JPH0459949A - Fe-co series alloy excellent in cold workability - Google Patents

Fe-co series alloy excellent in cold workability

Info

Publication number
JPH0459949A
JPH0459949A JP17189490A JP17189490A JPH0459949A JP H0459949 A JPH0459949 A JP H0459949A JP 17189490 A JP17189490 A JP 17189490A JP 17189490 A JP17189490 A JP 17189490A JP H0459949 A JPH0459949 A JP H0459949A
Authority
JP
Japan
Prior art keywords
alloy
cold workability
flux density
magnetic flux
saturation magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17189490A
Other languages
Japanese (ja)
Inventor
Yoshinobu Motokura
義信 本蔵
Hitokatsu Usami
宇佐美 仁克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP17189490A priority Critical patent/JPH0459949A/en
Publication of JPH0459949A publication Critical patent/JPH0459949A/en
Pending legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To manufacture an alloy excellent in cold workability and suitable as the material for a magnetic circuit by preparing an Fe-Co series alloy having a specified compsn. in which each content of Co and Zr is prescribed. CONSTITUTION:An allay contg., by weight, 15 to <33% Co, 0.005 to 0.30% Zr, <=0.02% (C+N) and the balance Fe with impurity elements is prepd. to obtain an Fe-Co series alloy excellent in cold workability, to which 0.03 to 0.30% Si is moreover added to improve the surface skin of a steel ingot and to improve its yield. Furthermore, one or >= two kinds among 0.005 to 0.30% Ti, 0.005 to 0.30% Nb, 0.005 to 0.30% Ta and 0.01 to 0.40% B are incorporated therein, by which the cold workability can moreover be improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、冷間加工性が優れ、電気機器などの磁気回路
用材料に適したFe−Co系合金に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an Fe--Co alloy that has excellent cold workability and is suitable as a material for magnetic circuits in electrical equipment and the like.

(従来技術) 近年、電気機器などの磁気回路に対し、高性能化、小型
軽量化への要求が非常に強くなり、要求を実現可能にす
るために、飽和磁束密度の高い材料の開発が強く要求さ
れている。
(Prior art) In recent years, there has been an extremely strong demand for higher performance, smaller size, and lighter weight for magnetic circuits in electrical equipment, etc., and in order to make these demands possible, there is a strong need to develop materials with high saturation magnetic flux density. requested.

従来から知られている高い飽和磁束密度を有する合金と
しては、Coを重量比で35〜50%程度含有するFe
−Co系合金があり、その中でも特にFe−35%Co
合金、Fe−50%Co合金がよく知られている。これ
らの合金は、24000G以上の高い飽和磁束密度を有
し、保磁力についても非常に優れているが、50%Co
を中心とする組成で規則格子を形成するために極めて脆
く、冷間加工性が著しく劣るため、限定された形状の製
品しか製造できず問題となっていた。その後、前述した
Fe−Co系合金の冷間加工性を改善するために研究が
進められた結果、VがFe−Co系合金の規則格子化を
抑制し、冷間加工性を改善できることが明らかとなり、
Fe−49%C0−2%V合金が開発され、現在でも使
用されている。
Conventionally known alloys with high saturation magnetic flux density include Fe containing approximately 35 to 50% Co by weight.
-Co alloys, especially Fe-35%Co
The alloy Fe-50%Co alloy is well known. These alloys have a high saturation magnetic flux density of 24000G or more and have excellent coercive force, but 50% Co
Because it forms a regular lattice with a composition centered on Subsequently, research was carried out to improve the cold workability of the Fe-Co alloy mentioned above, and it was found that V could suppress the formation of an ordered lattice in the Fe-Co alloy and improve the cold workability. Then,
A Fe-49%C0-2%V alloy was developed and is still in use today.

