JPH0461193A - Manufacture of metal based wiring board - Google Patents

Manufacture of metal based wiring board

Info

Publication number
JPH0461193A
JPH0461193A JP16533490A JP16533490A JPH0461193A JP H0461193 A JPH0461193 A JP H0461193A JP 16533490 A JP16533490 A JP 16533490A JP 16533490 A JP16533490 A JP 16533490A JP H0461193 A JPH0461193 A JP H0461193A
Authority
JP
Japan
Prior art keywords
insulating layer
layer
electroless plating
wiring board
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16533490A
Other languages
Japanese (ja)
Inventor
Makoto Miyazaki
信 宮崎
Katsumi Nishiyama
西山 克己
Kunitsugu Munemura
宗村 邦嗣
Shunjiro Imagawa
今川 俊次郎
Soichi Obayashi
尾林 宗一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP16533490A priority Critical patent/JPH0461193A/en
Publication of JPH0461193A publication Critical patent/JPH0461193A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the heat conductivity of an insulating layer by increasing bonding strength between an electroplating layer and the insulating layer by forming the insulating layer by applying an epoxy resin material containing a high heat conduction inorganic filler on a surface of a metal base, and forming an electroless plating layer by roughening the surface and forming thereon the electroplating layer. CONSTITUTION:An insulating material containing epoxy resin as a chief ingredient is applied on a surface of a metal base 2 to form an insulating layer 3. To the epoxy resin an aluminum oxide and an aluminum nitride both being a high heat conduction inorganic filler added by 30% by weight or more and 80% by weight or less. Then, after roughening the surface of the insulating layer 3 an electroless plating layer 4 is deposited. Thereafter, a resist film 5 having an opening 6 of the same pattern as a circuit pattern is formed on the electroless plating layer 4, to which copper electroplating is applied to separate the resist film 5. Further, the electroless plating layer 4 exposed from the electroplating layer 7 is removed by etching to yield a predetermined pattern conductor circuit 8.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、金属ベース配線基板の製造方法に関する。具
体的にいえば、本発明は、セミアデイティブ法による金
属ベース配線基板の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a metal-based wiring board. Specifically, the present invention relates to a method of manufacturing a metal-based wiring board using a semi-additive method.

[]背景技術とその問題点] 近年、電子機器の軽量、薄形、高密度化が進み、こ第1
に使用される電頂部品の高密度化に伴って。
[] Background technology and its problems] In recent years, electronic equipment has become lighter, thinner, and more dense, and this
With the increasing density of the top parts used in

単位面積当りの発熱量は、著しく増大している。The amount of heat generated per unit area has increased significantly.

イのため、これらの電子部品を実装する配線基板も、耐
熱性及び放熱性に優れたものが要求されている。これら
の要求を満足するものとして、最近では、鉄、銅、アル
ミニウム等の高熱伝導性を有する金属板をベースとした
プリント配線板が、用いられるようになっている。
Therefore, the wiring boards on which these electronic components are mounted are also required to have excellent heat resistance and heat dissipation. Recently, printed wiring boards based on metal plates having high thermal conductivity such as iron, copper, and aluminum have been used to meet these demands.

従来の金属ベース配線基板の製造方法としては、金属ベ
ースの表面に接着された銅箔を必要部分のみ選択的に残
し、他の部分をエツチングにより溶解除去する、いわゆ
るザブトラクi゛イブ法が一般的であった。サブY・ラ
クデイブ法によれば、接着剤によって金属ベースの表面
に銅箔を接着させているので、銅箔の剥離強度は強いが
、エツチング時における銅箔のサイドエツチングがある
ため、量産ベースで高密度化パターン回路を製作づるの
が難しかった。また、ザブトラクチイブ法によれば、エ
ラ・ヂング液もl=、 <は洗浄水を多量に使用″する
ため、排水処理の問題があった。
A common method for manufacturing conventional metal-based wiring boards is the so-called Zabutrakiving method, in which the copper foil bonded to the surface of the metal base is selectively left in the necessary parts, and other parts are dissolved and removed by etching. Met. According to the Sub-Y-Lakdave method, the copper foil is bonded to the surface of the metal base using an adhesive, so the peel strength of the copper foil is strong, but since side etching of the copper foil occurs during etching, it is difficult to use on a mass production basis. It was difficult to produce high-density pattern circuits. Furthermore, according to the Zabtractive method, the eradication solution also requires a large amount of washing water, which poses a problem in wastewater treatment.

そこで、必要な部分に選択的に金属を析出させて、導体
回路な作成するア1イディブ注が、高密度回路基板作成
方法として用いられるようになってきた。このアディテ
ィブ法としては、金属ベースの表面に形成された絶縁層
の」−に無電解メッキのみで導体回路を形成するフルア
デイティブ法と、金属ベースの表面に形成された絶縁層
の十に無電解メッキを施し、さらにその1−に電解メッ
キを施1、て導体回路の厚みを得るセミアデイティブ法
どかある。L記絶縁層どし、では、いずれのアブイブイ
ブ法においでも、熱硬化性樹脂と熱可塑性樹脂のうちい
ずれでも使用可能であるが、−射的には、塗布が容易で
、汎用性及び耐熱性のあるエポキシ樹脂が使用されてい
る。
Therefore, an additive method for creating conductor circuits by selectively depositing metal in necessary areas has come to be used as a method for creating high-density circuit boards. This additive method includes a fully additive method in which a conductor circuit is formed only by electroless plating on an insulating layer formed on the surface of a metal base, and a fully additive method in which a conductive circuit is formed on an insulating layer formed on the surface of a metal base. There is a semi-additive method in which electrolytic plating is applied and further electrolytic plating is applied to obtain the thickness of the conductor circuit. For the insulating layer described in L, either thermosetting resin or thermoplastic resin can be used in any of the abu-bubu methods, but from a thermal perspective, it is easy to apply, versatile, and heat resistant. A certain epoxy resin is used.

