JP4327952B2 - Al alloy with excellent vibration absorption performance - Google Patents
Al alloy with excellent vibration absorption performance Download PDFInfo
- Publication number
- JP4327952B2 JP4327952B2 JP25609399A JP25609399A JP4327952B2 JP 4327952 B2 JP4327952 B2 JP 4327952B2 JP 25609399 A JP25609399 A JP 25609399A JP 25609399 A JP25609399 A JP 25609399A JP 4327952 B2 JP4327952 B2 JP 4327952B2
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- vibration
- less
- added
- absorbing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Vibration Prevention Devices (AREA)
- Heat Treatment Of Steel (AREA)
Description
【0001】
【産業上の利用分野】
本発明は、原子比にて、Li(リチウム)単独、あるいはLiとTi(チタン)の両者の合計0.01〜15%、Y(イットリウム)、希土類元素から選ばれる1種または2種の合計0.01〜10%からなる合金、またはこれを主成分とし、副成分としてGe(ゲルマニウム),Si(珪素),Mg(マグネシウム)、Cd(カドミウム),In(インジウム)をそれぞれ25%以下、Fe(鉄)20%以下、Ta(タリウム)10%以下、B(硼素)及びCa(カルシウム)の1種または2種の5%以下のうちいずれか1種または2種以上の合計0.01〜35%を含有するAl合金に関する。
【0002】
【従来の技術】
従来、軽量で非磁性の代表的吸振合金としては、Al−Zn系、Al−Cu−Ni系あるいはTi−Ni系合金などが知られている。しかしながら、前者においては減衰能が極めて大きい特長を有する反面、比重が4g/cm3前後のように比較的大きく、大型の構造体には適用できない欠点があり、また後2者については冷間加工性が悪く高加工率の薄片材を造るには特別の製造工程が必要であるなど、多くの問題があった。 このように、上記公知の材料には一長一短があり、高い振動減衰能を持つ軽量で加工性の良い特性を具備した新規な材料の要望がなされていた。
【0003】
【発明が解決しようとする課題】
これらの吸振材料は、組成や熱処理によってその吸振特性を制御しているが、近年益々進歩するマイクロ化した精密機器、あるいは大型の構造物などには、かなり複雑な加工を行い、さらに多段の熱処理を施すなどして特性を得ている。
しかも使用環境の多様化に伴い、広い温度範囲でそれらの特性の実現が要求されている。
【0004】
吸振材料に具備すべき条件としては、
1.吸振性すなわち減衰能が大きいこと
2.減衰能の経時変化が小さいこと
3.疲労強度が大きいこと
4.耐食性がよいこと
5.加工性が良好なこと
6.製造工程が簡便であること
7.軽量であること
8.使用によっては非磁性であること
9.安価であること
などが挙げられる。
【0005】
【課題を解決するための手段】
そこで本発明者らは、上記課題の解決を図ることを目的として、種々の実験と研究を重ねた結果、本質的に非磁性であるAl-Li系もしくはAl−Li−Ti系に、Y,希土類元素を添加した合金を基礎とし、さらにこれに種々の元素を複合的に添加した合金を、見い出すに至り、この発明を完成したものである。
【0006】
本発明は、原子比にて、Li単独、あるいはLiとTiの合計で0.01〜15%、Y,希士類元素から選ばれる1種または2種の合計0.01〜10%を含有し、残部がAlと不可避的不純物を主成分とし、副成分として、Ge,Si,Mg,Cd,Inをそれぞれ25%以下、Fe20%以下、Ta10%以下、B及びCaの1種または2種の5%以下のうちいずれか1種または2種以上の合計0.01〜35%を添加してなる合金を要旨とする。
【0007】
本発明の特徴とするところは、次の通りである。第1発明は、原子比にて、LiとTiの合計で0.01〜15%、Y,希士類元素から選ばれる1種または2種の合計0.01〜10%を含有し、残部がAlと不可避不純物とからなり、減衰能が10×10−3以上であることを特徴とするAl合金に関するものである。
【0008】
第2発明は、原子比にて、Li0.01〜15%、Y,希土類元素から選ばれる1種または2種の合計0.01〜10%を含有し、残部がAl及び不可避的不純物からなり、副成分として、Ge,Si,Mg,Cd,Inをそれぞれ25%以下、Fe20%以下、Ta10%以下、B及びCaの1種または2種の5%以下のうちいずれか1種または2種以上を合計0.01〜35%を添加してなり、減衰能が10×10−3以上であることを特徴とするAl合金に関するものである。
【0009】
第1発明の合金を250℃以上融点未満の温度で5分間以上加熱後毎秒0.1℃以上の速度で冷却するか、あるいは冷却後冷間加工率5%以上の冷間加工を施す工程により、減衰能が10×10−3以上の合金を得ることができる。
【0010】
第2発明の合金を250℃以上融点未満の温度で5分間以上加熱後毎秒0.1℃以上の速度で冷却するか、あるいは冷却後冷間加工率5%以上の冷間加工を施す工程により、減衰能が10×10−3以上の合金を得ることができる。
【0011】
【作用】
本発明の吸振材料用Al合金は、Alリッチ合金であるために、他元素との合金化によってもAlのもつ軽量性が失われず、しかも、冷間加工性に富むために、製品の精度が高く低コスト化を図れる特長を有する。
【0012】
