JPH0459950A - Fe-co alloy excellent in magnetic property and cold workability - Google Patents

Fe-co alloy excellent in magnetic property and cold workability

Info

Publication number
JPH0459950A
JPH0459950A JP17189590A JP17189590A JPH0459950A JP H0459950 A JPH0459950 A JP H0459950A JP 17189590 A JP17189590 A JP 17189590A JP 17189590 A JP17189590 A JP 17189590A JP H0459950 A JPH0459950 A JP H0459950A
Authority
JP
Japan
Prior art keywords
alloy
cold workability
flux density
magnetic flux
saturation magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17189590A
Other languages
Japanese (ja)
Inventor
Yoshinobu Motokura
義信 本蔵
Hitokatsu Usami
宇佐美 仁克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP17189590A priority Critical patent/JPH0459950A/en
Publication of JPH0459950A publication Critical patent/JPH0459950A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To produce an alloy excellent in magnetic properties and cold workability and suitable for magnetic circuit material by preparing an Fe-Co alloy having a specific composition in which respective contents of Co and Zr are specified. CONSTITUTION:An Fe-Co alloy excellent in magnetic properties and cold workability can be obtained by preparing an alloy having a composition consisting of, by weight ratio, 33-37% Co, 0.005-0.30% Zr, <=0.02% (C+N), and the balance Fe with impurity elements. If Si is further incorporated by 0.03-0.30%, the surface of an ingot can be improved and cost reduction due to improvement in yield can be attained. Moreover, cold workability can be improved to a greater extent by incorporating one or >=2 kinds among 0.005-0.30% Ti, 0.005-0.30% Nb, 0.005-0.30% Ta, and 0.01-0.40% B.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、磁気特性、冷間加工性がともに優れ、電気機
器などの磁気回路用材料に適したFe−Co系合金に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an Fe--Co alloy that has excellent magnetic properties and cold workability and is suitable as a material for magnetic circuits in electrical equipment and the like.

(従来技術) 近年、電気機器などの磁気回路に対し、高性能化、小型
軽量化への要求が非常に強くなり、要求を実現可能にす
るために、飽和磁束密度の高い材料の開発が強く要求さ
れている。
(Prior art) In recent years, there has been an extremely strong demand for higher performance, smaller size, and lighter weight for magnetic circuits in electrical equipment, etc., and in order to make these demands possible, there is a strong need to develop materials with high saturation magnetic flux density. requested.

従来から知られている高い飽和磁束密度を有する合金と
しては、Coを重量比で35〜50%程度含有するFe
−Co系合金があり、その中でも特にFe−35%Co
合金、Fe−50%Co合金がよく知られている。これ
らの合金は、24000G以上の高い飽和磁束密度を有
し、保磁力についても非常に優れているが、50%Co
を中心とする組成で規則格子を形成するために極めて脆
く、冷間加工性が著しく劣るため、限定された形状の製
品しか製造できず問題となっていた。
Conventionally known alloys with high saturation magnetic flux density include Fe containing approximately 35 to 50% Co by weight.
-Co alloys, especially Fe-35%Co
The alloy Fe-50%Co alloy is well known. These alloys have a high saturation magnetic flux density of 24000G or more and have excellent coercive force, but 50% Co
Because it forms a regular lattice with a composition centered on