[]発明が解決し、ようとする課題] 上記アディティブ法は、量産性にすぐれており、微細配
線がi]能で、高密度実装用の金属・\・−ス配線基板
を製作することができ・る6、 しかll、導体[llj]路は、無電qメッキにより絶
縁層の表面(こ定着させられるため、その剥離強度は絶
縁層の利質により強い影響を受ける。つまり、無電解メ
ッキ前(・こ粗化処理な施された絶縁層の表面粗化状態
により無電解メッキ層の付着状態が幻きく変化する。特
(こ、エポキシ樹脂は、表面粗化しにくいので、エポキ
シ樹脂の絶縁層の場合には、絶縁項表面に無@解メツA
が付着l、にくく、このため、ザブ)・ラクデイブ法に
比較すると導体回路の剥離強度が弱いという欠点があっ
た。
[]Problems to be solved and attempted by the invention] The above additive method has excellent mass productivity, is capable of fine wiring, and is capable of producing metal wiring boards for high-density packaging. 6. However, since the conductor [llj] path is fixed to the surface of the insulating layer by electroless plating, its peel strength is strongly influenced by the quality of the insulating layer. Before (・) The adhesion state of the electroless plating layer changes dramatically depending on the surface roughness of the insulating layer that has been subjected to roughening treatment. In the case of a layer, there is no @ solution on the surface of the insulating term.
This method has the drawback that the peel strength of the conductor circuit is weaker than the Zabu-Rakdaib method.

また、樹脂ta料は金属材料に比べて熱伝導率か低いた
め、絶縁層としてエポキシ樹脂な用いると金属ベース配
線基板の放熱性が低下し、金属ベースな使用するメリッ
トを牛かずことかできないという問題があった。
In addition, resin tar materials have lower thermal conductivity than metal materials, so if epoxy resin is used as an insulating layer, the heat dissipation of metal-based wiring boards will decrease, making it impossible to take advantage of the benefits of using metal-based materials. was there.

本発明は、叙」−4の従来例の欠点に鑑みでなされたも
のであり、その目的とするところは、セミアデイティブ
法による金属ベース配線基板の製造方法において、無電
解メッキ層と絶縁層との接合強度な高めると共に、絶縁
層の熱伝導性を向」゛させることにある。
The present invention has been made in view of the drawbacks of the conventional example described in Section 4, and its purpose is to improve the electroless plating layer and the insulating layer in a method of manufacturing a metal-based wiring board by a semi-additive method. The objective is to increase the bonding strength with the insulating layer and to improve the thermal conductivity of the insulating layer.

[課題を解決するだめの手段] このため、本発明の金属ベース配線基板の製造方法は、
金属ベースの表面に絶縁層を形成し、この絶縁層の表面
に導電体層な形成した金属ベース配線基板の製造方法で
あって、アルミニウム酸化物やアルミニウム窒化物等の
熱良導性無機充填剤を30重量%以」−80重量%以下
の割合で含有するエポキシ樹脂系材料を金属ベースの表
面に塗布して絶縁層な形成した後、絶縁層の表面に粗化
処理を施し、ついで、この絶縁層の表面に無電解メッキ
層を形成し、無電解メッキ層の上に電解メッキ層を形成
することにより導電体層を設けることを特徴としている
[Means for solving the problem] Therefore, the method for manufacturing a metal-based wiring board of the present invention includes the following steps:
A method for manufacturing a metal-based wiring board in which an insulating layer is formed on the surface of a metal base, and a conductive layer is formed on the surface of this insulating layer, the method comprising a thermally conductive inorganic filler such as aluminum oxide or aluminum nitride. After forming an insulating layer by applying an epoxy resin material containing 30% by weight or more to 80% by weight or less, the surface of the insulating layer is roughened, and then this The method is characterized in that the conductor layer is provided by forming an electroless plating layer on the surface of the insulating layer and forming an electrolytic plating layer on the electroless plating layer.

[作用コ 本発明にあっては、エポキシ樹脂系材料からなる絶縁層
に熱良導性無機充填剤を分散させであるので、強酸等な
用いて絶縁層の表面粗化処理を行なうと、絶縁層内の熱
良導性無機充填剤が溶解して絶縁層に空孔が生じ、ある
いは絶縁層の表面に熱良導性無機充填剤が析出し、絶縁
層の表面が粗化される。この結果、絶縁層の上に無電解
メッキを施すと、表面(こ析出[7た熱良導性無機充填
剤あるいは空孔によるアンカー効果のため、無電解メッ
キ層が絶縁層の表面番ご強固に付着させられ、絶縁層に
エポキシ樹脂が用いられている場合でも物理的に剥離し
にくい導電体層を得るごとができ、大ぎな剥離強度を得
ることができる。
[Function] In the present invention, a thermally conductive inorganic filler is dispersed in an insulating layer made of an epoxy resin material, so if the surface of the insulating layer is roughened using a strong acid, etc. The thermally conductive inorganic filler in the layer dissolves, creating pores in the insulating layer, or the thermally conductive inorganic filler precipitates on the surface of the insulating layer, roughening the surface of the insulating layer. As a result, when electroless plating is applied on the insulating layer, the electroless plating layer becomes stronger than the surface of the insulating layer due to the anchoring effect of the thermally conductive inorganic filler or pores. Even when an epoxy resin is used for the insulating layer, it is possible to obtain a conductive layer that is difficult to physically peel off, and it is possible to obtain a large peel strength.