本発明のAl合金において、吸振材料として必要な成分中、原子比にてLi単独あるいはLiとTiの合計で0.01〜15%、Y,希土類元素から選ばれる1種または2種の合計0.01〜10%を含有し、残部がAlと不可避的不純物からなると限定したのは、この範囲内では共晶組成であって結晶粒が微細となるため、前記熱処理あるいは熱処理後の加工により、振動減衰能が10×10−3以上の高減衰能合金が得られるが、この範囲から外れると化合物相となって粒界に析出し、振動減衰能を下げると同時に加工性を難しくするからである。
【0013】
また、Zn,Pb,Sbをそれぞれ30%以下、Ge,Si,Mg,Cd,In,Tl,Biをそれぞれ25%以下、Fe,Co,Ni,をそれぞれ20%以下、Cu,V,Cr,Mo,W,Nb,Ta,Ag,Au,白金族元素をそれぞれ10%以下、B,Caをそれぞれ5%以下のうちいずれか1種または2種以上の合計0.01〜35%であることが必要である。これらの範囲を外れると上述の理由に加えて、Zn,Pb,Sb,Ge,Si,Cd,In,Tl,Biは冷間塑性加工性の低下、Fe,Co,Niは強磁性相の現出、Cu,V,Cr,Mo,W,Nb,Ta,Ag,Au,白金族元素は冷間加工性および軽量性の低下、B,Caは耐食性の低下を来すからである。なお、希士類元素はランタン系元素からなり、元素単独の使用は勿論ミッシュメタルやジジムなどの希士類混合物を使用することも出来、また、白金族元素はRu,Rh,Pd,Re,Os,Ir,Ptからなるものであり、それらの副成分添加の効果は上述のように同一である。
【0014】
次に、上述合金を250℃以上融点未満の温度で5分間以上加熱後、毎秒0.1℃以上の速度で冷却すると限定したのは、それ以外の温度および時間あるいは冷却速度では適切な均質化処理ができないために、高振動減衰能を得るために適切な微細結晶粒が得られなくなるからである。
【0015】
また、熱処理を施した後の冷間加工において、その加工率を5%以上と限定したのは、それを下回ると、合金は殆ど焼鈍組織が保持されたままの状態となり、高減衰能を得るための充分な応力を与えられなくなる結果、10×10−3以上の高減衰能合金が得られなくなるからである。
【0016】
[実施例]
以下、実施例によりさらに詳しく本発明を説明する。
実施例 1
表1および表2に示すAl基の吸振合金のうち、代表例として、合金番号1の成分組成を有する合金について説明する。最初に、適宜配合された原料を予めアーク溶解して1つの合金となし、これを粉砕して小片としたものをアルミナ坩堝中でArを通じながら、高周波誘導溶解炉によって再び溶解し、鉄型に鋳込んで直径30mmの鋳塊を得た。なお、高周波溶解を行うに際しては、遮断材として、MgCl2、硼砂、CaF2、KClなどの全量5%以下のフラックスを、また、脱酸剤として、Mg、Beなどの全量5%以下の元素を加えてもよい。次に、この鋳塊を500℃で5時間加熱して徐冷する均質化処理を行った後、熱間鍛造および5%以下の冷間圧延によって厚さ1〜2mmの板とし、これから幅10mm、長さ100mmの直方体を切り取って試料とした。この試料は、蛍光X線分析によって正しい組成成分となっていることを確かめた。 表1中、合金番号4〜9は参考例である。また、表2中、合金番号10〜12、16〜19、23〜25、27〜32は参考例である。
【0017】
【表1】
【0018】
【表2】
【0019】
実施例 2
実施例1と同様にして作製した、種々のAl基吸振合金試料について、減衰能Q−1の測定を行った。減衰能測定はカンチレバー加振式一端撓曲法により、振動数400〜1,300Hz、最大歪み振幅γm=10×10−6により、常温で行った。
一般に固体材料の減衰量を表す減衰係数δと、自然振動の1Hz中に失われる振動エネルギーΔEおよび全振動エネルギーEとの間には、
δ=(1/2)(ΔE/E)
の関係があり、また、減衰係数δと減衰能Q−1との間には次のような関係がある。
Q−1=δ/π。
図1には、種々の加工率で冷間圧延加工を施した合金番号2の合金について、減衰係数δを測定し、上式によってQ−1を求め加工率依存性として示してある。図から明らかなように、合金のQ−1は加工率とともにほぼ直線的に上昇することがわかる。
【0020】
参考例3
実施例1と同様にして作製したAl基吸振合金のうち、Al−1%Zr−1%Nd合金にCu、V、Cr、AgあるいはPtを添加し、500℃から水焼入れした多元合金について、Q−1の添加元素濃度依存性を調べ図9に示した。図に見るように、Al合金のQ−1は、最初添加量とともに増大し、添加元素により3〜5%付近に極大を形成する傾向を示し、一定組成範囲内では10×10−3以上の優れた吸振合金となることがわかる。
【0021】
【表3】
【0022】
実施例 4
実施例1と同様にして作製した合金番号3の吸振合金にっいて、Li以外の組成を固定して基礎合金とし、冷間加工状態および500℃から水焼入れした状態のQ−1のLi濃度依存性を調べその結果を図2に示した。図に見るように、基礎合金のQ−1はいずれの状態においてもLiの添加量とともに増大し、冷間圧延状態よりも熱処理状態で大きくなり、優れた吸振合金となることがわかる。
【0023】
参考例1
実施例1と同様にして作製した合金番号5の吸振合金について、Ti以外の組成を固定して基礎合金とし、冷間加工状態および500℃から水焼入れした状態のQ−1のTi濃度依存性を調べその結果を図3に示した。図に見るように、基礎合金のQ−1はいずれの状態においてもTiの添加量とともに増大し、また、冷間加工状態よりも熱処理を施すことによって一層大きな値となり、優れた吸振合金となることがわかる。
【0024】
参考例2
実施例1と同様にして作製した合金番号7の吸振合金について、La以外の元素を固定して基礎合金とし、冷間加工状態および500℃から水焼入れした状態のQ−1のLa濃度依存性を調べその結果を図4に示した。図に見るように、基礎合金のQ−1はいずれの状態においてもLaの添加量とともに増大する傾向を示し、冷間圧延状態よりも熱処理状態で一層大きな値となり、優れた吸振合金となることがわかる。
【0025】
参考例3
実施例1と同様にして作製した合金番号9の吸振合金について、Nd以外の元素を固定して基礎合金とし、冷間加工状態および500℃から水焼入れした状態のQ−1のNd濃度依存性を調べその結果を図5に示した。図に見るように、基礎合金のQ−1はいずれの状態においても、Ndの添加量とともに増大する傾向を示し、また、冷間加工状態よりも熱処理を施すことによって一層大きな値となり、優れた吸振合金となることがわかる。