しかしながらこの合金は、■の添加により延性が増し、
冷間加工中に割れは生じにくくなったが、変形抵抗が高
く、冷間圧延などの冷間加工時に1回の加工量を小さく
しなければならず、生産性が悪く問題となっていた。さ
らに、Co含有量が高いこと、溶解後凝固時の湯漬れが
悪いため鋼塊表面に凹凸が大きくなり、鋼塊表面の皮削
り量が多(なることから価格高となり、用途拡大の障害
となり問題となっていた。
However, the addition of ■ increases the ductility of this alloy,
Although cracks were less likely to occur during cold working, the deformation resistance was high, and the amount of processing per cold working such as cold rolling had to be reduced, resulting in poor productivity. Furthermore, due to the high Co content and poor immersion in hot water during solidification after melting, the surface of the steel ingot becomes uneven, resulting in a large amount of skin scraping on the surface of the steel ingot, resulting in higher prices and impeding the expansion of applications. It was a problem.

(発明が解決しようとする課題) 本発明はFe−49%Co−2%V合金に比べ飽和磁束
密度、保磁力を劣化させることなく、冷間加工性を著し
く改善することにより、製品製造時の生産性向上を可能
とし、かつ低価格のFe−Co系合金を提供することを
目的として提案されたものである。
(Problems to be Solved by the Invention) The present invention significantly improves cold workability without deteriorating saturation magnetic flux density or coercive force compared to Fe-49%Co-2%V alloy. This was proposed for the purpose of making it possible to improve productivity and providing a low-cost Fe-Co alloy.

(課題を解決するための手段) 本発明者は、Fe−Co系合金の持つ脆さが、Fe、C
oの1対1組成の規則格子の形成と、それに伴う硬さの
上昇が原因であることに注目し、脆さの改善、冷間加工
性の向上のためには、C。
(Means for Solving the Problems) The present inventor has discovered that the brittleness of Fe-Co alloys
Focusing on the formation of a regular lattice with a one-to-one composition of C and the associated increase in hardness, C.

含有量を規則格子の組成である重量比で51.35χ(
原子数比50χ)から低下させることにより規則度を低
下する必要があると考えた。また、磁気特性の低下を最
小限に抑えて、冷間加工性を向上させるためには、■よ
りも少ない添加量で規則度を低下し、冷間加工性を向上
させることのできる別の成分元素を見つける必要がある
と考えた。そこで、Co含有量を飽和磁束密度がFe−
49%Co−2%■合金に比べて劣らない量まで低減す
ることにより、規則度を低下させ、さらに種々の合金元
素を添加し、単位添加l5たりの規則度の減少と冷間加
工性の向上の程度を調査した。その結果、Zr5Ti、
Nb、Ta、Bの5元素が■に比べ非常に効果が大きく
、0゜005から0.30ないし0.40%のわずかな
添加量で2%の■を添加した場合より大きな規則度の減
少と、それに伴う大きな冷間加工性向上効果が得られる
ことを見出した。特に、Zrは冷間加工性を向上する効
果が大きいので、Fe−Co合金に0.005〜0.3
0%のZrを添加し、必要に応じてTi、Nb、TaX
Bを添加することにより、Fe−49%Co−2%V合
金に比べ飽和磁束密度を低下させることなく冷間加工性
を向上させることに成功したものである。また、■に比
べ少ない添加量で冷間加工性を向上させることのできる
元素を見つけたことにより、飽和磁束密度の低下を最小
限に抑えることができ、しかも従来のFe−49%Co
−2%■合金に比べ、co量を大きく低減することがで
きたので、大幅なコストダウンを実現したものである。
The content is 51.35χ (by weight ratio, which is the composition of the regular lattice)
It was considered that it was necessary to lower the degree of regularity by lowering the atomic number ratio from 50χ). In addition, in order to minimize the decline in magnetic properties and improve cold workability, it is necessary to add another component that can reduce regularity and improve cold workability with a smaller amount than ■. I thought it was necessary to find an element. Therefore, the saturation magnetic flux density of Co content is
By reducing the amount to a level comparable to that of 49%Co-2%■ alloy, the degree of order is lowered, and by adding various alloying elements, the degree of order decreases per unit addition and the cold workability improves. The degree of improvement was investigated. As a result, Zr5Ti,
The five elements Nb, Ta, and B have a much greater effect than ■, and a small addition amount of 0.30 to 0.40% from 0°005 results in a greater reduction in regularity than when adding 2% ■. It has been found that a large effect of improving cold workability can be obtained accordingly. In particular, since Zr has a great effect of improving cold workability, it is added to Fe-Co alloys by 0.005 to 0.3.
Add 0% Zr, add Ti, Nb, TaX as necessary
By adding B, we succeeded in improving cold workability without lowering the saturation magnetic flux density compared to the Fe-49%Co-2%V alloy. In addition, by discovering an element that can improve cold workability with a smaller addition amount than in (2), it is possible to minimize the decrease in saturation magnetic flux density, and moreover, compared to conventional Fe-49%Co
Compared to the -2% ■ alloy, the amount of Co could be significantly reduced, resulting in a significant cost reduction.

