JPH0461194A - Manufacture of metal-based wiring board - Google Patents

Manufacture of metal-based wiring board

Info

Publication number
JPH0461194A
JPH0461194A JP16533590A JP16533590A JPH0461194A JP H0461194 A JPH0461194 A JP H0461194A JP 16533590 A JP16533590 A JP 16533590A JP 16533590 A JP16533590 A JP 16533590A JP H0461194 A JPH0461194 A JP H0461194A
Authority
JP
Japan
Prior art keywords
insulating layer
electroless plating
layer
metal
epoxy resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16533590A
Other languages
Japanese (ja)
Inventor
Makoto Miyazaki
信 宮崎
Katsumi Nishiyama
西山 克己
Kunitsugu Munemura
宗村 邦嗣
Shunjiro Imagawa
今川 俊次郎
Soichi Obayashi
尾林 宗一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP16533590A priority Critical patent/JPH0461194A/en
Publication of JPH0461194A publication Critical patent/JPH0461194A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Insulated Metal Substrates For Printed Circuits (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

PURPOSE:To improve the thermal conductivity of an insulating layer by increasing bonding strength between an electroless plating layer and the insulating layer by forming the insulating layer after applying an epoxy resin material containing a high heat conduction inorganic filler on a surface of a metal base using a doctor blade, and thereafter roughening the surface to from an electroless plating layer. CONSTITUTION:An insulating layer 3 is formed by applying an insulating layer material containing epoxy resin as a chief ingredient on a surface of a metal base 2 using a doctor blade. To the epoxy resin an aluminum oxide and an aluminum nitride both being a high heat conduction inorganic filler are added by 30% by weight or more and 80% by weight or less. Then, a resist film 4 having an opening 5 of the same pattern as a circuit pattern is formed, and the surface of an exposed part of the insulating layer 3 is roughened and subjected to copper electroless plating to form an electroless plating layer 6. Then, after washing and drying the resist film 4 is removed by trichloroethane to yield a circuit pattern conductor circuit 7.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、金属ベース配線基板の製造プ5法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing metal-based wiring boards.

具体的にいえば、本発明は、ツルアデイ戸イブ法による
金属ベース配線基板の製造方法に関する。
Specifically, the present invention relates to a method of manufacturing a metal-based wiring board using a truss-a-day-eve method.

[背景技術とその問題点] 近年、電子機器の軽量、薄形、高密度化が進み、これに
使用される電子部品の高密度化;こ伴−1)で、中1位
面積当りの発熱量は、著しく増大[、でいる。
[Background technology and its problems] In recent years, electronic devices have become lighter, thinner, and more dense, and the electronic components used in these devices have become more dense; The amount has increased significantly.

そのため、これらの電子部品を実装する配線基板も、耐
熱性及び放熱性に優れたものが要求されている。これら
の要求を満足づるものとし、て、最近では、鉄、銅、ア
ルミニウム等の高熱伝導i生を有Jる金属板をベー ス
としたプリン)・配線板が、用いられるようになってい
る。
Therefore, wiring boards on which these electronic components are mounted are also required to have excellent heat resistance and heat dissipation. In order to meet these demands, recently printed circuit boards and wiring boards based on metal plates with high thermal conductivity such as iron, copper, and aluminum have come into use. .

従来の金属ベース配線基板の製迅jノ法どL5ては、金
属ベースの表面に接着された銅箔を必要部分のみ選択的
に残し、他の部分を・エツチングにより溶解除去する、
いわゆるサブトラファイブ法が一般的であった。サブト
ラクティブ法によれば、接着剤によって金属ベースの表
面に銅箔を接着させているので、銅箔の剥離強度は強い
か、エツチング時における銅箔のサイドエツチングがあ
るため、量産ベースで高さ度仕パターン囲路を製作する
のがM[、か−った。′f+た、ザブト、ラタディブ法
によれば、エヅザ゛・ダ液もしくは溝−浄水を多量に使
用するため、排水処理の問題があった。
The conventional method for manufacturing metal-based wiring boards selectively leaves only the necessary parts of the copper foil adhered to the surface of the metal base, and dissolves and removes the other parts by etching.
The so-called subtra-five method was common. According to the subtractive method, the copper foil is bonded to the surface of the metal base using an adhesive, so the peel strength of the copper foil is strong, or the copper foil side-etches during etching, so the height may not be high enough on a mass production basis. It took M [, - - to make the division pattern enclosure. According to the Zabuto and Latadib methods, there was a problem in wastewater treatment because a large amount of edzada liquid or ditch-purified water was used.