【0026】
参考例 4
実施例1と同様にして作製したAl基吸振合金のうち、Al−1%Li−1%Zr合金にZn、PbあるいはSbを添加し、500℃から水焼入れした多元合金について、Q−1の添加元素濃度依存性を調べその結果を図6に示した。図に見るように、Al合金のQ−1は、最初添加元素量とともに増大し10%付近に極大を形成する傾向を示し、一定組成範囲内では10×10−3以上の優れた吸振合金となることがわかる。
【0027】
実施例 4
実施例1と同様にして作製したAl基吸振合金のうち、Al−1%Li−1%Nd合金にGe、Si、MgあるいはCdを添加し、500℃から水焼入れした多元合金について、Q−1の添加元素濃度依存性を調べその結果を図7に示した。図に見るように、Al合金のQ−1は、最初添加元素量とともに増大し10%付近に極大を形成する傾向を示し、一定組成範囲内では10×10−3以上の優れた吸振合金となることがわかる。
【0028】
参考例 5
実施例1と同様にして作製したAl基吸振合金のうち、Al−1%Zr−1%La合金にFe、CoあるぃはNiを添加し、500℃から水焼入れした多元合金について、
Q−1の添加元素濃度依存性を調べその結果を図8に示した。図に見るように、Al合金のQ−1は、最初添加元素量とともに増大して、5〜10%付近に極大を形成する傾向を示し、一定組成範囲内では10×10−3以上の優れた吸振合金となることがわかる。
【0029】
参考例 6
実施例1と同様にして作製したAl基吸振合金のうち、Al−1%Zr−1%Nd合金にCu、V、Cr、AgあるいはPtを添加し、500℃から水焼入れした多元合金について、Q−1の添加元素濃度依存性を調べ図9に示した。図に見るように、Al合金のQ−1は、最初添加量とともに増大し、添加元素により3〜5%付近に極大を形成する傾向を示し、一定組成範囲内では10×10−3以上の優れた吸振合金となることがわかる。
【0030】
参考例 7
実施例1と同様にして作製したAl基吸振合金のうち、Al−1%La−1%Nd合金にBあるいはCaを添加し、500℃から水焼入れした多元合金について、Q−1の添加元素濃度依存性を調べ図10に示した。 図に見るように、Al合金のQ−1は最初添加量とともに増大し、添加元素により2〜3%付近に極大を形成する傾向を示し、一定組成範囲内では10×10−3以上の優れた吸振合金となることがわかる。
【0031】
実施例 5
実施例1と同様にして作製したAl−2%Li−5%Ti吸振合金について、機械的性質のうち耐力、引張強さおよび伸びの加工率依存性を調べその結果を図11に示した。機械的性質はインストロン型の引張試験機を用い、歪み速度1.3×10−2/sにより常温で行った。図に見るように、耐力、引張強さともに加工率とともに増大し、伸びは20%程度までは急激に、その後は緩やかに減少しているのがわかる。
【0032】
【発明の効果】
本発明は、原子比にて、Li単独あるいはLiとTiの合計0.01〜15%、Y,希土類元素から選ばれる1種または2種の合計0.01〜10%を含有し、残部がAlと不可避的不純物からなり、副成分として、Ge,Si,Mg,Cd,Inをそれぞれ25%以下、Fe20%以下、Ta10%以下、B及びCaの1種または2種の5%以下のうちいずれか1種または2種以上の合計0.01〜35%を添加してなる合金であり、振動減衰能が10×10−3以上の高吸振特性を有し、同時に軽量で加工性に優れた新規な特性も保有する吸振合金を提供するもので、騒音や振動を嫌う各種の用途に最適である。なお、本発明合金はAl基であるため、製造コストが低く安価な材料を提供できるという利点もある。
【図面の簡単な説明】
【図1】図1は合金番号2合金のQ−1の加工率依存性を示す特性図である。
【図2】図2は合金番号3合金のQ−1のLi濃度依存性を示す特性図である。
【図3】図3は合金番号5合金のQ−1のTi濃度依存性を示す特性図である。
【図4】図4は合金番号7合金のQ−1のLa濃度依存性を示す特性図である。
【図5】図5は合金番号9合金のQ−1のNd濃度依存性を示す特性図である。
【図6】図6はAl−1%Li−1%Zr合金にZn、PbあるいはSbを添加し、500℃から水焼入れした場合のQ−1の添加元素濃度依存性を示す特性図である。
【図7】図7はAl−1%Li−1%Nd合金にGe、Si、MgあるいはCdを添加し、500℃から水焼入れした場合のQ−1の添加元素濃度依存性を示す特性図である。
【図8】図8はAl−1%Zr−1%La合金にFe、CoあるいはNiを添加し、500℃から水焼入れした場合のQ−1の添加元素濃度依存性を示す特性図である。
【図9】図9はAl−1%Zr−1%Nd合金にCu、V、Cr、AgあるいはPtを添加し、500℃から水焼入れした場合のQ−1の添加元素濃度依存性を示す特性図である。
【図10】図10はAl−1%La−1%Nd合金にBあるいはCaを添加し、500℃から水焼入れした場合のQ−1の添加元素濃度依存性を示す特性図である。
【図11】図11はAl−2%Li−5%Ti合金の耐力、引張強さおよび伸びの加工率依存性を示す特性図である。[0001]
[Industrial application fields]
In the present invention, in terms of atomic ratio, Li (lithium) alone or a total of both Li and Ti (titanium) 0.01 to 15%, Y (yttrium) , one or two total selected from rare earth elements An alloy composed of 0.01 to 10%, or the main component thereof, and Ge (germanium), Si (silicon), Mg (magnesium), Cd (cadmium), and In (indium) as 25% or less, Fe (iron) 20% or less, Ta (thallium) 10% or less, B (boron) and Ca (calcium) 5% or less of one or two of any one or two or more in total 0.01 It relates to an Al alloy containing ~ 35%.