さらに、本発明者は鋼塊表面肌を改善できる成分系につ
いても研究を進めた結果、前記発明合金にSiを少量添
加すると改善効果が太き(、しかも少量であれば磁気特
性がほとんど低下しないことを確認したものである。
Furthermore, as a result of conducting research on a component system that can improve the surface texture of steel ingots, the present inventor found that adding a small amount of Si to the invention alloy has a significant improvement effect (and, if it is a small amount, the magnetic properties hardly deteriorate). This has been confirmed.

すなわち、本発明の第1発明は、重量比にしてCo:1
5〜33%未満、Zr : 0.005〜0.30%、
C+N:0.02%以下を含有し、残部がFeおよび不
純物元素からなることを特徴とする冷間加工性の優れた
F−e −Co系合金であり、第2発明は第1発明にS
iを0.03〜0.30%添加して鋼塊表面肌を改善し
、歩留向上によるコストダウンを可能にしたものである
That is, the first invention of the present invention has a weight ratio of Co:1.
5 to less than 33%, Zr: 0.005 to 0.30%,
The second invention is an Fe-Co alloy with excellent cold workability characterized by containing 0.02% or less of C+N and the remainder consisting of Fe and impurity elements.
By adding 0.03 to 0.30% of i, the surface texture of the steel ingot is improved, making it possible to reduce costs by improving yield.

また、第3発明は第1発明の成分にTi:0゜0.00
5〜0.30%、Nb:o、005〜030%、Ta 
: 0,005〜0.30%、B:0.01〜0.40
%のうち1種または2種以上を含有させ、冷間加工性を
さらに向上させたものであり、第4発明は第3発明にS
iを0.03〜0.30%添加して鋼塊表面肌を改善し
、歩留向上によるコストダウンを可能にしたものである
Further, the third invention includes Ti: 0° 0.00 as a component of the first invention.
5-0.30%, Nb:o, 005-030%, Ta
: 0,005~0.30%, B:0.01~0.40
The fourth invention further improves cold workability by containing one or more of the following:
By adding 0.03 to 0.30% of i, the surface texture of the steel ingot is improved, making it possible to reduce costs by improving yield.

次に、本発明である冷間加工性に優れたFe−Co系合
金の成分組成の限定理由について説明する。
Next, the reasons for limiting the composition of the Fe--Co alloy having excellent cold workability according to the present invention will be explained.

Co;15〜33%未満 Coは本発明にとって、優れた飽和磁束密度を確保する
ために必要不可欠な基本元素であり、Fe−49%Co
−2%■合金と同等ないしそれ以上の飽和磁束密度を得
るためには15%以上含有させる必要がある。しかし、
33%以上含有させると冷間での変形抵抗が高くなると
ともにコストも高くなる。
Co: Less than 15% to 33% Co is an essential basic element for the present invention to ensure excellent saturation magnetic flux density, and Fe-49%Co
-2% ■ In order to obtain a saturation magnetic flux density equal to or higher than that of the alloy, it is necessary to contain 15% or more. but,
When the content is 33% or more, the cold deformation resistance increases and the cost also increases.