また、エポキシ樹脂系材料からなる絶縁層に熱良導性無
機充填剤を分散させであるので、熱良導性無機充填剤か
ヒー!・ブリッジとなって、絶縁層の熱伝導率が向F−
する。
In addition, since the thermally conductive inorganic filler is dispersed in the insulating layer made of epoxy resin material, the thermally conductive inorganic filler is heat-resistant.・It becomes a bridge, and the thermal conductivity of the insulating layer increases in the direction of F−.
do.

なお、上記熱良導性無機充填剤の添加量が、30重量%
未満であると、熱良導性無機充填剤による熱伝導効果の
改善が弱くなり、80重量%を超過すると、熱良導性無
機充填剤を含有したエポキシ樹脂系材料を絶縁層に塗布
するのが困難になるので、その添加量は、30重量%以
上80重量%以下が好まll、い。
Note that the amount of the thermally conductive inorganic filler added is 30% by weight.
If the amount is less than 80% by weight, the improvement in the thermal conductivity effect by the thermally conductive inorganic filler will be weak, and if it exceeds 80% by weight, it will be difficult to apply the epoxy resin material containing the thermally conductive inorganic filler to the insulating layer. Therefore, the amount added is preferably 30% by weight or more and 80% by weight or less.

l、かも、本発明にあっては、セミアデイティブ法(・
こよって金属ベース配線基板を製造1.でいるので、導
電体層の厚みを電解メッキによって得ることができ、無
電解メッキのみによって導電体層の厚みを得るツルアデ
イ戸イブ法に比較すると、任意の/ブみの導電体層を短
い峙m1で形成、することができ、金属ベース配線基板
の生産時間を短縮することができる。
In the present invention, the semi-additive method (・
Thus, manufacturing a metal-based wiring board 1. Therefore, the thickness of the conductor layer can be obtained by electrolytic plating.Compared to the straight plate method, which obtains the thickness of the conductor layer only by electroless plating, it is possible to obtain the thickness of the conductor layer by electrolytic plating. ml, and the production time of the metal-based wiring board can be shortened.

「実施倒置 以下、本発明の実施例を添イは図(・こrついて詳述す
る。
``Embodiment'' Hereinafter, examples of the present invention will be described in detail.

第12図(a)・〜(f)に小ずものは、セミアデイテ
ィブ法による金属ベース配線基枦1の製造ブ1“jセス
である。
The small items shown in FIGS. 12(a) to 12(f) are steps for manufacturing a metal base wiring board 1 by a semi-additive method.

このブ11セス(・こおいては、まず第1図(il)に
示すよう(こ、金属ベース2の表面にエポキシ樹脂を主
剤とする絶、縁材料を塗布し、エポキシ樹脂系の絶縁層
3か形成される1、ここで、金属ベース2の材質は、特
に限定されず、鉄、銅などでもよいが、vI思”で・力
11ユの容易なアルミニウムが望ましい。エポキシ樹脂
の種類は、特に限定されないが、例えばビスフェアノー
ルA型グリシジルニーデル類、クレゾールノボラック類
、フェノールノボラック類が望ましい。エポキシ樹脂の
硬化剤も、ぞの種類を格別限定さ才1ないが、例えばア
ミン系、酸無水物系、潜在性硬イ[′、剤などな使用す
ることかできる。
In this process, as shown in FIG. Here, the material of the metal base 2 is not particularly limited and may be iron, copper, etc., but aluminum is preferable because it has a strength of 11 mm and is easy to use.The type of epoxy resin is Although not particularly limited, for example, bisphenol A-type glycidyl needles, cresol novolaks, and phenol novolaks are preferable.Although there are no particular restrictions on the type of curing agent for epoxy resins, for example, amine-based, Acid anhydrides, latent hardening agents, etc. can be used.