[0002]
[Prior art]
Conventionally, Al—Zn-based, Al—Cu—Ni-based, Ti—Ni-based alloys, and the like are known as typical lightweight and non-magnetic vibration-absorbing alloys. However, the former has the feature that the damping capacity is extremely large, but the specific gravity is relatively large, such as around 4 g / cm 3, and there is a defect that cannot be applied to a large-sized structure. There are a number of problems, such as the need for special manufacturing processes in order to produce a flake material with poor workability and high processing rate. As described above, the above-described known materials have advantages and disadvantages, and there has been a demand for a novel material having a high vibration damping ability and a light weight and good workability.
[0003]
[Problems to be solved by the invention]
These vibration-absorbing materials have their vibration-absorbing characteristics controlled by composition and heat treatment. However, in recent years, micro-precision equipment or large structures that are becoming more and more advanced are subjected to considerably complicated processing, and further, multi-stage heat treatment. The characteristics are obtained by applying.
Moreover, with the diversification of usage environments, it is required to realize these characteristics over a wide temperature range.
[0004]
As conditions to be provided in the vibration-absorbing material,
1. 1. High vibration absorption, that is,
[0005]
[Means for Solving the Problems]
Therefore, the present inventors have conducted various experiments and researches for the purpose of solving the above-mentioned problems, and as a result, Al—Li system or Al—Li—Ti system , which is essentially non-magnetic , has Y, The present invention has been completed by finding an alloy based on an alloy to which a rare earth element is added and further adding various elements in a complex manner.
[0006]
The present invention contains, by atomic ratio, Li alone or a total of 0.01 to 15% of Li and Ti, and a total of 0.01 to 10% of one or two selected from Y and rare elements The balance is mainly composed of Al and inevitable impurities, and as subcomponents, Ge, Si, Mg, Cd and In are 25% or less,
[0007]
The features of the present invention are as follows. The first invention contains at atomic ratio of 0.01 to 15% in total of Li and Ti, Y, one or two or total 0.01% to 10% of selected from Mareshi earth element, the balance Is composed of Al and inevitable impurities, and has an attenuation capacity of 10 × 10 −3 or more.