Zr;0.005%〜0.30% Zrは本発明において最も重要な元素であり、冷間加工
性を大幅に改善する効果を有し、その効果を得るために
は0.005%以上の含有が必要である。しかし、過剰
に含有させると飽和磁束密度が低下するのでその上限を
0.30%とした。
Zr; 0.005% to 0.30% Zr is the most important element in the present invention, and has the effect of greatly improving cold workability. Containment is necessary. However, if it is contained in excess, the saturation magnetic flux density decreases, so the upper limit was set at 0.30%.

C+N;0.02%以下 C,Nは熔解、製鋼時に不純物として混入するが、飽和
磁束密度を低下させるのでできるだけ低減することが望
ましく、その上限を0.02%とした。
C+N: 0.02% or less C and N are mixed as impurities during melting and steel manufacturing, but since they lower the saturation magnetic flux density, it is desirable to reduce them as much as possible, and the upper limit is set at 0.02%.

5ilo、03〜0.30% Siは鋼塊の表面肌を改善し、歩留向上に効果のある元
素であり、その効果を得るためには0゜03%以上含有
させる必要がある。しかし、多量の含有は飽和磁束密度
を低下させるため、その上限を0.30%とした。
5ilo, 03 to 0.30% Si is an element that is effective in improving the surface texture of steel ingots and increasing yield, and in order to obtain this effect, it must be contained in an amount of 0.03% or more. However, since a large amount of content lowers the saturation magnetic flux density, the upper limit was set at 0.30%.

Ti、Nb5Ta ;0.005〜0.30%Ti、N
b、TaはZrと同様に冷間加工性を改善する元素であ
り、その効果を得るためには3元素ともに0.005%
以上含有させる必要がある。しかし、0.30%を越え
て含有させると飽和磁束密度が低下するとともに変態温
度が下がり、保磁力も悪化する。
Ti, Nb5Ta; 0.005-0.30% Ti, N
b. Like Zr, Ta is an element that improves cold workability, and in order to obtain this effect, 0.005% of all three elements is required.
It is necessary to contain the above amount. However, when the content exceeds 0.30%, the saturation magnetic flux density decreases, the transformation temperature decreases, and the coercive force also deteriorates.

B;0.01〜0.40% Bは結晶粒界に集まり、粒界の結合力を増すことにより
冷間加工性を改善する元素である。前記効果を得るため
には0.01%以上含有させることが必要である。しか
し、0.40%を越えて含有させるとTi、Nb、Ta
と同様に飽和磁束密度と保磁力が悪化する。
B; 0.01 to 0.40% B is an element that gathers at grain boundaries and improves cold workability by increasing the bonding strength of the grain boundaries. In order to obtain the above effect, it is necessary to contain 0.01% or more. However, if the content exceeds 0.40%, Ti, Nb, Ta
Similarly, the saturation magnetic flux density and coercive force deteriorate.

(実施例) 次に本発明の特徴を従来合金、比較合金と比べて実施例
でもって明らかにする。第1表は供試合金の化学成分を
示すものである。
(Example) Next, the features of the present invention will be clarified by comparing them with conventional alloys and comparative alloys through examples. Table 1 shows the chemical composition of the test gold.

第1表 (以下余白) 第1表において、1〜3合金は第1発明、4〜6合金は
第2発明、7〜12合金は第3発明、13〜18合金は
第4発明である。19〜21合金は比較合金であり、2
2〜24合金は従来合金で、22合金はFe−35%C
o合金、23合金はFe−50%Co合金、24合金は
Fe−49%Co−2%■合金である。
Table 1 (blank below) In Table 1, alloys 1 to 3 are the first invention, alloys 4 to 6 are the second invention, alloys 7 to 12 are the third invention, and alloys 13 to 18 are the fourth invention. Alloys 19-21 are comparison alloys and 2
Alloys 2 to 24 are conventional alloys, and alloy 22 is Fe-35%C.
o alloy and 23 alloy are Fe-50%Co alloy, and 24 alloy is Fe-49%Co-2%■ alloy.