その後、前述したFe−Co系合金の冷間加工性を改善
するために研究が進められた結果、■がFe−Co系合
金の規則格子化を抑制し、冷間加工性を改善できること
が明らかとなり、Fe−49%C0−2%V合金が開発
され、現在でも使用されている。しかしながらこの合金
は、■を2%添加した結果、飽和磁束密度が23000
Gまで低下すると同時に、αからT相への変態温度が大
きく低下したため、磁気焼鈍時の変態歪による飽和磁束
密度の悪化を避けるためには、焼鈍温度を低く抑えなけ
ればならず、磁気焼鈍後の加工歪の消失が不完全となる
ため、保磁力までも悪化させてしまう結果となった。さ
らに、Co含有量が高いこと、熔解後凝固時の渦流れが
悪いため鋼塊表面に凹凸が大きくなり、鋼塊表面の皮削
り量が多くなることから価格高となり、用途拡大の障害
となり問題となっていた。
Subsequently, research was carried out to improve the cold workability of the Fe-Co alloy mentioned above, and it became clear that ■ could suppress the formation of an ordered lattice in the Fe-Co alloy and improve the cold workability. Therefore, Fe-49%C0-2%V alloy was developed and is still in use today. However, as a result of adding 2% of ■, this alloy has a saturation magnetic flux density of 23,000
At the same time, the transformation temperature from α to T phase decreased significantly. Therefore, in order to avoid deterioration of the saturation magnetic flux density due to transformation strain during magnetic annealing, the annealing temperature must be kept low. As the processing strain disappeared incompletely, even the coercive force deteriorated. Furthermore, due to the high Co content and poor vortex flow during solidification after melting, the surface of the steel ingot becomes uneven, and the amount of skin scraping on the surface of the steel ingot increases, resulting in high prices and problems that hinder the expansion of applications. It became.

(発明が解決しようとする課題) 本発明はFe−35%Co合金およびFe−50%Co
合金と比べて、冷間加工性を著しく改善することにより
、フープ圧延など薄板の製造を可能とし、フープ圧延可
能な材料では最高の飽和磁束密度を有し、かつFe−4
9%C0−2%■合金に比べ同等以上の保磁力で、しか
も低価格のFe−Co系合金を提供することを目的とし
て提案されたものである。
(Problems to be Solved by the Invention) The present invention relates to Fe-35%Co alloy and Fe-50%Co alloy.
By significantly improving cold workability compared to alloys, it is possible to manufacture thin sheets by hoop rolling, and it has the highest saturation magnetic flux density among hoop rolling materials, and Fe-4
This was proposed for the purpose of providing an Fe--Co alloy that has a coercive force equal to or higher than that of the 9%C0-2%■ alloy, and is inexpensive.

(課題を解決するための手段) 本発明者は、Fe−Co系合金の持つ脆さが、Fe、C
oの1対1!ffl成の規則格子の形成と、それに伴う
硬さの上昇が原因であることに注目し、脆さの改善、冷
間加工性の向上のためには、C。
(Means for Solving the Problems) The present inventor has discovered that the brittleness of Fe-Co alloys
O's 1 to 1! Focusing on the fact that the formation of an ffl-structured regular lattice and the associated increase in hardness are the causes, C.

含有量を規則格子の組成である重量比で51.35χ(
原子数比50χ)から低下させることにより規則度を低
下する必要があると考えた。また、磁気特性の低下を最
小限に抑えて冷間加工性を向上させるためには、■より
も少ない添加量で規則度を低下し、冷間加工性を向上さ
せることのできる別の成分元素を見つける必要があると
考えた。そこで、Co含有量を最高の飽和磁束密度が確
保できる35%程度まで下げることにより規則度を低下
させ、さらに種々の合金元素を添加し、単位添加量当た
りの規則度の減少と冷間加工性の向上の程度を調査した
。その結果、Zr、Ti、Nb、Ta、Bの5元素が■
に比べ非常に効果が大きく、0.005から0.30な
いし0.40%のわずかな添加量で2%の■を添加した
場合より大きな規則度の減少とそれに伴う大きな冷間加
工性向上効果が得られることを見出した。特にZrはそ
の効果が大きいので、Fe−35%Co合金に0.00
5〜0.30%のZrを添加し、必要に応じてTi、N
b、Ta、Bを添加することにより、Fe−35%Co
合金に比べ飽和磁束密度を低下させることなく冷間加工
性を向上させることに成功したものである。また、本発
明のもう1つの狙いである保磁力の改善については、C
oを50%程度含有するFe合金に比べ若干劣る保磁力
を、冷間加工性向上元素添加量を大幅に低減して変態温
度の低下を従来のFe−49%Go−2%■合金に比べ
】00°C程度少なく抑え、高い磁気焼鈍温度による熱
処理を可能とした結果、従来のFe−49%C0−2%
V合金に比べ同等以上の保磁力を得ること可能としたも
のである。
The content is 51.35χ (by weight ratio, which is the composition of the regular lattice)
It was considered that it was necessary to lower the degree of regularity by lowering the atomic number ratio from 50χ). In addition, in order to minimize the decline in magnetic properties and improve cold workability, it is necessary to add another component element that can reduce regularity and improve cold workability with a smaller amount than ■. I thought I needed to find out. Therefore, we reduced the degree of order by lowering the Co content to about 35%, which ensures the highest saturation magnetic flux density, and further added various alloying elements to reduce the degree of order and improve cold workability per unit addition amount. The degree of improvement was investigated. As a result, the five elements Zr, Ti, Nb, Ta, and B were
The effect is very large compared to that of 0.005 to 0.30 to 0.40%, which results in a greater reduction in regularity than when adding 2% of ■, and a correspondingly large improvement in cold workability. It was found that it was possible to obtain In particular, Zr has a large effect, so 0.00% Zr is added to the Fe-35%Co alloy.
Add 5-0.30% Zr, Ti, N if necessary
By adding b, Ta, and B, Fe-35%Co
This material succeeded in improving cold workability without reducing saturation magnetic flux density compared to alloys. In addition, regarding the improvement of coercive force, which is another aim of the present invention, C
Compared to the conventional Fe-49% Go-2% ■ alloy, the coercive force is slightly inferior to that of the Fe alloy containing approximately 50% of ] As a result of suppressing the temperature to about 00°C and making it possible to perform heat treatment at a high magnetic annealing temperature, the conventional Fe-49%C0-2%
This makes it possible to obtain a coercive force equal to or higher than that of V alloy.