エポキシ樹脂は、普通、塗布作業を容易にするためケF
・ン類、芳香族炭化水素等の有機溶剤で希釈I、て用い
られ、このエポキシ樹脂には、絶縁性を有する熱良導性
無機充填剤か充填されている。この絶縁性の熱良導性無
機充填剤としては、アルミニウム醇化物(A!220.
)やアルミニウム窒化物(AQN)か好ま(7い。熱良
導性無機充填剤と1.では、中心粒径が20〆11以下
で、純度99.8%以上の物体が望ましく、中心粒径が
20ufT′lよりも余り大とくなると、エポキシ樹脂
が硬化するまでに熱良導性無機充填剤が沈降し易くなり
、導体回路8の剥離強度が低下する。また、熱良導性無
機充填剤の添加量が、30重量%未満であると絶縁層に
おける熱伝導効果の改善か弱くなり、75爪量%以上で
は高粘度にな−、〕てエポキシ樹脂を塗布しにくくなり
、80重量%以I。になると塗布が困難になる。従って
、熱良導性無機充填剤の添加iと17では1.′30重
量%以十8O重量%以下が望ましい。
Epoxy resins are usually used to make the application process easier.
This epoxy resin is used after being diluted with an organic solvent such as chlorine, aromatic hydrocarbons, etc., and this epoxy resin is filled with an inorganic filler that has good thermal conductivity and has insulation properties. As this insulating and thermally conductive inorganic filler, aluminum ingot (A!220.
) or aluminum nitride (AQN) is preferable (7).For thermally conductive inorganic fillers and 1., objects with a center particle size of 20.11 or less and a purity of 99.8% or more are desirable; If it becomes too large than 20ufT'l, the thermally conductive inorganic filler tends to settle before the epoxy resin hardens, and the peel strength of the conductor circuit 8 decreases. If the amount added is less than 30% by weight, the improvement of the heat conduction effect in the insulating layer will be weak, and if it is more than 75% by weight, the viscosity will become high and it will be difficult to apply the epoxy resin. If it becomes ., coating becomes difficult.Therefore, it is preferable that the addition of the thermally conductive inorganic filler (i) and 17 is from 1.'30% by weight to 180% by weight.

次いで、金属ベース2の表面に形成された絶縁層3を有
機溶剤やイの蒸気で膨潤させ、さら(こクロム酸などの
強力な酸化剤を用いて絶縁N3の表面を粗化させる。こ
のとき、エポキシ樹脂中(、丁分散している熱良導性無
機、充填剤が、絶縁層3の表面に析出したり、溶解して
絶縁層3に空孔を発生させたりし、粗化処理が容易にな
り、絶縁層;3の表面粗度が大きくなる。絶縁層3の表
面粗化後、Pd−3n系アクチベーターで絶縁層3の表
面を活性化させた後、第1図(b)に示すように、無電
解銅メッキあるいは無電解ニッケルメッキにJ、り膜厚
]、 gn以下に無電解メッキ層4を析出させる。
Next, the insulating layer 3 formed on the surface of the metal base 2 is swollen with an organic solvent or steam, and the surface of the insulating layer 3 is roughened using a strong oxidizing agent such as chromic acid. , the thermally conductive inorganic filler dispersed in the epoxy resin may precipitate or dissolve on the surface of the insulating layer 3 and generate pores in the insulating layer 3, causing roughening treatment. After roughening the surface of the insulating layer 3, the surface of the insulating layer 3 is activated with a Pd-3n activator, as shown in FIG. 1(b). As shown in the figure, an electroless plating layer 4 is deposited on the electroless copper plating or electroless nickel plating to a thickness of J, gn or less.

この後、電解メッキを選択的に析出させるため、第1図
(c)に示すように、無電解メッキ層4の十にレジスト
材料を印刷し、回路パターンと同じパターンの開L36
を右づる厚さ約35ジ]のレジスト膜5な形成する。こ
のレジスト材判とし2では、特に限定しないが、微細加
工のでとる感光性レジスト材料か適しており、液状、フ
ィルム状、またネガ型、ポジ型どちらでも差り、支えな
い。
After this, in order to selectively deposit electrolytic plating, as shown in FIG.
A resist film 5 having a thickness of approximately 35 mm is formed. The resist material size 2 is not particularly limited, but is suitable for use in microfabricated photosensitive resist materials, and can be in liquid form, film form, negative type, or positive type.

次に、第1図(d)に示すように、電解銅メッキを施し
、無電解メッキ層4のレジスト膜5から露出した表面に
銅の電解メッキ層7を析出させ、導体回路8に必要な厚
みを得た後、第1図(e)に示すように、レジスト膜5
を!ll離させ、電解メッキ層7から露出した無電解メ
ッキ層4をエツチングによって除去12、第1−図(f
)に示すように、絶縁N3の−1に無電解メッキ層4と
電解メッキ層7の2層からなる所定パターンの導体回路
8を得る。
Next, as shown in FIG. 1(d), electrolytic copper plating is applied to deposit a copper electrolytic plating layer 7 on the surface of the electroless plating layer 4 exposed from the resist film 5. After obtaining the thickness, as shown in FIG. 1(e), the resist film 5 is
of! The electroless plating layer 4 exposed from the electrolytic plating layer 7 is removed by etching 12.
), a conductor circuit 8 having a predetermined pattern consisting of two layers, an electroless plating layer 4 and an electrolytic plating layer 7, is obtained on -1 of the insulation N3.

このようにして、セミアデイティブ法によって金属ベー
ス配線基板を製作すれば、導体回路の厚みを主として電
解メッキで稼ぐことができるので、無電解メッキのみの
フルアブイブイブ法に比べると、生産時間を短縮(数分
)することがでとる。
In this way, if a metal-based wiring board is manufactured using the semi-additive method, the thickness of the conductor circuit can be obtained mainly through electrolytic plating, so the production time will be reduced compared to the full-alive method using only electroless plating. It can be shortened (to a few minutes).