第1表の供試合金は電気炉で熔製し、1200″Cにて
熱間圧延後、800″Cで1時間保持後水冷にて不規則
化処理を施し、冷間圧延後、950°Cで2時間(24
合金については850”Cで4時間)保持後炉冷にて磁
気焼鈍したものである。前述した製造条件で製造した供
試合金を使用して飽和磁束密度、保磁力、圧縮変形抵抗
、限界加工率を測定した結果を第2表に示す。
The test specimens in Table 1 were melted in an electric furnace, hot rolled at 1200"C, held at 800"C for 1 hour, water cooled for irregularization, and then cold rolled at 950°C. 2 hours at C (24
The alloy was held at 850"C for 4 hours) and then magnetically annealed in a furnace cooling. Using the test alloy manufactured under the above-mentioned manufacturing conditions, the saturation magnetic flux density, coercive force, compressive deformation resistance, and limit workability were measured. The results of measuring the ratio are shown in Table 2.

磁気特性は、直流型BH上レしサを用い、試験片として
外径24mmφ、内径16mmφ、厚さ16mmのリン
グ試験片を作製し、飽和磁束密度と保磁力を測定した。
For the magnetic properties, a ring test piece with an outer diameter of 24 mmφ, an inner diameter of 16 mmφ, and a thickness of 16 mm was prepared as a test piece using a DC type BH overlayer, and the saturation magnetic flux density and coercive force were measured.

圧縮変形抵抗、限界加工率については、直径20mm、
高さ30mmの円筒形状の試験片を作製し、日本塑性加
工学会基準に準拠した同心円満付形状の工具を用いて1
00tonアムスラー試験機にて試験片に圧縮変形を与
え、加工荷重、圧縮時の割れの有無を測定したものであ
る。第2表に記載した値は圧縮変形抵抗については、圧
縮率50%の時の加工荷重をその時の試験片最大直径か
ら計算した断面積で除した値であり、限界加工率ム二つ
いては、圧縮率83%まで試験を行い、最後まで割れの
生じなかった供試合金については○、途中で割れの生じ
た供試合金については割れの生じた時の圧縮率を示した
ものである。
Regarding compressive deformation resistance and limit processing rate, the diameter is 20 mm,
A cylindrical test piece with a height of 30 mm was prepared, and a tool with concentric circles in accordance with the standards of the Japan Society for Plasticity was used to
A test piece was subjected to compressive deformation using a 00 ton Amsler testing machine, and the processing load and the presence or absence of cracks during compression were measured. The values listed in Table 2 are the values obtained by dividing the processing load at a compression rate of 50% by the cross-sectional area calculated from the maximum diameter of the test piece at that time for the compression deformation resistance. The test was carried out to a rate of 83%, and the test specimens with no cracks until the end were marked with a ○, and the test specimens with cracks that occurred midway through were shown with the compression ratio at the time the cracks occurred.

(以下余白) 笛9夷 第2表から明らかなように、比較合金である19合金は
、Zrを必要以上に含有させたため、冷間加工性は優れ
ているが、飽和磁束密度、保磁力が劣るものであり、2
0合金は、不純物として含有するC、Nを製鋼時に除去
することが不十分であったため、飽和磁束密度、保養n
力が劣るものであり、21合金はSi含有量が高いため
、飽和磁束密度が劣るものである。
(Left below) As is clear from Table 2, the comparative alloy No. 19 has excellent cold workability because it contains more Zr than necessary, but the saturation magnetic flux density and coercive force are poor. Inferior, 2
0 alloy, because it was insufficient to remove C and N contained as impurities during steel manufacturing, the saturation magnetic flux density and the
Alloy 21 has a high Si content, so it has a poor saturation magnetic flux density.