さらに、本発明者は鋼塊表面肌を改善できる成分系につ
いても研究を進めた結果、前記発明にSiを少量添加す
ると改善効果が大きく、しかも少量であれば磁気特性が
ほとんど低下しないことを確認したものである。
Furthermore, as a result of conducting research on a component system that can improve the surface texture of steel ingots, the present inventors confirmed that adding a small amount of Si to the above-mentioned invention has a large improvement effect, and that a small amount hardly deteriorates the magnetic properties. This is what I did.

すなわち、本発明の第1発明は、重量比にしてCo:3
3〜37%、Zr : 0.005〜0.30%、C+
N:0,02%以下を含有し、残部がFeおよび不純物
元素からなることを特徴とする特許 であり、第2発明は第1発明にSiを0.03〜0、3
0%含有させ鋼塊表面肌を改善し、歩留向上によるコス
トダウンを可能にしたものである。
That is, the first invention of the present invention has a weight ratio of Co:3.
3-37%, Zr: 0.005-0.30%, C+
This is a patent characterized in that N: 0.02% or less is contained, with the remainder consisting of Fe and impurity elements, and the second invention is characterized in that the first invention contains 0.03 to 0.3% of Si.
By containing 0% of steel, the surface texture of the steel ingot is improved, and cost reduction is possible due to improved yield.

また、第3発明は第1発明の成分にTi:0。Moreover, the third invention has Ti:0 in the component of the first invention.

005〜0.30%、Nb:0.005〜0.30%、
Ta : 0.005〜0.30%、B:0。
005-0.30%, Nb: 0.005-0.30%,
Ta: 0.005-0.30%, B: 0.

01〜0.40%のうち1種または2種以上を含有させ
、冷間加工性をさらに向上させたものであり、第4発明
は第3発明にSiを0.03〜0。
The fourth invention further improves cold workability by containing one or more of Si in an amount of 0.01 to 0.40%.

30%含有させ鋼塊表面肌を改善し、歩留向上によるコ
ストダウンを可能にしたものである。
Containing 30% of steel improves the surface roughness of the steel ingot and makes it possible to reduce costs by improving yield.

次に本発明である磁気特性、冷間加工性に優れたFe−
Co系合金の成分組成の限定理由について説明する。
Next, the Fe-
The reason for limiting the composition of the Co-based alloy will be explained.

Co;33〜37% Coは本発明にとって、優れた飽和磁束密度、保磁力を
確保するために必要不可欠な基本元素であり、その効果
を得るためには33%以上含有させる必要がある。しか
し、37%を越えて含有させると規則度が増加し、冷間
加工性が悪くなるとともにコストも高くなる。
Co: 33-37% Co is an essential basic element for the present invention in order to ensure excellent saturation magnetic flux density and coercive force, and in order to obtain this effect, it must be contained in an amount of 33% or more. However, if the content exceeds 37%, the degree of regularity increases, resulting in poor cold workability and increased cost.