また、上記のように、絶縁層内に、M2O3やAQN等
の熱良導性無機充填剤を分散させであると、絶縁層の表
面が粗化され易くなるので、絶縁層の表面に無電解メッ
キ層を形成し、た時に、無電解メッキ層と絶縁層の間の
アンカー効果か強くなり、導体回路の剥離強度を高くす
ることができる。さらに、絶縁層の絶縁性な損なうこと
なく、これらの熱良導性無機充填剤によって絶縁層の熱
伝導率を高めることができ、この結果、金属ベース配線
基板の放熱性が良好となる。例えば、アルミ力(AQ2
03)の熱伝導率は20W/m″にであり、SiO□の
熱伝導率は3.3W/m・Xであり、窒化アルミニウム
CAQN)の熱伝導率は100W/m−”Kであるので
、アルミナや窒化アルミニウム等の物体を絶縁層内に充
填させることにより、絶縁層の熱伝導率を大幅に向上さ
せることができる。特に、アルミ力を用いれば、安価で
、しかも熱伝導率の高い絶縁層を得ることかできる。さ
らに、熱良導性無機充填剤により、金属ベース配線基板
の耐熱性及び耐熱衝撃性が向上する。
In addition, as mentioned above, if a thermally conductive inorganic filler such as M2O3 or AQN is dispersed in the insulating layer, the surface of the insulating layer will be easily roughened, so the surface of the insulating layer will be electroless. When a plating layer is formed, the anchor effect between the electroless plating layer and the insulating layer becomes stronger, and the peel strength of the conductor circuit can be increased. Furthermore, the thermal conductivity of the insulating layer can be increased by these thermally conductive inorganic fillers without impairing the insulating properties of the insulating layer, and as a result, the metal-based wiring board has good heat dissipation. For example, aluminum force (AQ2
The thermal conductivity of 03) is 20 W/m'', the thermal conductivity of SiO□ is 3.3 W/m・X, and the thermal conductivity of aluminum nitride CAQN) is 100 W/m-''K. By filling the insulating layer with a material such as alumina or aluminum nitride, the thermal conductivity of the insulating layer can be significantly improved. In particular, if aluminum is used, it is possible to obtain an insulating layer that is inexpensive and has high thermal conductivity. Furthermore, the thermally conductive inorganic filler improves the heat resistance and thermal shock resistance of the metal-based wiring board.

なお、上記実施例では、金属ベース配線基板の191面
のみに導体回路を形成l、だが、金属・\−ス配線基板
の両面に導体回路を殺げでもよいのはもちろんである。
In the above embodiment, the conductor circuit is formed only on the 191 side of the metal base wiring board, but it goes without saying that the conductor circuit may be formed on both sides of the metal base wiring board.

。 以下、本発明のより具体的な実施例を2−9の従来例と
比較し、て説明4−る。
. Hereinafter, more specific embodiments of the present invention will be explained by comparing them with the conventional examples 2-9.

(実施例) 慶さ]、 mmのアルミニウム基板な1\リク1iiU
 111エタンで悦脂した後、第1表のような組成をイ
アするエポキシ樹脂組成物をドクターブレード法によリ
アルミニウム基板の表面に塗布し、室温で硬化させた後
、さらに]BO’Cで5時間加熱硬化させ、絶縁層を形
成した。
(Example) Keisa], mm aluminum substrate 1\lik1iiU
After resinizing with 111 ethane, an epoxy resin composition having the composition shown in Table 1 was applied to the surface of the real aluminum substrate by a doctor blade method, and after curing at room temperature, further [BO'C] was applied. It was heated and cured for 5 hours to form an insulating layer.

(′以]・余白) 第  1  表 次に、絶縁層な形成されたアルミニウム基板を45℃に
加温したクロム−硫酸溶液中に5分間浸漬して表面粗化
させた後、水で洗浄し、ぞの後希塩酊中に浸漬した。つ
いで、第2表に示す条件で活性化処理■及び活性化処理
■をli% l、た。
(Begins ']・Margins) Table 1 Next, the aluminum substrate on which the insulating layer was formed was immersed in a chromium-sulfuric acid solution heated to 45°C for 5 minutes to roughen the surface, and then washed with water. After that, I soaked it in diluted salt alcohol. Then, activation treatment (1) and activation treatment (2) were performed at li% l under the conditions shown in Table 2.

第  2  表 (以下余白) (以下余白) さら(・5゛8、第3表のような条件下で、無電角イ銅
メッキを行ない、絶縁層のトt、m O、2訓の埠みの
銅薄膜(無電解メッキ層〕を得た6、 第  3 表 この後、釦1薄膜の十に溶剤剥離型ドジイン1“ルムを
ラミオ〜す・し、)・ライフィルムの導体回路に相当す
る部分に紫外線を照射[2でパターンを焼き付けた後、
l・リクロロエタン番こ、↓゛リフイルム現像12、所
望パターンのレジスト膜を形成した。次に、第4表に示
すような電解銅メッキ条イノ4で銅薄膜の上に電解メッ
キを茄し、必要な膜厚の導体回路な得た後、ジクロr1
11メタン(・こよりL/シスト膜を剥離させた。
Table 2 (blank below) (blank below) Further (・5゛8, under the conditions shown in Table 3, electroless square copper plating was performed to determine the thickness of the insulating layer, t, mO, A thin copper film (electroless plating layer) was obtained. 6. Table 3 After this, a solvent-removable dozyin 1" lume was applied to the 10th layer of the button 1 thin film. Irradiate the area with ultraviolet light [After baking the pattern in step 2,
A resist film with a desired pattern was formed using l.lichloroethane and ↓ film development 12. Next, electroplating was performed on the copper thin film using electrolytic copper plating strip Inno 4 as shown in Table 4 to obtain a conductor circuit with the required film thickness.
The L/cyst film was peeled off using 11 methane.

第4表 (以下余白) 最後に、濃度20 g / Qの過硫酸アンモニウム溶
液中に数分間浸漬し、電解銅メッキから露出した部分の
無電解銅メッキな剥離させて導体回路を得た。
Table 4 (blank below) Finally, the conductive circuit was obtained by immersing it in an ammonium persulfate solution with a concentration of 20 g/Q for several minutes to peel off the electroless copper plating from the exposed portion of the electrolytic copper plating.

(従来例1) 厚さ1. mmのアルミニウム基板に第5表に示すよう
な組成からなる接着剤をドクターブレード法で塗布[1
1、この溶剤を蒸発乾燥させた後、l 80 ’Cで2
時間加熱して硬化させ、絶縁層を形成した。
(Conventional example 1) Thickness: 1. An adhesive having the composition shown in Table 5 was applied to an aluminum substrate of 1.0 mm in diameter using a doctor blade method [1
1. After evaporating the solvent to dryness, 2.
It was cured by heating for a period of time to form an insulating layer.

ついで、実施例と同様のセミアブイブイブ法により所望
パターンの導体回路を得た。
Then, a conductor circuit with a desired pattern was obtained by the semi-abbreviation method similar to that in the example.

第  5  表 く第5表のような組成からなる接着剤をドクターブレー
ド法で塗布し、溶剤を乾燥させて絶縁層を形成した後、
35mm厚の銅箔を絶縁層に重ね、5kgf/ am 
2の圧力で180°C12時間加熱圧着させ、銅張り金
属ベース配線基板を得た。この後、塩化鉄によるエツチ
ングにより令同箔をlツヂングし、サブトラクティブ法
により所望パターンの導体回路を得た。
Table 5 After applying an adhesive having the composition shown in Table 5 using a doctor blade method and drying the solvent to form an insulating layer,
Layer 35mm thick copper foil on insulation layer, 5kgf/am
A copper-clad metal base wiring board was obtained by heat-pressing at 180° C. for 12 hours at a pressure of 2. Thereafter, the same foil was etched by iron chloride etching, and a conductor circuit with a desired pattern was obtained by a subtractive method.

(実施例、従来例1及び従来例2の比較)上記のように
して実施例、従来例1及び従来例2の金属ベース配線基
板を得た後、それぞれの金属ベース配線基板について、
導体回路の剥離強度、半日耐熱性、配線基板の厚み方向
での熱伝導率、および導体回路の最小配線幅を測定し、
比較した。
(Comparison of Example, Conventional Example 1 and Conventional Example 2) After obtaining the metal base wiring boards of Example, Conventional Example 1 and Conventional Example 2 as described above, for each metal base wiring board,
Measure the peel strength of the conductor circuit, half-day heat resistance, thermal conductivity in the thickness direction of the wiring board, and minimum wiring width of the conductor circuit.
compared.

結果を次の第6表に示す。The results are shown in Table 6 below.

(以下余白) (従来例2) 厚さ1. mmのアルミニウム基板に従来例1と同じ第
  6 表 なお、導体回路の剥離強度の測定法は、JISC648
15□7項に従った。つまり、アルミニウム基板の表面
に絶縁層を介して導体の層を形成した後、アルミニウム
基板の両側部において、ナイフ切断またはエツチングに
より導体を除去し、第2図に示すように、アルミニウム
基板21(長さL=1.Ot)+nm、幅W≧25+n
m)の中央部に幅W=101TllI+の導体22を残
してサンプル23を用意し、引張試験機によって導体2
2をアルミニウム基板21と直角な方向に引き剥がした
時の単位幅当たりの最低荷重Fを測定した。また、半田
耐熱性は、半田槽内の溶融した(この場合、260℃)
半田液中に金属ベース配線基板をd)貴I1、アルミニ
ウム基板と絶縁層の剥離か生したり、オニfh縁層のエ
ポキシ樹脂にクラックが発生ずるまでの時間をより定し
たものである。さらに、配線基板のIプ7み方向での熱
伝導率の測定は、第3図(・、τ示ずよ・)(、“、下
部を氷水31に浸;責させたアルミニウム類の櫛型放熱
ブロック32の1にサンプルの金属ベース配線基板33
を置き、銅板34査・介して発熱源35となるトランジ
スタを!!置して測定のための装置を構成し、発熱源3
5に通電させながら熱雷対36によって放熱ブロック3
2と発熱tf、35との温度差を測定することにより行
い、発熱源135の温度を基準とする放熱フロック32
の1゛昇温(m ”K )ど消費電力(Vv’ )との
比から熱伝導率を求めた。
(Margin below) (Conventional example 2) Thickness 1. Table 6 is the same as in Conventional Example 1 on an aluminum substrate of mm.
Followed Section 15□7. That is, after forming a conductor layer on the surface of an aluminum substrate via an insulating layer, the conductor is removed by knife cutting or etching on both sides of the aluminum substrate, and as shown in FIG. length L=1.Ot)+nm, width W≧25+n
Prepare a sample 23 by leaving a conductor 22 with a width W=101TllI+ in the center of the
2 was peeled off in a direction perpendicular to the aluminum substrate 21, and the minimum load F per unit width was measured. In addition, the solder heat resistance is determined by the melting temperature in the solder bath (in this case, 260°C).
When a metal-based wiring board is placed in a solder solution, the time required for separation of the aluminum board and the insulating layer or cracks to occur in the epoxy resin of the edge layer of the onion fh is determined. Furthermore, the thermal conductivity of the wiring board in the direction of the I-plane was measured as shown in Figure 3 (-, τ not shown). A sample metal base wiring board 33 is placed on one of the heat dissipation blocks 32.
Place the transistor that becomes the heat source 35 through the copper plate 34! ! The heat source 3
The heat dissipation block 3 is
This is done by measuring the temperature difference between 2 and the heat generation tf, 35.
Thermal conductivity was determined from the ratio of 1° temperature rise (m''K) to power consumption (Vv').