[0008]
The second invention, in atomic ratio, Li 0.01 to 15%, Y, contain one or two or total 0.01% to 10% of selected from rare earth elements, balance Al and inevitable impurities As subcomponents, Ge, Si, Mg, Cd, and In are each 25% or less,
[0009]
The alloy of the first invention is heated at a temperature of 250 ° C. or higher and lower than the melting point for 5 minutes or more and then cooled at a rate of 0.1 ° C. or more per second, or after cooling, a cold working with a cold working rate of 5% or more is performed. An alloy having a damping capacity of 10 × 10 −3 or more can be obtained.
[0010]
The alloy of the second invention is heated at a temperature of 250 ° C. or higher and lower than the melting point for 5 minutes or more and then cooled at a rate of 0.1 ° C. or more per second, or after cooling, a cold working rate of 5% or more is applied. An alloy having a damping capacity of 10 × 10 −3 or more can be obtained.
[0011]
[Action]
Since the Al alloy for vibration-absorbing material of the present invention is an Al-rich alloy, the lightness of Al is not lost even when alloyed with other elements, and because of its high cold workability, the accuracy of the product is high. It has the feature that cost can be reduced.
[0012]
In the Al alloy of the present invention, among the components necessary as a vibration-absorbing material, Li alone or a total of Li and Ti is 0.01 to 15% in terms of atomic ratio, and a total of one or two selected from Y and rare earth elements is 0 In this range, the eutectic composition is limited and the crystal grains become fine. Therefore, by the heat treatment or processing after the heat treatment, A high damping capacity alloy with a vibration damping capacity of 10 × 10 −3 or more can be obtained, but if it falls out of this range, it becomes a compound phase and precipitates at the grain boundary, which lowers the vibration damping capacity and at the same time makes the workability difficult. is there.
[0013]
In addition, Zn , Pb, and Sb are each 30% or less, Ge, Si, Mg, Cd, In, Tl, and Bi are each 25% or less, Fe, Co, and Ni are each 20% or less, Cu, V, Cr, Mo, W, Nb, Ta, Ag, Au, platinum group elements are each 10% or less, and B and Ca are each 5% or less, and a total of 0.01 to 35% of any one or more of them. is required. Outside these ranges, Zn, Pb, Sb, Ge, Si, Cd, In, Tl, and Bi deteriorate in cold plastic workability, and Fe, Co, and Ni exhibit the ferromagnetic phase in addition to the reasons described above. This is because Cu, V, Cr, Mo, W, Nb, Ta, Ag, Au, and platinum group elements decrease in cold workability and light weight, and B and Ca decrease in corrosion resistance. The rare element is composed of a lanthanum element, and a rare element mixture such as misch metal or didymium can be used as well as the element alone, and the platinum group elements are Ru, Rh, Pd, Re, It consists of Os, Ir, and Pt, and the effect of adding these subcomponents is the same as described above.
[0014]
Next, it was limited to heating the above-mentioned alloy at a temperature of 250 ° C. or higher and lower than the melting point for 5 minutes or more and then cooling at a rate of 0.1 ° C. or more per second. This is because the processing cannot be performed, so that appropriate fine crystal grains cannot be obtained to obtain a high vibration damping capability.
[0015]
Also, in the cold working after heat treatment, the processing rate is limited to 5% or more, below that, the alloy is almost in the state that the annealed structure is retained, and high damping ability is obtained. This is because a high damping capacity alloy of 10 × 10 −3 or more cannot be obtained as a result of not being able to give a sufficient stress.
[0016]
[Example]
Hereinafter, the present invention will be described in more detail with reference to examples.
Example 1
Of the Al-based vibration-absorbing alloys shown in Tables 1 and 2, an alloy having a component composition of Alloy No. 1 will be described as a representative example. First, an appropriately blended raw material is arc-melted beforehand to form one alloy, which is crushed into small pieces, melted again in a high-frequency induction melting furnace while passing Ar in an alumina crucible, and made into an iron mold An ingot having a diameter of 30 mm was obtained by casting. In addition, when performing high-frequency melting, a flux having a total amount of 5% or less such as MgCl 2 , borax, CaF 2 or KCl is used as a blocking material, and an element having a total amount of 5% or less such as Mg or Be is used as a deoxidizer. May be added. Next, the ingot was heated at 500 ° C. for 5 hours and then subjected to homogenization treatment, followed by hot forging and cold rolling of 5% or less to form a plate having a thickness of 1 to 2 mm, and a width of 10 mm. A rectangular parallelepiped having a length of 100 mm was cut out to prepare a sample. This sample was confirmed to have the correct composition by fluorescent X-ray analysis. In Table 1,
[0017]
[Table 1]
[0018]
[Table 2]
[0019]
Example 2
With respect to various Al-based vibration-absorbing alloy samples produced in the same manner as in Example 1, the damping capacity Q- 1 was measured. The damping capacity was measured at room temperature by a cantilever excitation type one-end bending method with a frequency of 400 to 1,300 Hz and a maximum strain amplitude γm = 10 × 10 −6 .