一方、従来合金である22.23合金はそれぞれFe−
35%Co合金、Fe−50%Co合金に相当するが、
前述したように冷間加工性向上のための規J?IJ格子
化抑制元素が添加されていないので、非常に脆く、著し
く冷間加工性が劣るものであり、Fe−49%Go−2
%■合金に相当する24合金は変形抵抗が高く、冷間加
工性が劣るものである。
On the other hand, the conventional alloy 22.23 alloy has Fe-
It corresponds to 35% Co alloy, Fe-50% Co alloy,
As mentioned above, there are regulations for improving cold workability. Since no IJ lattice suppressing element is added, it is very brittle and has significantly poor cold workability, and Fe-49%Go-2
The 24 alloy corresponding to the %■ alloy has high deformation resistance and poor cold workability.

これらの比較合金、従来合金に対し、本発明1〜18合
金は、従来合金であるFe−49%C。
In contrast to these comparative alloys and conventional alloys, alloys 1 to 18 of the present invention are Fe-49%C, which is a conventional alloy.

2%■合金に比べて同等ないしそれ以上の飽和磁束密度
、保磁力を有しなから冷間での変形抵抗が低く、優れた
冷間加工性を有するものである。
Since it has saturation magnetic flux density and coercive force equal to or higher than 2% ■ alloy, it has low cold deformation resistance and excellent cold workability.

(発明の効果) 本発明のFe−Co系合金は以上詳述したように、CO
を15〜33%未満含有したFe−C。
(Effects of the Invention) As detailed above, the Fe-Co alloy of the present invention has CO
Fe-C containing 15 to less than 33%.

合金に0.005〜0.30%のZrを添加し、さらに
必要に応じてTi、Nb、Ta、Bのうち1種または2
種以上を少量添加することにより、従来のFe−49%
Co−2%V合金に比べ、飽和磁束密度を劣化させるこ
となく、冷間加工性を著しく向上させるとともに、Co
量を低減し、大幅なコストダウンを可能としたものであ
る。従4って、本発明は電気機器などの磁気回路の大幅
な低コスト化を可能とするものであり、産業上高い実用
性を有するものである。
0.005 to 0.30% Zr is added to the alloy, and if necessary, one or two of Ti, Nb, Ta, and B are added.
By adding a small amount of seeds or more, the conventional Fe-49%
Compared to Co-2%V alloy, it significantly improves cold workability without deteriorating the saturation magnetic flux density, and also
This reduced the amount and made it possible to significantly reduce costs. Therefore, the present invention makes it possible to significantly reduce the cost of magnetic circuits for electrical equipment, etc., and has high practicality in industry.

Claims (1)

【特許請求の範囲】 1、重量比にしてCo:15〜33%未満、Zr:0.
005〜0.30%、C+N:0.02%以下を含有し
、残部がFeおよび不純物元素からなることを特徴とす
る冷間加工性の優れたFe−Co系合金。 2、重量比にしてCo:15〜33%未満、Zr:0.
005〜0.30%、C+N:0.02%以下を含有し
、さらにSi:0.03〜0.30%を含有し、残部が
Feおよび不純物元素からなることを特徴とする冷間加
工性の優れたFe−Co系合金。 3、重量比にしてCo:15〜33%未満、Zr:0.
005〜0.30%、C+N:0.02%以下を含有し
、さらにTi:0.005〜0.30%、Nb:0.0
05〜0.30%、Ta:0.005〜0.30%、B
:0.01〜0.40%のうち1種または2種以上を含
有し、残部がFeおよび不純物元素からなることを特徴
とする冷間加工性の優れたFe−Co系合金。 4、重量比にしてCo:15〜33%未満、Zr:0.
005〜0.30%、C+N:0.02%以下を含有し
、さらにSi:0.03〜0.30%と、Ti:0.0
05〜0.30%、Nb:0.005〜0.30%、T
a:0.005〜0.30%、B:0.01〜0.40
%のうち1種または2種以上を含有し、残部がFeおよ
び不純物元素からなることを特徴とする冷間加工性の優
れたFe−Co系合金。
[Claims] 1. Co: 15 to less than 33% by weight, Zr: 0.
005 to 0.30%, C+N: 0.02% or less, and the balance is Fe and impurity elements. 2. Co: 15 to less than 33% by weight, Zr: 0.
Cold workability characterized by containing 0.05 to 0.30%, C+N: 0.02% or less, further containing Si: 0.03 to 0.30%, and the remainder consisting of Fe and impurity elements. An excellent Fe-Co alloy. 3. Co: 15 to less than 33% by weight, Zr: 0.
005 to 0.30%, C+N: 0.02% or less, further Ti: 0.005 to 0.30%, Nb: 0.0
05-0.30%, Ta: 0.005-0.30%, B
: A Fe-Co alloy with excellent cold workability, characterized by containing one or more of 0.01 to 0.40%, with the remainder consisting of Fe and impurity elements. 4. Co: 15 to less than 33% by weight, Zr: 0.
005 to 0.30%, C+N: 0.02% or less, further Si: 0.03 to 0.30%, and Ti: 0.0
05-0.30%, Nb: 0.005-0.30%, T
a: 0.005-0.30%, B: 0.01-0.40
%, and the remainder is Fe and impurity elements.
JP17189490A 1990-06-28 1990-06-28 Fe-co series alloy excellent in cold workability Pending JPH0459949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17189490A JPH0459949A (en) 1990-06-28 1990-06-28 Fe-co series alloy excellent in cold workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17189490A JPH0459949A (en) 1990-06-28 1990-06-28 Fe-co series alloy excellent in cold workability