上記第6表から分かるように、実施例の十田耐熱性は、
同じくセミアデイティブ法による従来例1と同様に、サ
ブトラクティブ法による従来例2と比較17て2倍もし
くは2倍以十の耐熱時間を有している。さらに、最小配
線幅も、セミアデイティブ法による実施例及び従来例1
は、サブトラクティブ法による従来例2と比較すると、
極めて微細な最小配線幅を達成し2ている。
As can be seen from Table 6 above, the Toda heat resistance of the examples is as follows:
Similarly to Conventional Example 1, also made by the semi-additive method, it has a heat resistance time that is twice or more than twice that of Conventional Example 2, which is made by the subtractive method. Furthermore, the minimum wiring width is also the same as that of the embodiment using the semi-additive method and the conventional example 1.
When compared with conventional example 2 using the subtractive method,
An extremely fine minimum wiring width has been achieved.

また、導体剥離強度は、サブトラクティブ法による従来
例2が最も高い。しかし、同じくセミアデイティブ法に
よる実施例と従来例1とを比較すると、実施例では、従
来例1の4倍の剥離強度が得られており、アルミナ粉末
を絶縁層に混入したことによる効果が顕著に表われてい
る。さらに、実施例の金属ベース配線基板の熱伝導率は
、従来例1及び2のそれぞれの熱伝導率の4倍の値を示
しており、熱良導性無機充填剤を分散させたことにより
、大きな熱伝導率が得られた。
Moreover, the conductor peel strength is the highest in Conventional Example 2 obtained by the subtractive method. However, when comparing Example 1, which was also made using the semi-additive method, the peel strength of Example 1 was four times that of Conventional Example 1, indicating that the effect of mixing alumina powder into the insulating layer was It is noticeable. Furthermore, the thermal conductivity of the metal-based wiring board of the example is four times the thermal conductivity of each of conventional examples 1 and 2, and by dispersing the thermally conductive inorganic filler, A high thermal conductivity was obtained.

従って、絶縁層内に熱良導性無機充填剤を分散させるこ
とにより、優れた特性の金属ベース配線基板を得ること
ができた。
Therefore, by dispersing the thermally conductive inorganic filler in the insulating layer, it was possible to obtain a metal-based wiring board with excellent characteristics.

[発明の効果] 本発明によれば、絶縁層の表面に粗化処理を施すと、絶
縁層の表面に析出もしくは溶解した熱良導性無機充填剤
のため、絶縁層の表面が容易に粗化され、無電解メッキ
時に無電解メッキ層と絶縁層との接合が強固となり、導
体回路の剥離強度?高くすることかできる。また、絶縁
層内の熱良導性無機充填剤により絶縁層の熱伝導率が向
11、金属ベース配線基板全体の熱伝導性か良好となり
、金属ベース1線基板の放熱性等の特性か−・層良好に
なる。さらに、セミアデイティブ法によって金属ベース
配線基板な製造しているので、@ナイトエッヂング不安
のない高密度の配線基板を製造することができ、また必
要な厚みの導電体層を比較的短い時間で得ることができ
、生産性を向」−さ−1士ることができる。
[Effects of the Invention] According to the present invention, when the surface of the insulating layer is roughened, the surface of the insulating layer is easily roughened due to the thermally conductive inorganic filler precipitated or dissolved on the surface of the insulating layer. During electroless plating, the bond between the electroless plating layer and the insulating layer becomes stronger, and the peel strength of the conductor circuit increases. You can make it higher. In addition, due to the thermally conductive inorganic filler in the insulating layer, the thermal conductivity of the insulating layer is 11, and the thermal conductivity of the entire metal-based wiring board is good, which improves the heat dissipation properties of the metal-based 1-wire board.・The layer becomes better. Furthermore, since we manufacture metal-based wiring boards using a semi-additive method, we are able to manufacture high-density wiring boards without the risk of night edging, and we can also create conductive layers of the required thickness in a relatively short time. You can increase your productivity by increasing your productivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a) (b) (c) (d) (e) (f
)は、本発明の一実施例の製造工程を示す概略断面図、
第2図は導体回路の剥離強度測定方法を説明するための
斜視図、第3図は金属ベース配線基板の熱伝導率を測定
するだめの装置を示す正面図である。 2・・・金属ベース 3・・・絶縁層 4 ・・ 無電解メ ツキ層 7・・・電解メッキ層 8・・・導体回路 第 図
Figure 1 (a) (b) (c) (d) (e) (f
) is a schematic sectional view showing the manufacturing process of an embodiment of the present invention,
FIG. 2 is a perspective view for explaining a method for measuring peel strength of a conductor circuit, and FIG. 3 is a front view showing an apparatus for measuring thermal conductivity of a metal base wiring board. 2...Metal base 3...Insulating layer 4...Electroless plating layer 7...Electrolytic plating layer 8...Conductor circuit diagram

Claims (1)

【特許請求の範囲】[Claims] (1)金属ベースの表面に絶縁層を形成し、この絶縁層
の上に導電体層を形成した金属ベース配線基板の製造方
法であって、 アルミニウム酸化物やアルミニウム窒化物等の熱良導性
無機充填剤を30重量%以上80重量%以下の割合で含
有するエポキシ樹脂系材料を金属ベースの表面に塗布し
て絶縁層を形成した後、絶縁層の表面に粗化処理を施し
、 ついで、この絶縁層の表面に無電解メッキ層を形成し、
無電解メッキ層の上に電解メッキ層を形成することによ
り導電体層を設けることを特徴とする金属ベース配線基
板の製造方法。
(1) A method for manufacturing a metal-based wiring board in which an insulating layer is formed on the surface of a metal base and a conductive layer is formed on the insulating layer, the method comprising using a material with good thermal conductivity such as aluminum oxide or aluminum nitride. After forming an insulating layer by applying an epoxy resin material containing an inorganic filler at a ratio of 30% to 80% by weight to the surface of the metal base, the surface of the insulating layer is roughened, and then, An electroless plating layer is formed on the surface of this insulating layer,
A method for manufacturing a metal-based wiring board, characterized in that a conductor layer is provided by forming an electrolytic plating layer on an electroless plating layer.
JP16533490A 1990-06-22 1990-06-22 Manufacture of metal based wiring board Pending JPH0461193A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16533490A JPH0461193A (en) 1990-06-22 1990-06-22 Manufacture of metal based wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16533490A JPH0461193A (en) 1990-06-22 1990-06-22 Manufacture of metal based wiring board

Publications (1)

Publication Number Publication Date
JPH0461193A true JPH0461193A (en) 1992-02-27

Family

ID=15810361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16533490A Pending JPH0461193A (en) 1990-06-22 1990-06-22 Manufacture of metal based wiring board

Country Status (1)

Country Link
JP (1) JPH0461193A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0738007A2 (en) * 1995-04-12 1996-10-16 Denki Kagaku Kogyo Kabushiki Kaisha Metal-base multilayer circuit substrate
WO1997024229A1 (en) * 1995-12-26 1997-07-10 Ibiden Co., Ltd. Metal film bonded body, bonding agent layer and bonding agent
EP1047294A1 (en) * 1999-04-23 2000-10-25 The Swatch Group Management Services AG Insulated metallic substrate for printed circuit boards
KR102158938B1 (en) * 2019-09-18 2020-09-23 (주) 매그나텍 Epoxy resin composition and heat dissipation circuit board using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0738007A2 (en) * 1995-04-12 1996-10-16 Denki Kagaku Kogyo Kabushiki Kaisha Metal-base multilayer circuit substrate
EP0738007A3 (en) * 1995-04-12 1998-04-29 Denki Kagaku Kogyo Kabushiki Kaisha Metal-base multilayer circuit substrate
WO1997024229A1 (en) * 1995-12-26 1997-07-10 Ibiden Co., Ltd. Metal film bonded body, bonding agent layer and bonding agent
US6607825B1 (en) 1995-12-26 2003-08-19 Ibiden Co., Ltd. Metal film bonded body, bonding agent layer and bonding agent
EP1047294A1 (en) * 1999-04-23 2000-10-25 The Swatch Group Management Services AG Insulated metallic substrate for printed circuit boards
KR102158938B1 (en) * 2019-09-18 2020-09-23 (주) 매그나텍 Epoxy resin composition and heat dissipation circuit board using the same
WO2021054527A1 (en) * 2019-09-18 2021-03-25 주식회사 엘레판트 Epoxy resin composition, and heat dissipation circuit board using same

Similar Documents

Publication Publication Date Title
US5153987A (en) Process for producing printed wiring boards
US4770900A (en) Process and laminate for the manufacture of through-hole plated electric printed-circuit boards
US6117300A (en) Method for forming conductive traces and printed circuits made thereby
JP2000349435A (en) Multilayered printed wiring board and manufacture thereof
JPH0461193A (en) Manufacture of metal based wiring board
JPH1187865A (en) Printed circuit board and its manufacture
JPS62277794A (en) Manufacture of inner layer circuit board
JPH0573359B2 (en)
JP5116231B2 (en) Printed wiring board, method for manufacturing printed wiring board, and multilayer printed wiring board
JPH0199288A (en) Manufacture of multi-layer printed wiring board
JPH04314391A (en) Adhesive for fabricating printed circuit board by additive process
JPH0461195A (en) Manufacture of metal-based wiring board
JPH0461194A (en) Manufacture of metal-based wiring board
JP2000129137A (en) Resin composition having high adhesion and electronic instrument part using the same
TW595288B (en) Manufacturing method of circuit board
JPS6362919B2 (en)
JPH01166598A (en) Multi-layer printed circuit board and manufacture therefor
JP4051923B2 (en) Manufacturing method of build-up multilayer printed wiring board
JPS5916439B2 (en) Method for manufacturing multilayer printed wiring board
JP2002171066A (en) Manufacturing method for multi-layered wiring board
JPS63224391A (en) Printed wiring board and manufacture of the same
JPS58118817A (en) Adhesive composition for electroless plating
JPS62115894A (en) Manufacture of printed circuit board
JPS5917998B2 (en) Printed wiring board manufacturing method
JPS6083397A (en) Method of producing metal core-filled printed circuit board