In general, between the damping coefficient δ representing the damping amount of the solid material and the vibration energy ΔE and total vibration energy E lost during 1 Hz of natural vibration,
δ = (1/2) (ΔE / E)
In addition, the following relationship exists between the damping coefficient δ and the damping capacity Q −1 .
Q −1 = δ / π.
In FIG. 1, the damping coefficient δ is measured for the alloy of
[0020]
Reference example 3
Among the Al-based vibration-absorbing alloys produced in the same manner as in Example 1, Cu, V, Cr, Ag or Pt was added to an Al-1% Zr-1% Nd alloy and water quenched from 500 ° C. The dependence of Q- 1 on the additive element concentration was examined and shown in FIG. As shown in the figure, Q −1 of the Al alloy increases with the initial addition amount, and shows a tendency to form a maximum in the vicinity of 3 to 5% by the added element, and is 10 × 10 −3 or more within a certain composition range. It turns out that it becomes an excellent vibration-absorbing alloy.
[0021]
[Table 3]
[0022]
Example 4
In the vibration-absorbing alloy of Alloy No. 3 produced in the same manner as in Example 1, the composition other than Li is fixed to form a base alloy, and the Li concentration in Q- 1 in a cold-worked state and water-quenched from 500 ° C. The dependence was examined and the result is shown in FIG. As can be seen from the figure, Q- 1 of the base alloy increases with the amount of Li added in any state, becomes larger in the heat treatment state than in the cold rolling state, and becomes an excellent vibration absorbing alloy.
[0023]
Reference example 1
About the vibration-absorbing alloy of Alloy No. 5 produced in the same manner as in Example 1, the composition other than Ti is fixed to obtain a base alloy, and the dependence of Q- 1 on the Ti concentration in the cold-worked state and the state quenched with water from 500 ° C. The results are shown in FIG . As shown in the figure, Q- 1 of the base alloy increases with the addition amount of Ti in any state, and becomes a larger value by performing heat treatment than in the cold working state, and becomes an excellent vibration absorbing alloy. I understand that.
[0024]
Reference example 2
Regarding the vibration-absorbing alloy of Alloy No. 7 produced in the same manner as in Example 1, elements other than La are fixed to form a basic alloy, and the La concentration dependence of Q −1 in a cold-worked state and a state quenched with water from 500 ° C. The results are shown in FIG . As shown in the figure, Q- 1 of the base alloy tends to increase with the amount of La added in any state, becomes a larger value in the heat treatment state than in the cold rolling state, and becomes an excellent vibration absorbing alloy. I understand.
[0025]
Reference example 3
About the vibration-absorbing alloy of Alloy No. 9 produced in the same manner as in Example 1, an element other than Nd is fixed to form a base alloy, and Q- 1 depends on Nd concentration in a cold-worked state and water-quenched from 500 ° C. The results are shown in FIG. As seen in the figure, Q- 1 of the base alloy shows a tendency to increase with the amount of Nd added in any state, and becomes a larger value by performing heat treatment than in the cold working state, which is excellent. It turns out that it becomes a vibration-absorbing alloy.
[0026]
Reference example 4
Of Al based vibration absorbing alloys prepared in the same manner as in Example 1, was added Zn, Pb or Sb in Al-1% Li-1% Zr alloy, the multi-alloy water quenching from 500 ° C., the Q -1 The dependency of the additive element concentration was examined and the result is shown in FIG. As can be seen from the figure, the Q- 1 of the Al alloy tends to increase with the amount of added elements at first and form a maximum in the vicinity of 10%, and within a certain composition range, an excellent vibration-absorbing alloy of 10 × 10 −3 or more I understand that
[0027]
Example 4
Of Al based vibration absorbing alloys prepared in the same manner as in Example 1, Ge to Al-1% Li-1% Nd alloy, Si, Mg is added, or Cd, the water quenching the multiple alloy from 500 ° C., Q - The dependency of 1 on the concentration of the added element was examined, and the results are shown in FIG. As can be seen from the figure, the Q- 1 of the Al alloy tends to increase with the amount of added elements at first and form a maximum in the vicinity of 10%, and within a certain composition range, an excellent vibration-absorbing alloy of 10 × 10 −3 or more I understand that
[0028]
Reference example 5
Among the Al-based vibration-absorbing alloys produced in the same manner as in Example 1, Fe, Co or Ni was added to an Al-1% Zr-1% La alloy, and the multi-element alloy was water-quenched from 500 ° C.
The dependence of the added element concentration on Q- 1 was examined and the result is shown in FIG. As shown in the figure, Q- 1 of the Al alloy tends to increase with the amount of added elements at first and form a local maximum in the vicinity of 5 to 10%, and is excellent at 10 × 10 −3 or more within a certain composition range. It turns out that it becomes a vibration-absorbing alloy.