イこて、8俊な部分(・、、″選択的に金属な析出させ
て、導体回路を作成゛づるアゾイブイブ法か、高密度回
路基板作成方法どして用いられるようになってきた。二
〇)アゾイブイブ法どしては、金属へ一スの表面しこ形
成された絶縁層の土に無電解メツキのみて導体回路を形
成するフルアデイティブ法と、金属ベースの表面に形成
された絶縁層の上(こ無電解メツキを加iし、さら(こ
子の士に電解メツキな施して導体回路の厚みを得るセミ
アデイティブ法どかある。−に記絶!tNど[、ては、
いずれのアゾイブイブ法においても、熱硬化性樹脂と熱
可塑性樹脂のうちいずれでも使用可能であるが、−船釣
には、塗布が容易で、汎用性及び耐熱性のあるエボキ゛
5・樹脂が使用されている1、 「発明が解決し、ようとする課題」 上記アゲイディゾ法は、量産性しこずくれており、微細
配線か可TfH−〇’、高富度実裳用の金属・\、−ス
配線基板を製作することかできる。
It has come to be used in the Azoibib method, which involves selectively depositing metal to create conductor circuits, and in the creation of high-density circuit boards. 〇) The azoibib method includes a full additive method in which a conductor circuit is formed by electroless plating on an insulating layer formed on the surface of a metal, and an insulating method formed on the surface of a metal base. There is a semi-additive method in which the thickness of the conductor circuit is obtained by applying electroless plating on top of the layer and then applying electrolytic plating on top of the layer.
Both thermosetting resins and thermoplastic resins can be used in any of the azoibib methods, but for boat fishing, Evoki 5 resin is used because it is easy to apply, versatile, and heat resistant. 1. ``Problems to be solved by the invention'' The age-dissolution method described above has difficulty in mass production, and is suitable for fine wiring, TfH-〇', metal for high-wealth practical use. It is possible to manufacture wiring boards.

1、かじ、導体回路は、無電解メツキにより絶縁層の表
面に定着させら才するため、モのffl+離強度は絶縁
層の杓質により強い影響を個ける。つまり、無電解メツ
キiFiに粗化処理を施された絶縁層の表面粗化状態に
より無電解メツキ層の(t M状態か〕ζきく変化する
。特に、エボキう・払1月りは、表面粗化しにくいのて
、7〕−ボキシ樹脂の#I7:縁層の場合には、絶縁層
表面に無電解メツキか何着しにくく、このため、→ノプ
トラクゲ゛イブ法(・、−比較すると導体回路の剥離強
度が弱いという欠点かあ−)た、。
1. Since the rudder and conductor circuit are fixed on the surface of the insulating layer by electroless plating, the ffl+separation strength of the metal has a stronger influence on the lamination quality of the insulating layer. In other words, the (tM state) of the electroless plating layer changes greatly depending on the surface roughening state of the insulating layer that has been roughened on the electroless plating iFi.In particular, the surface Because it is difficult to roughen, 7] - Boxy resin #I7: In the case of the edge layer, it is difficult to deposit electroless plating on the surface of the insulating layer. The disadvantage is that the peel strength of the circuit is weak.

また、樹脂材料は金属材料(、,比べて熱伝導率か低い
ため、絶縁層と17でエポキシ樹脂に用いると、金属ベ
ース配線基板の放熱性が低下し、金属へ一スを使用する
メリッ)・を生かずことかできないという問題があった
In addition, resin materials have lower thermal conductivity than metal materials (..., so if epoxy resin is used in the insulating layer and 17, the heat dissipation of the metal base wiring board will decrease, which is an advantage of using metal). There was a problem that nothing could be done without taking advantage of the

本発明は、叙十の従来例の欠点に鑑みてなされたもので
あり、その目的とするところは、フルアディディヅ法番
、°よる金属ベース配線基枦の製造方法において、無電
解メツキ層と絶縁層との接合強度を高めると共に、絶縁
層の熱伝導性を向I−させること(工ある。
The present invention has been made in view of the shortcomings of the ten conventional examples, and its purpose is to provide a method for manufacturing a metal-based wiring board according to the full-addition method, in which an electroless plating layer and an insulating layer are used. It is necessary to increase the bonding strength with the insulating layer and improve the thermal conductivity of the insulating layer.

[゛課題を解決するための手段] このため、本発明の金属ベース配線基板の製造方法は、
金属ベースの表面に絶縁層を形成し、この絶縁層の上に
導電体層を形成した金属ベース配線基板の製造方法であ
って、アルミニウム酸化物やアルミニウム窒化物等の熱
良導性無機充填剤を30重1%以上80重量%以下の割
合で含有するエポキシ樹脂系材料を、ドクターブレード
法によって金属ベースの表面に塗布して絶縁層?形成し
た後、絶縁層の表面に粗化処理を施し1、ついで、この
絶縁層の表面に無電解メツキ層を形成することにより導
電体層を設けることを特徴としている。
[Means for Solving the Problems] Therefore, the method for manufacturing a metal-based wiring board of the present invention is as follows:
A method for manufacturing a metal-based wiring board in which an insulating layer is formed on the surface of a metal base and a conductive layer is formed on the insulating layer, the method comprising a thermally conductive inorganic filler such as aluminum oxide or aluminum nitride. An insulating layer is formed by applying an epoxy resin material containing 30% by weight or more and 80% by weight or less by a doctor blade method onto the surface of the metal base. After formation, the surface of the insulating layer is roughened 1, and then an electroless plating layer is formed on the surface of the insulating layer to provide a conductive layer.