Zr;0.005%〜0.30% Zrは本発明において最も重要な元素であり、冷間加工
性を大幅に改善する効果を有し、その効果を得るために
は0.005%以上の含有が必要である。しかし、過剰
に含有させると飽和磁束密度が低下するとともに変態温
度も下がり、保磁力も悪化するので、その上限を0.3
0%とした。
Zr; 0.005% to 0.30% Zr is the most important element in the present invention, and has the effect of greatly improving cold workability. Containment is necessary. However, if it is contained excessively, the saturation magnetic flux density will decrease, the transformation temperature will also decrease, and the coercive force will deteriorate, so the upper limit should be set at 0.3
It was set to 0%.

C+N;0.02%以下 C,Nは溶解、製鋼時に不純物として混入するが、飽和
磁束密度を低下させるのでできるだけ低減することが望
ましく、その上限を0.02%とした。
C+N: 0.02% or less C and N are mixed as impurities during melting and steel manufacturing, but since they lower the saturation magnetic flux density, it is desirable to reduce them as much as possible, and the upper limit is set at 0.02%.

Si;0.03〜0.30% Si4,を鋼塊の表面肌を改善し、歩留向上に効果のあ
る元素であり、その効果を得るためには0。
Si: 0.03 to 0.30% Si4 is an element that is effective in improving the surface texture of steel ingots and increasing yield, and in order to obtain this effect, the content should be 0.

03%以上含有させる必要がある。しがし、多量の含有
は飽和磁束密度を低下させるため、その上限を0.30
%とした。
It is necessary to contain 0.3% or more. However, since a large amount of content lowers the saturation magnetic flux density, the upper limit should be set at 0.30.
%.

Ti,Nb,Ta ; 0.005〜0.30%Ti,
Nb,TaはZrと同様に冷間加工性を改善する元素で
あり、その効果を得るためには3元素ともに0.005
%以上含有させる必要がある。しかし、0.30%を越
えて含有させると飽和磁束密度が低下するとともに変態
温度が下がり、保磁力も悪化する。
Ti, Nb, Ta; 0.005-0.30% Ti,
Like Zr, Nb and Ta are elements that improve cold workability.
% or more. However, when the content exceeds 0.30%, the saturation magnetic flux density decreases, the transformation temperature decreases, and the coercive force also deteriorates.

B;0.01〜0.40% Bは結晶粒界に集まり、粒界の結合力を増すことにより
冷間加工性を改善する元素である。前記効果を得るため
には0.01%以上含有させることが必要である。しか
し、0.40%を越えて含有するとTi,Nb,Taと
同様に飽和磁束密度と保磁力が悪化する。
B; 0.01 to 0.40% B is an element that gathers at grain boundaries and improves cold workability by increasing the bonding strength of the grain boundaries. In order to obtain the above effect, it is necessary to contain 0.01% or more. However, if the content exceeds 0.40%, the saturation magnetic flux density and coercive force deteriorate, similar to Ti, Nb, and Ta.

(実施例) 次に本発明の特徴を従来合金、比較合金と比べて実施例
でもって明らかにする。第1表は供試合金の化学成分を
示すものである。
(Example) Next, the features of the present invention will be clarified by comparing them with conventional alloys and comparative alloys through examples. Table 1 shows the chemical composition of the test gold.

(以下余白) 第1表において、1〜3合金は第1発明、4〜6合金は
第2発明、7〜12合金は第3発明、13〜18合金は
第4発明である。19〜21合金は比較合金であり、2
2〜24合金は従来合金で22はFe−35%Co合金
、23はFe−50%Co合金、24はFe−49%C
0−2%■合金である。
(Left below) In Table 1, alloys 1 to 3 are the first invention, alloys 4 to 6 are the second invention, alloys 7 to 12 are the third invention, and alloys 13 to 18 are the fourth invention. Alloys 19-21 are comparison alloys and 2
Alloys 2 to 24 are conventional alloys, 22 is Fe-35%Co alloy, 23 is Fe-50%Co alloy, and 24 is Fe-49%C.
0-2%■ Alloy.

第1表の供試合金は電気炉で溶製し、1200°Cにて
熱間圧延後、800°Cで1時間保持後水冷にて不規則
化処理を施し、冷間圧延後、950°Cで2時間(24
合金については850°Cで4時間)保持後炉冷にて磁
気焼鈍したものである。前述した製造条件で製造した供
試合金を使用して飽和磁束密度、保磁力、圧縮変形抵抗
、限界加工率を測定した結果を第2表に示す。
The test metals in Table 1 were melted in an electric furnace, hot rolled at 1200°C, held at 800°C for 1 hour, then water cooled for irregularization, and then cold rolled at 950°C. 2 hours at C (24
The alloy was magnetically annealed in a furnace after being held at 850°C for 4 hours. Table 2 shows the results of measuring the saturation magnetic flux density, coercive force, compressive deformation resistance, and limit processing rate using the test specimens produced under the above-mentioned production conditions.

磁気特性は、直流型BHトレーサを用い、試験片として
外径24mmφ、内径16mmφ、厚さ16mmのリン
グ試験片を作製し、飽和磁束密度と保磁力を測定した。
For magnetic properties, a DC type BH tracer was used to prepare a ring test piece with an outer diameter of 24 mmφ, an inner diameter of 16 mmφ, and a thickness of 16 mm, and the saturation magnetic flux density and coercive force were measured.

圧縮変形抵抗、限界加工率については、直径20mm、
高さ30mmの円筒形状の試験片を作製し、日本塑性加
工学会基準に準拠した同心円満付形状の工具を用いて1
00tonアムスラー試験機にて試験片に圧縮変形を与
え、加工荷重、圧縮時の割れの有無を測定したものであ
る。第2表に記載した値は圧縮変形抵抗については、圧
縮率50%の時の加工荷重をその時の試験片最大直径か
ら計算した断面積で除した値であり、限界加工率りこつ
いては、圧縮率83%まで試験を行い、最後まで割れの
生しなかった供試合金については○、途中で割れの生じ
た供試合金については割れの生じた時の圧縮率を示した
ものである。
Regarding compressive deformation resistance and limit processing rate, the diameter is 20 mm,
A cylindrical test piece with a height of 30 mm was prepared, and a tool with concentric circles in accordance with the standards of the Japan Society for Plasticity was used to
A test piece was subjected to compressive deformation using a 00 ton Amsler testing machine, and the processing load and the presence or absence of cracks during compression were measured. The values listed in Table 2 are the values obtained by dividing the processing load at a compression rate of 50% by the cross-sectional area calculated from the maximum diameter of the specimen at that time for the compression deformation resistance, and the values for the compression deformation resistance are the values for the compression deformation resistance. Tests were carried out up to 83%, and the test specimens with no cracks until the end were marked with ○, and the specimen specimens with cracks formed midway through were shown with the compression ratio at the time the cracks occurred.

(以下余白) 第2表から明らかなように、比較合金である19合金は
、Zrを必要以上に含有させたため、冷間加工性は優れ
ているが、飽和磁束密度、保磁力が劣るものであり、2
0合金は、不純物として含有するC、Nを製鋼時に除去
することが不十分であったため、飽和磁束密度、保磁力
が劣るものであり、21合金はSiを必要以上に含有さ
せたため、飽和磁束密度が下がると同時に変態温度も低
下し、保磁力が劣化したものである。
(Left below) As is clear from Table 2, the comparative alloy No. 19 contained more Zr than necessary, so it had excellent cold workability but poor saturation magnetic flux density and coercive force. Yes, 2
Alloy 0 had poor saturation magnetic flux density and coercive force because C and N contained as impurities were not sufficiently removed during steelmaking, and alloy 21 had poor saturation magnetic flux density and coercive force because it contained more Si than necessary. As the density decreased, the transformation temperature also decreased, and the coercive force deteriorated.

一方、従来合金である22.23合金はそれぞれFe−
35%Co合金、Fe−50%Co合金に相当するが、
前述したように冷間加工性向上のための規則格子化抑制
元素が添加されていないので、非常に脆く、著しく冷間
加工性が劣るものであり、Fe−49%C0−2%■合
金に相当する24合金は、飽和磁束密度、保磁力、冷間
加工性がともに劣るものである。
On the other hand, the conventional alloy 22.23 alloy has Fe-
It corresponds to 35% Co alloy, Fe-50% Co alloy,
As mentioned above, since no ordered lattice suppressing elements are added to improve cold workability, the alloy is extremely brittle and has significantly poor cold workability. The corresponding alloy No. 24 is inferior in saturation magnetic flux density, coercive force, and cold workability.

これらの比較合金、従来合金に対し、本発明の1〜18
合金は、飽和磁束密度24000G以上、保磁力]、、
300.以下という優れた磁気特性を有し、かつ圧縮変
形抵抗92kgf/mm”以下、限界加工率83%以上
という優れた冷間加工性を有している。
Compared to these comparative alloys and conventional alloys, 1 to 18 of the present invention
The alloy has a saturation magnetic flux density of 24000G or more, coercive force],,
300. It has excellent magnetic properties as shown below, as well as excellent cold workability as compression deformation resistance of 92 kgf/mm" or less, and limit working rate of 83% or more.

(発明の効果) 本発明のFe−Co系合金は以上詳述したように、Co
を35%程度含有したFe−Co合金に0.005〜0
.30%のZrを添加し、さらに必要に応じてTi、N
b、Ta、Bのうち1種または2種以上を少量添加する
ことにより、従来のFe−50%Co合金、Fe−35
%Co合金に比べ、飽和磁束密度、保磁力などの磁気特
性を損なうことなく、冷間加工性を大幅に向上させたも
のであり、フープ圧延など薄板の製造を可能としたもの
である。従って、本発明は電気機器などの磁気回路の高
性能化、小型軽量化を可能とするものであり、産業上高
い実用性を有するものである。
(Effects of the Invention) As detailed above, the Fe-Co alloy of the present invention has
0.005 to 0 in Fe-Co alloy containing about 35%
.. Added 30% Zr, and further added Ti and N as necessary.
By adding a small amount of one or more of B, Ta, and B, conventional Fe-50%Co alloy, Fe-35
%Co alloy, it has significantly improved cold workability without impairing magnetic properties such as saturation magnetic flux density and coercive force, making it possible to manufacture thin plates by hoop rolling. Therefore, the present invention makes it possible to improve the performance, reduce the size and weight of magnetic circuits for electrical equipment, etc., and has high practicality in industry.

Claims (1)

【特許請求の範囲】 1、重量比にしてCo:33〜37%、Zr:0.00
5〜0.30%、C+N:0.02%以下を含有し、残
部がFeおよび不純物元素からなることを特徴とする磁
気特性、冷間加工性の優れたFe−Co系合金。 2、重量比にしてCo:33〜37%、Zr:0.00
5〜0.30%、C+N:0.02%以下を含有し、さ
らにSi:0.03〜0.30%を含有し、残部がFe
および不純物元素からなることを特徴とする磁気特性、
冷間加工性の優れたFe−C0系合金。 3、重量比にしてCo:33〜37%、Zr:0.00
5〜0.30%、C+N:0.02%以下を含有し、さ
らにTi:0.005〜0.30%、Nb:0.005
〜0.30%、Ta:0.005〜0.30%、B:0
.01〜0.40%のうち1種または2種以上を含有し
、残部がFeおよび不純物元素からなることを特徴とす
る磁気特性、冷間加工性の優れたFe−Co系合金。 4、重量比にしてCo:33〜37%、Zr:0.00
5〜0.30%、C+N:0.02%以下を含有し、さ
らにSi:0.03〜0.30%と、Ti:0.005
〜0.30%、Nb:0.005〜0.30%、Ta:
0.005〜0.30%、B:0.01〜0.40%の
うち1種または2種以上を含有し、残部がFeおよび不
純物元素からなることを特徴とする磁気特性、冷間加工
性の優れたFe−Co系合金。
[Claims] 1. Co: 33-37% by weight, Zr: 0.00
5 to 0.30%, C+N: 0.02% or less, and the remainder consists of Fe and impurity elements, and has excellent magnetic properties and cold workability. 2. Co: 33-37%, Zr: 0.00 in weight ratio
5 to 0.30%, C+N: 0.02% or less, further contains Si: 0.03 to 0.30%, and the balance is Fe.
and magnetic properties characterized by consisting of an impurity element,
Fe-C0 alloy with excellent cold workability. 3. Co: 33-37%, Zr: 0.00 in weight ratio
5 to 0.30%, C+N: 0.02% or less, further Ti: 0.005 to 0.30%, Nb: 0.005
~0.30%, Ta: 0.005~0.30%, B: 0
.. An Fe-Co alloy with excellent magnetic properties and cold workability, characterized by containing one or more of 01 to 0.40%, with the remainder consisting of Fe and impurity elements. 4. Co: 33-37%, Zr: 0.00 in weight ratio
5 to 0.30%, C+N: 0.02% or less, further Si: 0.03 to 0.30%, and Ti: 0.005%.
~0.30%, Nb:0.005~0.30%, Ta:
Magnetic properties and cold working characterized by containing one or more of 0.005 to 0.30%, B: 0.01 to 0.40%, and the remainder consisting of Fe and impurity elements. Fe-Co alloy with excellent properties.
JP17189590A 1990-06-28 1990-06-28 Fe-co alloy excellent in magnetic property and cold workability Pending JPH0459950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17189590A JPH0459950A (en) 1990-06-28 1990-06-28 Fe-co alloy excellent in magnetic property and cold workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17189590A JPH0459950A (en) 1990-06-28 1990-06-28 Fe-co alloy excellent in magnetic property and cold workability

Publications (1)

Publication Number Publication Date
JPH0459950A true JPH0459950A (en) 1992-02-26

Family

ID=15931803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17189590A Pending JPH0459950A (en) 1990-06-28 1990-06-28 Fe-co alloy excellent in magnetic property and cold workability

Country Status (1)

Country Link
JP (1) JPH0459950A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103834862A (en) * 2014-03-24 2014-06-04 广东省钢铁研究所 Iron-cobalt alloy and preparation method of magnetizing pole head of iron-cobalt alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103834862A (en) * 2014-03-24 2014-06-04 广东省钢铁研究所 Iron-cobalt alloy and preparation method of magnetizing pole head of iron-cobalt alloy

Similar Documents

Publication Publication Date Title
JPS5887244A (en) Copper base spinodal alloy strip and manufacture
US3562024A (en) Cobalt-nickel base alloys containing chromium and molybdenum
JPH0321622B2 (en)
JPH04143236A (en) High strength alpha type titanium alloy excellent in cold workability
JPH0321623B2 (en)
JPS6057498B2 (en) molybdenum alloy
US6322638B1 (en) Electromagnetic steel sheet having excellent high-frequency magnetic properties
JPS58113334A (en) Phosphor bronze with superior hot workability
JP3297011B2 (en) High strength titanium alloy with excellent cold rollability
JPH0459950A (en) Fe-co alloy excellent in magnetic property and cold workability
JPS5924178B2 (en) Square hysteresis magnetic alloy and its manufacturing method
JPH0459949A (en) Fe-co series alloy excellent in cold workability
US4131457A (en) High-strength, high-expansion manganese alloy
JPS63149356A (en) Soft magnetic alloy for reed chip, manufacture thereof and reed switch
JPH0459951A (en) Fe-co alloy excellent in magnetic property and cold workability
JPS5924177B2 (en) Square hysteresis magnetic alloy
JPS62274037A (en) Precipitation curable nickel base alloy having improved stress corrosion cracking resistance
JPH0798975B2 (en) Method for producing Fe-Ni alloy
JPH04154938A (en) High mn non-magnetic steel low in stress corrosion cracking sensitivity
JPS59211552A (en) Martensitic high cr steel with high toughness
JPH0788545B2 (en) High strength and high toughness Cu alloy with little characteristic anisotropy
JPH09194938A (en) Production of formed part of ferritic stainless steel, excellent in magnetic property
JPS6213420B2 (en)
JPS59116356A (en) Molybdenum alloy
JP2857390B2 (en) High permeability magnetic alloy