[0029]
Reference Example 6
Among the Al-based vibration-absorbing alloys produced in the same manner as in Example 1, Cu, V, Cr, Ag or Pt was added to an Al-1% Zr-1% Nd alloy and water quenched from 500 ° C. The dependence of Q- 1 on the additive element concentration was examined and shown in FIG. As shown in the figure, Q −1 of the Al alloy increases with the initial addition amount, and shows a tendency to form a maximum in the vicinity of 3 to 5% by the added element, and is 10 × 10 −3 or more within a certain composition range. It turns out that it becomes an excellent vibration-absorbing alloy.
[0030]
Reference Example 7
Of Al based vibration absorbing alloys prepared in the same manner as in Example 1, was added B or Ca in Al-1% La-1% Nd alloy, the multi-alloy water quenching from 500 ° C., the added element of Q -1 The concentration dependency was examined and shown in FIG. As shown in the figure, the Q- 1 of the Al alloy increases with the addition amount at first, and shows a tendency to form a maximum in the vicinity of 2 to 3% by the added element, and is excellent at 10 × 10 −3 or more within a certain composition range. It turns out that it becomes a vibration-absorbing alloy.
[0031]
Example 5
With respect to the Al-2% Li-5% Ti vibration-absorbing alloy produced in the same manner as in Example 1, the dependency of yield strength, tensile strength and elongation on the processing rate among the mechanical properties was examined, and the results are shown in FIG. The mechanical properties were measured at room temperature using an Instron type tensile tester at a strain rate of 1.3 × 10 −2 / s. As can be seen from the figure, both the yield strength and tensile strength increase with the processing rate, and the elongation decreases rapidly to about 20% and then decreases gradually.
[0032]
【The invention's effect】
The present invention contains, in atomic ratio, Li alone or a total of 0.01 to 15% of Li and Ti, and a total of 0.01 to 10% of one or two selected from Y and rare earth elements , and the balance is Consists of Al and unavoidable impurities, and as subcomponents, Ge, Si, Mg, Cd, In are 25% or less, Fe20% or less, Ta10% or less, B or Ca, 5% or less of 1 type or 2 types, respectively It is an alloy formed by adding a total of 0.01 to 35% of any one or two or more types, and has a high vibration absorption characteristic with a vibration damping capacity of 10 × 10 −3 or more. At the same time, it is lightweight and has excellent workability. In addition, it provides vibration-absorbing alloys that also possess new characteristics, and is ideal for various applications where noise and vibration are disliked. Since the alloy of the present invention is based on Al, there is an advantage that an inexpensive material can be provided at a low manufacturing cost.
[Brief description of the drawings]
FIG. 1 is a characteristic diagram showing the processing rate dependence of Q- 1 of Alloy No. 2 alloy.
FIG. 2 is a characteristic diagram showing the dependence of Q- 1 on Li concentration in Alloy No. 3;
FIG. 3 is a characteristic diagram showing the Ti concentration dependence of Q −1 of Alloy No. 5 alloy.
FIG. 4 is a characteristic diagram showing the La concentration dependence of Q −1 of Alloy No. 7 alloy.
FIG. 5 is a characteristic diagram showing the Nd concentration dependence of Q −1 of Alloy No. 9;
FIG. 6 is a characteristic diagram showing the dependence of Q- 1 on the concentration of added elements when Zn, Pb or Sb is added to an Al-1% Li-1% Zr alloy and water-quenched from 500.degree. .
FIG. 7 is a characteristic diagram showing the dependency of Q- 1 on the concentration of added elements when Ge, Si, Mg or Cd is added to an Al-1% Li-1% Nd alloy and water-quenched from 500.degree. It is.
FIG. 8 is a characteristic diagram showing the dependence of Q- 1 on the concentration of added elements when Fe, Co or Ni is added to an Al-1% Zr-1% La alloy and water-quenched from 500.degree. .
FIG. 9 shows the dependence of Q- 1 on the concentration of added elements when Cu, V, Cr, Ag or Pt is added to an Al-1% Zr-1% Nd alloy and water-quenched from 500.degree. FIG.
FIG. 10 is a characteristic diagram showing the dependence of Q- 1 on the additive element concentration when B or Ca is added to an Al-1% La-1% Nd alloy and water quenching is performed from 500.degree.