[作用] 本発明にあっては、エポキシ樹脂系材料からなる絶縁層
に熱良導性無機充填剤を分散させであるので、強酸等を
用いて絶縁層の表面粗化処理を行なうと、絶縁層内の熱
良導性無機充填剤が溶解して絶縁層に空孔が生じ、ある
いは絶縁層の表面に熱良導性無機充填剤か析出L 、柁
・縁層の表面か粗化される1、この結果、絶縁層の丑に
無電解メ・・ツキを施ずと、表面に析出した熱良導性無
機充填剤あるいは空孔によるアンカー効果のため、無電
解メツキ層が絶縁層の表面に強固に付着させられ、絶縁
層にエポキシ樹脂が用いられている場合でも物理的に剥
離しにくい導電体層を得ることかでき・、大きな剥離強
度を得ることができる。
[Function] In the present invention, a thermally conductive inorganic filler is dispersed in an insulating layer made of an epoxy resin material, so if the surface of the insulating layer is roughened using a strong acid, etc. The thermally conductive inorganic filler in the layer dissolves, creating pores in the insulating layer, or the thermally conductive inorganic filler precipitates on the surface of the insulating layer, and the surface of the layer is roughened. 1. As a result, if electroless plating is not applied to the edges of the insulating layer, the electroless plating layer will not adhere to the surface of the insulating layer due to the anchoring effect of the thermally conductive inorganic filler or pores deposited on the surface. Even when an epoxy resin is used for the insulating layer, it is possible to obtain a conductive layer that is firmly attached to the conductor layer and is difficult to physically peel off, and a high peel strength can be obtained.

また、エポキシ樹脂系材料からなる絶縁層に熱良導性無
機充填剤を分散させであるので、熱良導性無機充填剤が
ヒートブリッジとなって、絶縁層の熱伝導率が向上する
Furthermore, since the thermally conductive inorganic filler is dispersed in the insulating layer made of an epoxy resin material, the thermally conductive inorganic filler acts as a heat bridge, improving the thermal conductivity of the insulating layer.

なお、」−1熱良導性無機充填剤の添加量か、30重量
%未満であると、熱良導性無機充填剤による熱伝導効果
の改善か弱くなり、80重量%を超過すると、熱良導性
無機充填剤を含有[7たエポキシ樹脂系材料を絶縁層に
塗布するのが困難になるので、その添加量は、30重量
%以上80重量%以下が好ましい。
If the addition amount of the thermally conductive inorganic filler is less than 30% by weight, the improvement in the thermal conductivity effect by the thermally conductive inorganic filler will be weakened, and if it exceeds 80% by weight, the thermal conductivity will be reduced. Since it becomes difficult to apply an epoxy resin material containing a conductive inorganic filler to an insulating layer, the amount added is preferably 30% by weight or more and 80% by weight or less.

さらに、本発明(・rあ−〕ては、ツルア戸イガイフ法
+、Tよって金属ベース配線基板を製造り、でいるので
、導電体層の厚みを無電解メツキのみ(・こよ−〕て得
ており、無電解メツキと電解メツキによって導電体層の
厚みを得るセミアデイティブ法のように電解メツキ用の
設備が必要なく、製造管理が簡易となる利点がある1、 シカモ、エポキシ樹脂系材料をドクターブレード法によ
って金属ベースの表面に塗布したので、膜厚の均一な絶
縁層を得ることができ、さらに低粘度のエポキシ樹脂系
材料を用いた場合でも膜厚の大きな絶縁層を形成するこ
とかできる。
Furthermore, in the present invention, since the metal base wiring board is manufactured by the Tsuruato Igaifu method, the thickness of the conductive layer can be reduced only by electroless plating. Unlike the semi-additive method, which thickens the conductor layer by electroless plating and electrolytic plating, it does not require equipment for electrolytic plating and has the advantage of simplifying manufacturing management1. Shikamo, epoxy resin material Since it is applied to the surface of the metal base using the doctor blade method, it is possible to obtain an insulating layer with a uniform thickness, and even when using a low-viscosity epoxy resin material, a large insulating layer can be formed. I can do it.

[実施例] 以下、本発明の実施例を添付図に基づいて詳述する。[Example] Embodiments of the present invention will be described in detail below with reference to the accompanying drawings.

第1図(a)〜id)+こ示すものは、フルアデイティ
ブ法【こよる金属ベース配線基板1の製造プロセスであ
る。
FIGS. 1(a) to 1d) show a manufacturing process for a metal base wiring board 1 using a full additive method.

このプロセスにおいては、まず第1図(a)に示すよう
(こ、金属ベース2の表面にエポキシ樹脂を」−剤とす
る締縮5層材料をドクターブシ・−ド法に41、−〕て
塗痛シ5、エポキシ樹脂系の絶縁層3が耳、二成される
。ここて、金属ベース2の矛イ質ば、特に限定されず、
鉄、銅などでも、Jいが、1加−て卯]−の容易なアル
ミニウムが望まl、い。絶’R騎3t、−用いるエポキ
シ樹脂の種類は、特(パ′限定ざ1+ないが、例えばビ
スフJ7′−ルA型クリうシル丁: = 5−1.類、
クレゾールノボラック類、フコノールノボラック類が望
ましい。了二ボキシ樹脂の硬化剤も、イ〜の種類を格別
限定されないが、例文ばアミン系、酔態水物系、潜在性
硬化剤なと゛な使用することができる。エポキシ樹脂は
、普通、塗布作業を容易にするためグトン類、芳香族炭
化水素等の有機溶剤で希釈して用いられ、このエポキシ
樹脂には、絶縁性を塙するμ)良導性無機充填剤が充填
されでいる。
In this process, first, as shown in Fig. 1(a), a five-layer compaction material using an epoxy resin is applied to the surface of the metal base 2 using a doctor brush-board method. After coating 5, an epoxy resin-based insulating layer 3 is formed.The material of the metal base 2 is not particularly limited.
Although it is possible to use iron, copper, etc., aluminum is preferable because it is easy to use. The type of epoxy resin used is not particularly limited, but for example, Bisfu J7'-R type A resin: = 5-1.
Cresol novolacs and fuconol novolacs are preferred. There are no particular limitations on the type of curing agent for the diboxy resin (i), but examples include amine-based, intoxicant-based, and latent curing agents. Epoxy resins are usually diluted with organic solvents such as gutters and aromatic hydrocarbons to facilitate coating work, and this epoxy resin contains μ) a good conductive inorganic filler to provide insulation properties. is already filled.

この絶縁性の熱良導性無機充填剤としでは、アルミニウ
ジ−酔化物(AQ2oわやアルミニウム窒化物(AQN
)か好ま[、い。熱良導性無機充填剤どしては、中心粒
径か200Jn以下で、純度99.8%以上の粉体が望
ましく、中心粒径が2ouJ1]よりも余り太ぎくなる
と、エポキシ樹脂が硬化するまで心、“熱良導性無機充
填剤か沈降し易くなり、導体回路7の剥離強度が低下す
る。また、熱良導性無機充填剤の添加量が、30重量%
未満であると絶縁層3における熱伝導効果の改善が弱く
なり、75重量%以上では高粘度になってエポキシ樹脂
を塗布しにくくなり、80重量%以上になると塗布が困
難になる。従って、熱良導性無機充填剤の添加量として
は、30重量%以上80M量%以下が望ましい。また、
第2図に示すように、溶剤で希釈したエポキシ樹脂な主
剤とする絶縁層H料8をドクターブレード9を用いて金
属ベース2の上に塗布しているので、膜厚の均一な絶縁
層3を形成することができる。しがも、低粘度の絶縁層
オ、(料8を用いた場合でも、厚みのある絶縁層3を得
ることができ、確実な絶縁を行なわせることがでとる。
This insulating and thermally conductive inorganic filler includes aluminum nitride (AQ2O) and aluminum nitride (AQN).
) or preferable [, i. As a thermally conductive inorganic filler, it is desirable to use a powder with a center particle size of 200 Jn or less and a purity of 99.8% or more; if the center particle size is too thick than 2ouJ1, the epoxy resin will harden. However, if the thermally conductive inorganic filler is more likely to settle, the peel strength of the conductor circuit 7 will be reduced.
If it is less than 75% by weight, the improvement in the heat conduction effect in the insulating layer 3 will be weak, if it is more than 75% by weight, the epoxy resin will have a high viscosity and it will be difficult to coat the epoxy resin, and if it is more than 80% by weight, it will be difficult to coat. Therefore, the amount of the thermally conductive inorganic filler added is preferably 30% by weight or more and 80M% or less. Also,
As shown in FIG. 2, since the insulating layer H material 8 whose main ingredient is epoxy resin diluted with a solvent is applied onto the metal base 2 using a doctor blade 9, the insulating layer 3 has a uniform thickness. can be formed. However, even when a low-viscosity insulating layer 3 is used, a thick insulating layer 3 can be obtained and reliable insulation can be achieved.

ライフ、無電解メツキを選択的に析出させるため、第1
図(b)に示すように、スクリーン印刷により絶縁層3
の上にレジストインキを印刷し、100℃で10分間加
熱硬化させ、回路パターンと同じパターンの開[]5を
イjする厚さ約2Qgmのレジスト膜4を形成する。こ
の1/ジス)・インキと【2゛こは、スグレン系樹脂、
シリコーレ樹脂どCr・、pbな主成分とする無機−t
々化君物か用いられる1、この後、絶縁層3のしシスト
膜・羊から露出1.でいる部分を有機溶剤やその蒸気で
膨潤させ、さらにりIコム酸などの強力な酸化剤を用い
て絶縁層3の露出部分の表面を粗化処理し、回路パター
ンに合わせて絶縁層3の表面を粗化させる。このとぎ、
エポキシ樹脂中に分散している熱良導性無機充填剤が、
絶縁層3の表面に析出したり、溶解して空孔を発生させ
たりし、絶縁層の表面が粗化され易くなる。
In order to selectively deposit life and electroless plating, the first
As shown in Figure (b), the insulating layer 3 is formed by screen printing.
A resist ink is printed on the resist ink and cured by heating at 100° C. for 10 minutes to form a resist film 4 having a thickness of about 2 Qgm and having the same pattern of openings 5 as the circuit pattern. This 1/JIS) ink and [2] This is Sglen-based resin,
Silicone resin etc. Inorganic t whose main components are Cr, PB
After that, the insulating layer 3 is exposed from the cyst membrane 1. The exposed portion of the insulating layer 3 is swollen with an organic solvent or its vapor, and the surface of the exposed portion of the insulating layer 3 is roughened using a strong oxidizing agent such as oxidizing acid. Roughens the surface. This moment,
The thermally conductive inorganic filler dispersed in the epoxy resin
It precipitates or dissolves on the surface of the insulating layer 3 to generate pores, and the surface of the insulating layer is likely to be roughened.

こうじで絶縁層3の表面を粗化させた後、Pc1−3【
1系アクザ・\−ターで絶縁層3の露出部分を活性化さ
せ、ついで、クエン酔30g、濃塩耐280mQを溶解
させてIQの溶液としたPd脱離液(こ20°Cで5分
間浸漬させ、水洗してレジスト膜4上のPdを除去する
。この後、第1図(C)に示すように、無電解銅メツキ
を行ない、導体回路7に必要な膜厚(20uIn以−h
)が得られるまで銅を析出させ、無電解メ・ツキ層(3
を形成”づる。
After roughening the surface of the insulating layer 3 with Koji, Pc1-3 [
Activate the exposed part of the insulating layer 3 with 1-series AKZA-tar, then dissolve 30 g of citric acid and 280 mQ of concentrated salt to make an IQ solution (Pd desorption solution at 20°C for 5 minutes). The Pd on the resist film 4 is removed by immersion and washing with water.After this, as shown in FIG.
) is obtained, and an electroless metal layer (3
"form".

ついで、水洗乾燥後、第1図(d)に示すように、トリ
クr−7(:11工タシ番こてレジ゛ス)・膜4を除去
し、回路パターンの導体回路7を得る。
After washing with water and drying, as shown in FIG. 1(d), the Tri-Click R-7 (: 11-piece trowel resist) film 4 is removed to obtain a conductor circuit 7 having a circuit pattern.

このようじして、フルアブイブイブ法によって金属ベー
ス配線基板を製作すれば、導体回路の厚みを無電解メツ
キのみにより得ることかできるので、無電解メツキと電
解メツキを併用するセミアデイティブ法のように、電解
メツキの設備か必要な(、製造設備を簡明(・こするこ
とかでき、工稈旨理も容易(こできる。また、上記のよ
うに、絶縁層内に、AΩ203やAQN等の熱良導性無
機充填剤を分散させであると、絶縁層の表面が粗化され
易くなるので、絶縁層の表面に無電解メツキ層を形成し
た時しこ、無電解メツキ層と絶縁層の間のアンカー効果
が強くなり、導体回路の剥離強度を高くすることがでと
る3、さらしこ、絶縁層の絶縁性を損なうことなく、こ
れらの熱良導性無機充填剤によって絶縁層の熱伝導率を
高めることかでと、この結果、金属ベース配線基板の放
熱性が良好となる。例え1、よ゛、アルミナ(AQ20
わの熱伝導率は20 W/m′にであり、5102の熱
伝導率は3 、3 W 7Im ′に−Cあり、窒化ア
ルミニウム(AQN)の熱伝導率は100W/m−γで
あるので、アルミナや窒化アルミ、−ラム等の粉体な絶
縁層内に充填させることにより、絶縁層の熱伝導率を大
幅に向」・させることができる。
In this way, if a metal-based wiring board is manufactured using the full-above-eve method, the thickness of the conductor circuit can be obtained only by electroless plating. In addition, as mentioned above, insulating layer such as AΩ203 or AQN can be easily manufactured using electrolytic plating equipment. If a thermally conductive inorganic filler is dispersed, the surface of the insulating layer will be easily roughened, so when forming an electroless plating layer on the surface of the insulating layer, 3.Thermal conductivity of the insulating layer is improved by these thermally conductive inorganic fillers without impairing the insulation properties of the insulating layer. As a result, the heat dissipation properties of the metal-based wiring board are improved by increasing the heat dissipation rate.For example, 1.
The thermal conductivity of wafer is 20 W/m', the thermal conductivity of 5102 is 3,3 W7Im', and the thermal conductivity of aluminum nitride (AQN) is 100 W/m-γ. By filling the insulating layer with powder such as alumina, aluminum nitride, or aluminum, the thermal conductivity of the insulating layer can be greatly improved.

特(ご、アルミ力を用いれlよ、安価で、しかも熱伝導
率の高い絶縁層を得ることかできる。さらに、熱良導性
無機充填剤により、金属ベー・ス配線基板の耐熱す1及
び耐熱衝撃性が向上する。
In particular, by using aluminum, it is possible to obtain an insulating layer that is inexpensive and has high thermal conductivity.Furthermore, the heat-resistant layer 1 and Improves thermal shock resistance.

なお、」記実施例では、金属ベー・ス配線基板の片面の
みに導体回路を形成したが、金属ベース配線基板の画面
に導体回路を設けてもよ(\のはもちろんである。
In the above embodiment, the conductor circuit was formed only on one side of the metal base wiring board, but it goes without saying that the conductor circuit may be provided on the screen of the metal base wiring board.

以下、本発明のより具体的な実施例を2つの従来例と比
較して説明する。
Hereinafter, more specific embodiments of the present invention will be described in comparison with two conventional examples.

(実施例) 厚さ1[l′1I11のアルミニウム基板をトリクロロ
エタンで脱脂した後、第1表のような組成を有するエポ
キシ樹脂組成物をドクターブレード法によりアルミニウ
ム基板の表面に塗布12、室温で硬化させた後、さらに
160 ’Cで5時間加熱硬化させ、絶縁層を形成した
(Example) After degreasing an aluminum substrate with a thickness of 1[l'1I11] with trichloroethane, an epoxy resin composition having the composition shown in Table 1 was applied to the surface of the aluminum substrate by a doctor blade method12, and cured at room temperature. After that, it was further heat-cured at 160'C for 5 hours to form an insulating layer.

第  1 表 次に、し・シストインキ(朝日化学研究断裂、MTA〜
509)をスクリーン印刷によって絶縁層の上に塗布[
7,100°Cで]、0分間加熱硬化させ、所定パター
ンのし・シスト膜(20即1厚)を得た。。
Table 1 Next, Cyst Ink (Asahi Chemical Research Disruption, MTA~
509) onto the insulating layer by screen printing [
7,100°C] for 0 minutes to obtain a cyst film with a predetermined pattern (20 mm thick). .

この後、レジスト膜を形成されたアルミニウム基板を4
5°Cに加温したクロム−硫酸溶液中に5分間浸漬して
表面粗化させた後、水で洗浄し、その後希塩酸中に浸漬
した。ついで、第2表に示す条件で活性化処理■及び活
性化処理■な施した。
After this, the aluminum substrate on which the resist film was formed was
After roughening the surface by immersing it in a chromium-sulfuric acid solution heated to 5°C for 5 minutes, it was washed with water, and then immersed in dilute hydrochloric acid. Then, activation treatment (2) and activation treatment (2) were performed under the conditions shown in Table 2.

第  2  表 (以下余白) さらに、第3表のような条件下で、レジメ)・膜の上の
Pdを除去した。
Table 2 (blank below) Furthermore, under the conditions shown in Table 3, the Pd on the film was removed.

第  3 表 ・つしゾτ、第4表のような条件■で、無電解銅メツキ
な行ない、絶縁層の土(・、”20即1の(雫3〕六の
無電解銅メツキ層を得た。
Electroless copper plating was carried out under the conditions shown in Table 3 and Table 4. Obtained.

第  ・4 表 (以下余白) ごう[7て、無電醒メッヤのみにより、必要な膜厚を得
た後、水洗及び乾燥の処理を行ない、l・リクロロ、了
−タンにてレジスト膜を除去し、導電回路を作成した6
、 (従来例1) 厚さ1 mmのアルミニウム基板に第5表に示すような
組成からなる接着剤付静電塗装等のh法で塗布し、この
溶剤を蒸発乾燥させた後、180 ’Cで2時間加熱し
て硬化させ、絶縁層を形成、した。ついで、実施例と同
様のフルアデイティブ法により所望パターンの導体回路
な得た。
Table 4 (margins below) [7] After obtaining the required film thickness using only electroless polishing, the resist film was washed with water and dried, and the resist film was removed using l-lichloro and ryo-tan. , created a conductive circuit 6
(Conventional Example 1) The composition shown in Table 5 was coated on an aluminum substrate with a thickness of 1 mm using the H method, such as electrostatic coating with adhesive, and after the solvent was evaporated and dried, it was heated at 180'C. The film was heated for 2 hours to cure and form an insulating layer. Then, a conductor circuit with a desired pattern was obtained by the same full additive method as in the example.

第  5  表 を得た。この後、塩化鉄によるエツチングにより銅箔を
・エツチングし、ザブトラクチイブ法により所望パター
ンの導体回路を得た。
Table 5 was obtained. Thereafter, the copper foil was etched using iron chloride, and a conductive circuit with a desired pattern was obtained using the subtractive method.

(実施例、従来例]及び従来例2の比較)E−Meのよ
うにし、゛C実施例、従来例1及び従来例2の金属ベー
ス配線基板を得た後、そhぞれの金属ベース配線基板に
ついて、導体回路の剥離強度、半田耐熱性、配線基板の
厚み方向での熱伝導率、および導体回路の最小配線幅を
7則定し、比較した。
(Comparison of Example, Conventional Example] and Conventional Example 2) After obtaining the metal base wiring boards of the Example, Conventional Example 1 and Conventional Example 2 as in E-Me, For wiring boards, seven rules were determined and compared: peel strength of conductor circuits, solder heat resistance, thermal conductivity in the thickness direction of wiring boards, and minimum wiring width of conductor circuits.

結果を次の第6表に示す。The results are shown in Table 6 below.

第  6  表 (従来例2) 厚さ]、 mmのアルミニウム基板に従来例1と同じく
第5表のような組成からなる接着剤な塗布し、乾燥させ
て絶縁層を形成した後、35m厚の銅箔を絶縁層に重ね
、5 kg f/ cm 2の圧力で180°C12時
間加熱圧着させ、銅張り金属ベース配線基板なお、導体
回路の剥離強度の測定法は1.J I SC64815
,7項に従った。つまり、アルミニウム基板の表面に絶
縁層を介して導体の層を形成した後、アルミニウム基板
の両側部会こおいて、プイソ切断またはエツチングによ
り導体を除去L2、第3図に示すように、アルミニウム
基板21(長さI、=J、00m111、幅W≧25m
n+)の中央部をこ幅W1、Ommの導体22を残して
サンプル23を用意し、引張試験機によって導体22を
アルミニウム基板21と直角な方向に引き剥がした時の
単位幅当たりの最低荷重Fを測定17た。また、半田耐
熱性は、平田槽内の溶融した(この場合、260“C)
半田液中に金属ベース配線基板を浸漬し、アルミニウム
基板と絶縁層の剥離が生じたり、絶縁層のエポキシ樹脂
にクラックが発生するまでの時間を測定したものである
。さらに、配線基板の厚み方向での熱伝導率のitl、
lI定は、第4図(こ示すように、下部な氷水;31に
浸漬させたアルミニウム類の櫛型放熱ブ「1ツク32の
4−にサンプルの金属ベース配線基板33を置ぎ、銅板
34を介して発熱源35となるl・ランジスタな載置し
て測定のための装置を構成し、発熱源35に通電させな
から熱電対;36によって放熱フロック32と発熱源3
!′)との温度差を測定するごとにより行い、発熱!3
5の温度を基準とする放熱ブI−7ツク32の1−昇温
度(m ’K )と消費電力(W)との比から熱伝導率
を求めた。
Table 6 (Conventional Example 2) An insulating layer was formed by applying an adhesive having the composition shown in Table 5 as in Conventional Example 1 to an aluminum substrate with a thickness of 35 m, and then drying it to form an insulating layer. Copper foil was layered on the insulating layer and heated and pressed at 180°C for 12 hours at a pressure of 5 kg f/cm2 to form a copper-clad metal base wiring board.The method for measuring the peel strength of conductor circuits is 1. J I SC64815
, in accordance with Section 7. That is, after forming a conductor layer on the surface of the aluminum substrate via an insulating layer, the conductor is removed from both sides of the aluminum substrate by photolithographic cutting or etching L2.As shown in FIG. (Length I, = J, 00m111, Width W≧25m
A sample 23 is prepared by leaving the conductor 22 with a width W1 and Omm at the center of the n+), and the minimum load per unit width F when the conductor 22 is peeled off in a direction perpendicular to the aluminum substrate 21 using a tensile tester. 17 were measured. In addition, the solder heat resistance is determined by the melting temperature in the Hirata tank (in this case, 260"C).
A metal-based wiring board was immersed in a solder solution, and the time until the aluminum board and the insulating layer peeled off or cracks appeared in the epoxy resin of the insulating layer was measured. Furthermore, itl of the thermal conductivity in the thickness direction of the wiring board,
The lI constant is determined as shown in Figure 4 (as shown in Figure 4). The heat dissipating flock 32 and the heat source 3 are connected by a thermocouple;
! ’) is performed by measuring the temperature difference between the temperature and the heat generated! 3
Thermal conductivity was determined from the ratio of the 1-rise temperature (m'K) of the heat dissipation block I-7 block 32 and the power consumption (W) based on the temperature of 5.

上記第6表から分かるように、実施例の半田耐熱性は、
同じくフルアデイティブ法による従来例1と同様に、サ
ブトラクティブ法による従来例2ど比較して2倍もしく
は2倍以」−の耐熱時間を有している。さらに、最小配
線幅も、フルアデイティブ法による実施例及び従来例1
は、サブトラクティブ法による従来例2と比較すると、
極めて微細な最小配線幅な達成している。
As can be seen from Table 6 above, the solder heat resistance of the examples is as follows:
Similarly to Conventional Example 1, which is also made by the full additive method, it has a heat resistance time that is twice or more than twice that of Conventional Example 2 which is made by the subtractive method. Furthermore, the minimum wiring width is also the same as that of the embodiment using the full additive method and the conventional example 1.
When compared with conventional example 2 using the subtractive method,
An extremely fine minimum wiring width has been achieved.

また、導体剥離強度は、サブトラクティブ法による従来
例2が最も高い。しかし、同じくフルアデイティブ法に
よる実施例と従来例1とを比較すると、実施例では、従
来例Iの4倍の剥離強度が得られており、アルミナ粉末
を絶縁層に混入したことによる効果が顕著に表われてい
る。さらに、実施例の金属ベース配線基板の熱伝導率は
、従来例1及び2のそれぞれの熱伝導率の4倍の値を示
しており、熱良導性無機充填剤を分散させたことにより
、大きな熱伝導率が得られた。
Moreover, the conductor peel strength is the highest in Conventional Example 2 obtained by the subtractive method. However, when comparing Example and Conventional Example 1, which were also made using the full additive method, in Example, a peel strength four times that of Conventional Example I was obtained, and the effect of mixing alumina powder into the insulating layer was It is noticeable. Furthermore, the thermal conductivity of the metal-based wiring board of the example is four times the thermal conductivity of each of conventional examples 1 and 2, and by dispersing the thermally conductive inorganic filler, A high thermal conductivity was obtained.

従って、絶縁層内に熱良導性無機充填剤を分散させるこ
とにより、優れた特性の金属ベース配線基板を得ること
ができた。
Therefore, by dispersing the thermally conductive inorganic filler in the insulating layer, it was possible to obtain a metal-based wiring board with excellent characteristics.

「発明の効果」 本発明によれば、表面粗化処理により絶縁層の表面に析
出もしくは溶解した熱良導性無機充填剤のため、無電解
メツキ時に無電解メツキ層と絶縁層との接合を強固にで
き、導体回路の剥離強度を高くすることがでとる。また
、絶縁層に熱良導性無機充填剤か分散させられているの
で、絶縁層の熱伝導率が向上し、金属ベース配線基板全
体の熱伝導性が良好となり、金属ベース配線基板の放熱
性が一層向上する。しかも、フルセミアデイティブ法に
よって金属ベース配線基板の表面に導電体層を形成して
いるので、サイドエツチング不安のない高密度の配M基
板を得ることができ、また電解メツキの設備が不要であ
るので、設備コストが安価になると共に工程管理も容易
になる。
"Effects of the Invention" According to the present invention, the bonding between the electroless plating layer and the insulating layer during electroless plating is difficult due to the thermally conductive inorganic filler precipitated or dissolved on the surface of the insulating layer by the surface roughening treatment. This can be achieved by increasing the peel strength of the conductor circuit. In addition, since a thermally conductive inorganic filler is dispersed in the insulating layer, the thermal conductivity of the insulating layer is improved, the thermal conductivity of the entire metal-based wiring board is improved, and the heat dissipation of the metal-based wiring board is improved. further improves. Moreover, since the conductor layer is formed on the surface of the metal-based wiring board using a full semi-additive method, a high-density multilayer board with no side etching concerns can be obtained, and electrolytic plating equipment is not required. This reduces equipment costs and facilitates process control.

さらに、lボキシ樹脂系材料をドクターブレード法によ
って塗布して絶縁層を形成しているので、均一な厚みの
絶縁層を形成することができ、また厚い膜厚の絶縁層を
形成することも容易にでとる。
Furthermore, since the insulating layer is formed by applying l-boxy resin material using the doctor blade method, it is possible to form an insulating layer with a uniform thickness, and it is also easy to form a thick insulating layer. Nidetori.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a) (b) (c) (d)は、本発明の一
実施例の製造工程な示す概略断面図、第2図は同上にお
ける絶縁層の塗布方法を示す概略図、第3図は導体回路
の剥離強度測定方法を説明するだめの斜視図、第4図は
金属ベース配線基板の熱伝導率を測定するための装置を
示す正面図である。 2・・・金属ベース 3・・・絶縁層 6・・・無電解メツキ層 7・・・導体回路 (bノ (C) 第 図 第1頁の続さ′ 0発 明 台 尾 林
Figures 1 (a), (b), (c) and (d) are schematic sectional views showing the manufacturing process of one embodiment of the present invention, Figure 2 is a schematic view showing the method of applying the insulating layer in the above, and Figure 3 The figure is a perspective view for explaining a method for measuring the peel strength of a conductor circuit, and FIG. 4 is a front view showing an apparatus for measuring the thermal conductivity of a metal base wiring board. 2...Metal base 3...Insulating layer 6...Electroless plating layer 7...Conductor circuit (b no (C) Continuation of figure 1 page ' 0 Invention Akira Daiobayashi

Claims (1)

【特許請求の範囲】[Claims] (1)金属ベースの表面に絶縁層を形成し、この絶縁層
の上に導電体層を形成した金属ベース配線基板の製造方
法であって、 アルミニウム酸化物やアルミニウム窒化物等の熱良導性
無機充填剤を30重量%以上80重量%以下の割合で含
有するエポキシ樹脂系材料を、ドクターブレード法によ
って金属ベースの表面に塗布して絶縁層を形成した後、 絶縁層の表面に粗化処理を施し、 ついで、この絶縁層の表面に無電解メツキ層を形成する
ことにより導電体層を設けることを特徴とする金属ベー
ス配線基板の製造方法。
(1) A method for manufacturing a metal-based wiring board in which an insulating layer is formed on the surface of a metal base and a conductive layer is formed on the insulating layer, the method comprising using a material with good thermal conductivity such as aluminum oxide or aluminum nitride. After forming an insulating layer by applying an epoxy resin material containing an inorganic filler at a ratio of 30% to 80% by weight to the surface of the metal base using a doctor blade method, the surface of the insulating layer is roughened. 1. A method for manufacturing a metal-based wiring board, characterized in that a conductive layer is provided by forming an electroless plating layer on the surface of the insulating layer.
JP16533590A 1990-06-22 1990-06-22 Manufacture of metal-based wiring board Pending JPH0461194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16533590A JPH0461194A (en) 1990-06-22 1990-06-22 Manufacture of metal-based wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16533590A JPH0461194A (en) 1990-06-22 1990-06-22 Manufacture of metal-based wiring board

Publications (1)

Publication Number Publication Date
JPH0461194A true JPH0461194A (en) 1992-02-27

Family

ID=15810381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16533590A Pending JPH0461194A (en) 1990-06-22 1990-06-22 Manufacture of metal-based wiring board

Country Status (1)

Country Link
JP (1) JPH0461194A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002322372A (en) * 2001-04-26 2002-11-08 Denki Kagaku Kogyo Kk Resin composition and metal-based circuit board using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002322372A (en) * 2001-04-26 2002-11-08 Denki Kagaku Kogyo Kk Resin composition and metal-based circuit board using the same

Similar Documents

Publication Publication Date Title
JPH0455555B2 (en)
JPH0518476B2 (en)
JP2693005B2 (en) Metal core substrate and manufacturing method thereof
JP3320432B2 (en) Method for manufacturing multilayer wiring board
JPH1187865A (en) Printed circuit board and its manufacture
JPH0461194A (en) Manufacture of metal-based wiring board
JPH11317578A (en) Manufacture of wiring board
JPH0461193A (en) Manufacture of metal based wiring board
JP2005271449A (en) Laminate for flexible printed circuit board
JPS62277794A (en) Manufacture of inner layer circuit board
JPH07188935A (en) Adhesive having excellent anchor characteristic and printed circuit board formed by using this adhesive and its production
JP2003101202A (en) Wiring board and manufacturing method thereof
JPH0359596B2 (en)
JPH0461195A (en) Manufacture of metal-based wiring board
JPS5892294A (en) Method of producing circuit board
JPS5892293A (en) Circuit board and method of producing same
JPH01166598A (en) Multi-layer printed circuit board and manufacture therefor
JPH05295553A (en) Adhesive sheet, production of printed circuit board using the same and printed circuit board
JPS6362919B2 (en)
JPH01157589A (en) Manufacture of metal base substrate
JPH05226830A (en) Molded product of metal or ceramic for printed wiring and manufacture thereof
JPS63224391A (en) Printed wiring board and manufacture of the same
JPH0533840B2 (en)
JPH03229780A (en) Adhesive for electroless plating, excellent in anchoring effect, and manufacture of printed wiring board by using it
JPH0139234B2 (en)