Publications (1)

Publication Number Publication Date
JPH0459949A true JPH0459949A (en) 1992-02-26

Family

ID=15931784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17189490A Pending JPH0459949A (en) 1990-06-28 1990-06-28 Fe-co series alloy excellent in cold workability

Country Status (1)

Country Link
JP (1) JPH0459949A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7253520B2 (en) 2001-10-11 2007-08-07 Oki Electric Industry Co., Ltd. CSP semiconductor device having signal and radiation bump groups
DE102014100589A1 (en) * 2014-01-20 2015-07-23 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron-cobalt based alloy and process for its preparation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7253520B2 (en) 2001-10-11 2007-08-07 Oki Electric Industry Co., Ltd. CSP semiconductor device having signal and radiation bump groups
DE102014100589A1 (en) * 2014-01-20 2015-07-23 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron-cobalt based alloy and process for its preparation

Similar Documents

Publication Publication Date Title
JPS5887244A (en) Copper base spinodal alloy strip and manufacture
US4572750A (en) Magnetic alloy for magnetic recording-reproducing head
JP4327952B2 (en) Al alloy with excellent vibration absorption performance
JPS63109130A (en) Copper alloy for electronic equipment
TW200837203A (en) Cu-Ni-Si-based copper alloy for electronic material
JPH0459949A (en) Fe-co series alloy excellent in cold workability
KR101952015B1 (en) High Entropy Alloy Based Cobalt, Copper, Nickle and Manganese
JPS5924178B2 (en) Square hysteresis magnetic alloy and its manufacturing method
JP3407054B2 (en) Copper alloy with excellent heat resistance, strength and conductivity
JPS63149356A (en) Soft magnetic alloy for reed chip, manufacture thereof and reed switch
JPS6312936B2 (en)
JPH0459950A (en) Fe-co alloy excellent in magnetic property and cold workability
JPS5924177B2 (en) Square hysteresis magnetic alloy
JPS6142772B2 (en)
JPH0459951A (en) Fe-co alloy excellent in magnetic property and cold workability
JPS62250136A (en) Copper alloy terminal and connector
JP3519863B2 (en) Phosphor bronze with low surface cracking susceptibility and method for producing the same
JPH0798975B2 (en) Method for producing Fe-Ni alloy
JP2918961B2 (en) High-strength copper alloy with high workability
JPS6326192B2 (en)
JPS58150119A (en) Alloy having high magnetic permeability for magnetic recording and reproducing head and its production, and magnetic recording and reproducing head
JPS6270541A (en) Cu-alloy lead material for semiconductor device
JPS61143540A (en) Copper alloy having superior workability
JP2628806B2 (en) High strength non-magnetic low thermal expansion alloy and method for producing the same
JPH0788545B2 (en) High strength and high toughness Cu alloy with little characteristic anisotropy