FIG. 11 is a characteristic diagram showing the processing rate dependence of yield strength, tensile strength and elongation of Al-2% Li-5% Ti alloy.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25609399A JP4327952B2 (en) | 1999-08-06 | 1999-08-06 | Al alloy with excellent vibration absorption performance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25609399A JP4327952B2 (en) | 1999-08-06 | 1999-08-06 | Al alloy with excellent vibration absorption performance |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001049375A JP2001049375A (en) | 2001-02-20 |
JP4327952B2 true JP4327952B2 (en) | 2009-09-09 |
Family
ID=17287806
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25609399A Expired - Fee Related JP4327952B2 (en) | 1999-08-06 | 1999-08-06 | Al alloy with excellent vibration absorption performance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4327952B2 (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106967911B (en) * | 2017-02-27 | 2018-05-08 | 广东省工业分析检测中心 | One kind can anodic oxidation high-strength aluminum alloy and preparation method thereof |
CN106834828B (en) * | 2017-02-27 | 2018-11-20 | 广东兴发铝业有限公司 | A kind of offshore equipment aluminium alloy and preparation method thereof |
CN106967908B (en) * | 2017-02-27 | 2018-05-15 | 广东省材料与加工研究所 | A kind of high strength anti-corrosion Al-Mg line aluminium alloys and preparation method thereof |
CN106967910B (en) * | 2017-02-27 | 2018-05-15 | 广东省材料与加工研究所 | A kind of high intensity Al-Zn-Mg line aluminium alloys and preparation method thereof |
CN106939387B (en) * | 2017-02-27 | 2018-11-20 | 广东兴发铝业有限公司 | A kind of car insurance bar aluminium alloy and preparation method thereof |
CN107099710A (en) * | 2017-06-28 | 2017-08-29 | 安徽华飞机械铸锻有限公司 | A kind of aluminium copper and its casting method |
CN107326204B (en) * | 2017-07-07 | 2018-07-06 | 江西金利城市矿产股份有限公司 | A kind of manufacturing method of aviation alloyed aluminium material |
CN107699753A (en) * | 2017-08-31 | 2018-02-16 | 天长市良文运动器材有限公司 | A kind of bat aluminum alloy materials and preparation method thereof |
CN108570579A (en) * | 2018-04-11 | 2018-09-25 | 上海交通大学 | A kind of scandium-containing casting aluminium lithium alloy and preparation method thereof |
CN108411226A (en) * | 2018-06-01 | 2018-08-17 | 合肥展游软件开发有限公司 | A kind of preparation method improving tensile strength mechanical device alloy |
RU2716568C1 (en) * | 2019-12-24 | 2020-03-12 | Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" | Deformed welded aluminum-calcium alloy |
CN111575613B (en) * | 2020-05-08 | 2021-06-04 | 中南大学 | Cryogenic electric pulse treatment method for removing residual stress of ultra-fine grain aluminum-lithium alloy thin strip |
CN112281029A (en) * | 2020-10-09 | 2021-01-29 | 程朝刚 | Aluminum alloy material and preparation method thereof |
CN112725643A (en) * | 2020-12-01 | 2021-04-30 | 浙江富丽华铝业有限公司 | Production process of aluminum profile for automobile collision energy-absorbing component |
CN112831702A (en) * | 2020-12-31 | 2021-05-25 | 安徽鑫铂铝业股份有限公司 | Al-Zn-Mg aluminum profile for rail transit |
-
1999
- 1999-08-06 JP JP25609399A patent/JP4327952B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2001049375A (en) | 2001-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2001049371A (en) | Al-Zn ALLOY EXCELLENT IN VIBRATION ABSORBING CAPACITY AND ITS PRODUCTION | |
JP6839213B2 (en) | Boron-doped high entropy alloy and its manufacturing method | |
JP4327952B2 (en) | Al alloy with excellent vibration absorption performance | |
CN104619870B (en) | Show the hyperelastic Cu Al Mn system's alloy materials and its manufacture method of stabilization | |
WO2012026354A1 (en) | Co-based alloy | |
JPS63157831A (en) | Heat-resisting aluminum alloy | |
EP1340825A2 (en) | Ni-base alloy, heat-resistant spring made of the alloy, and process for producing the spring | |
Chiba et al. | Ductilization of Ni3Al by macroalloying with Pd | |
JP4756974B2 (en) | Ni3 (Si, Ti) -based foil and method for producing the same | |
GB1558621A (en) | High dumping capacity alloy | |
CN114774785A (en) | Low-cost high-performance iron-based medium-entropy alloy | |
JP2000328157A (en) | Copper alloy sheet excellent in bending workability | |
JP2004238720A (en) | Shape memory alloy | |
Chiba et al. | Correlation between ductility and ordering energy of Ni3Al | |
JP2020026568A (en) | Titanium alloy, method for producing the same and engine component including the same | |
JP2909089B2 (en) | Maraging steel and manufacturing method thereof | |
JPS5924178B2 (en) | Square hysteresis magnetic alloy and its manufacturing method | |
JPH06184700A (en) | Alloy with high strength, non-magnetism, and low thermal expansion | |
JP3407054B2 (en) | Copper alloy with excellent heat resistance, strength and conductivity | |
JP2002097537A (en) | Co-ni based heat resistant alloy and manufacturing method | |
JP3626507B2 (en) | High strength and high ductility TiAl intermetallic compound | |
US4131457A (en) | High-strength, high-expansion manganese alloy | |
US5368660A (en) | High temperature TiAl2 -based ternary alloys | |
US6245164B1 (en) | Dual-phase Cr-Ta alloys for structural applications | |
JPH09316569A (en) | Copper alloy for lead frame and its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060208 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20060208 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060215 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070827 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070911 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071106 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080408 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080530 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090609 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090612 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120619 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120619 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120619 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130619 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |