. It is possible to manufacture superconducting conductors using

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明の第1および第2の実施例
を示す説明図。 符号の説明 1−−−−−−−−−−セラミック系粉末2−−−−−
−−−一銅管 3−−−〜−−−−−−複合材 4 −−−−−−一〜1同管 5−−−−−−一長尺体 1:2−−−−−−銅板 13−−−−一渦巻体 14−−−−−−−−−一長尺体 特許出願人   日立電線株式会社 代理人 弁理士 平 1)   忠 雄−〇へ◎
FIGS. 1 and 2 are explanatory diagrams showing first and second embodiments of the present invention. Explanation of symbols 1 ------- Ceramic powder 2 -------
---One copper tube 3-------------Composite material 4-----One to one same tube 5---One long body 1:2----- -Copper plate 13---One spiral body 14---One long body Patent applicant Hitachi Cable Co., Ltd. Agent Patent attorney Hei 1) Tadao - To 〇◎

Claims (3)

【特許請求の範囲】[Claims] (1)セラミック系の超電導材料と、常電導状態におい
て比電気抵抗が前記超電導材料に比較して非常に小さい
銅等の安定化部材を複合化し、 前記複合化によって得られた複数本の複合材を銅等の金
属管に挿入し、 前記金属管にスウェージング加工、引抜加工を施すこと
を特徴とするセラミック系超電導々体の製造方法。
(1) Composite a ceramic superconducting material and a stabilizing member such as copper whose specific electrical resistance in a normal conductive state is very small compared to the superconducting material, and multiple composite materials obtained by the composite. 1. A method for manufacturing a ceramic superconductor, comprising: inserting a metal tube into a metal tube such as copper, and subjecting the metal tube to swaging and drawing.
(2)前記複合化が、前記セラミック系の超電導材料を
粉末とし、前記粉末を銅等の金属管に充填し、前記金属
管にスウェージング加工、引抜加工を施す特許請求の範
囲第1項記載のセラミック系超電導々体の製造方法。
(2) The above-mentioned compositing comprises powdering the ceramic superconducting material, filling a metal tube such as copper with the powder, and subjecting the metal tube to swaging and drawing. A method for manufacturing a ceramic superconductor.
(3)前記複合化が、前記セラミック系の超電導材料を
粉末とし、前記粉末をバインダーを用いて前記安定化部
材に塗布する特許請求の範囲第1項記載のセラミック系
超電導々体の製造方法。
(3) The method for manufacturing a ceramic superconductor according to claim 1, wherein the composite is made of the ceramic superconducting material as a powder, and the powder is applied to the stabilizing member using a binder.
JP62138694A 1987-06-02 1987-06-02 Manufacture of ceramic superconductor Pending JPS63304524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62138694A JPS63304524A (en) 1987-06-02 1987-06-02 Manufacture of ceramic superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62138694A JPS63304524A (en) 1987-06-02 1987-06-02 Manufacture of ceramic superconductor

Publications (1)

Publication Number Publication Date
JPS63304524A true JPS63304524A (en) 1988-12-12

Family

ID=15227933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62138694A Pending JPS63304524A (en) 1987-06-02 1987-06-02 Manufacture of ceramic superconductor

Country Status (1)

Country Link
JP (1) JPS63304524A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0311505A (en) * 1989-06-06 1991-01-18 Chiyoudendou Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Manufacture of oxide superconductive conductor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0311505A (en) * 1989-06-06 1991-01-18 Chiyoudendou Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Manufacture of oxide superconductive conductor

Similar Documents

Publication Publication Date Title
JP2815091B2 (en) Manufacturing method of slender superconductor
JP3474602B2 (en) Superconducting conductor
US3618205A (en) Method of fabricating a composite superconducting wire
US4161062A (en) Method for producing hollow superconducting cables
US5384307A (en) Oxide superconductor tape having silver alloy sheath with increased hardness
EP0545608A2 (en) Superconducting joint for oxide superconductor tape
JP2685147B2 (en) Superconducting wire and its manufacturing method
JPS63304524A (en) Manufacture of ceramic superconductor
EP0409150B1 (en) Superconducting wire
JP3369225B2 (en) Method for producing oxide high-temperature superconducting wire
JP2998398B2 (en) Superconducting wire joining method
JP3143932B2 (en) Superconducting wire manufacturing method
JP2861444B2 (en) Multi-core superconducting wire and its processing method
JPS63225410A (en) Compound superconductive wire and its manufacture
JPS63304519A (en) Ceramic superconductor with composite structure
JP2898713B2 (en) Current lead
JPS59805A (en) Compound superconductive wire
JPH04301388A (en) Method for connecting superconducting wire
JPH04160771A (en) Method of joining superconducting wire
JP3186092B2 (en) Oxide superconducting wire
JPH0461207A (en) Conductor for electric-current lead use
JP2843447B2 (en) Superconducting current lead
JPH01123405A (en) Manufacture of superconducting power lead
JP3088833B2 (en) Oxide superconductor for current leads
JPH0779045B2 (en) Oxide superconducting current lead