JPH0456763B2 - - Google Patents

Info

Publication number
JPH0456763B2
JPH0456763B2 JP60140628A JP14062885A JPH0456763B2 JP H0456763 B2 JPH0456763 B2 JP H0456763B2 JP 60140628 A JP60140628 A JP 60140628A JP 14062885 A JP14062885 A JP 14062885A JP H0456763 B2 JPH0456763 B2 JP H0456763B2
Authority
JP
Japan
Prior art keywords
getter
gas
nitrogen
nitrogen gas
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60140628A
Other languages
Japanese (ja)
Other versions
JPS623006A (en
Inventor
Kyoshi Nagai
Bofuiito Kuraudeio
Dooni Fuaburitsuio
Suuchii Maruko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Sanso Co Ltd
Original Assignee
Taiyo Sanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Sanso Co Ltd filed Critical Taiyo Sanso Co Ltd
Priority to JP60140628A priority Critical patent/JPS623006A/en
Priority to CA000512229A priority patent/CA1300346C/en
Priority to DE3621013A priority patent/DE3621013C2/en
Priority to FR8609026A priority patent/FR2584062B1/en
Priority to BE2/61004A priority patent/BE904998A/en
Priority to GB8615619A priority patent/GB2177080B/en
Priority to KR1019860005146A priority patent/KR930006690B1/en
Priority to IT20963/86A priority patent/IT1204420B/en
Priority to NL8601692A priority patent/NL192104C/en
Priority to SE8602870A priority patent/SE463149B/en
Publication of JPS623006A publication Critical patent/JPS623006A/en
Publication of JPH0456763B2 publication Critical patent/JPH0456763B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/04Purification or separation of nitrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/04Purification or separation of nitrogen
    • C01B21/0405Purification or separation processes
    • C01B21/0494Combined chemical and physical processing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/04Purification or separation of nitrogen
    • C01B21/0405Purification or separation processes
    • C01B21/0433Physical processing only
    • C01B21/045Physical processing only by adsorption in solids
    • C01B21/0483Physical processing only by adsorption in solids in getters
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0001Separation or purification processing
    • C01B2210/0003Chemical processing
    • C01B2210/0004Chemical processing by oxidation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0001Separation or purification processing
    • C01B2210/0009Physical processing
    • C01B2210/0014Physical processing by adsorption in solids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0001Separation or purification processing
    • C01B2210/0009Physical processing
    • C01B2210/0014Physical processing by adsorption in solids
    • C01B2210/0023Physical processing by adsorption in solids in getters
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0042Making ultrapure specific gas

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Gas Separation By Absorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treating Waste Gases (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、窒素の超精製装置並びに精製方法に
係り、詳しくは、従来の精製方法で得られる純度
の高められた窒素を更に高純度に精製する超精製
装置並びに、この装置を用いて効果的に窒素の精
製を行う方法に関するものであり、近時飛躍的な
発展を遂げつつある高集積度の集積回路の製造の
分野や、学術研究に要請される高純度の窒素を容
易且つ確実に入手し得る手段を提供することをそ
の目的とする。 〔従来の技術〕 窒素ガスは、電子工業、化学工業、鉄鋼、造船
等の分野で次第にその需要を増加しつつある有用
なガスである。 圧縮機を用いて空気を圧縮し、次に断熱膨脹を
行わせ、この操作を反覆して得た液体空気を高圧
下に精溜して純度の高い液体窒素を製造する方法
は、従来から工業的に実施されている窒素の製造
方法であり、液体窒素或は気体窒素として容器に
充填され市販されている。 窒素は代表的な不活性ガスであり、金属の熱処
理加工、半導体製造工程中に於ける雰囲気ガスと
して上述の如き分野に広く使用されているが、特
に電子工業向けなどの超精密微細加工に使用され
る場合には、加工工程に使用する直前に更に精製
して不純物を除去し高純度を確保することが要求
される。特に工業的に大量に使用する際には、液
体窒素を気化させて配管を通して使用するが、気
化した窒素中に含まれる酸素、一酸化炭素、二酸
化炭素、水素、炭化水素、水分などの不純物を如
何にして迅速確実に除去するかが重要な課題とな
る。 かゝる不純物を除去して、窒素を高純度のもの
に精製するため従来から各種の窒素ガス精製装置
が市販され使用されている。例えば、本件特許出
願人の一員である大陽酸素株式会社から昭和49年
(1974年)以来市販されているガス精製装置〔商
品型番でTIP−10、TIP−30、TIP−60、TIP−
100、TIP−200、TIP−300、TIP−400、TIP−
500〕などの市販のガス精製装置では、ニツケル、
銅などの金属酸化物を用いた酸化反応剤を用い
て、一酸化炭素、炭化水素、水素等を酸化し、二
酸化炭素、水に変化させた後、ゼオライト系の分
子篩や活性炭などを用いて不純物を吸着除去する
ことによりガスの精製が行われる。高純度の窒素
を簡単に得るのにこれら市販のガス精製装置は便
利であり、広く使用されている。 これ等の市販のガス精製装置で精製されたガス
中の不純物は、該装置のカタログによれば次の如
き水準のものである。
[Industrial Application Field] The present invention relates to an ultra-purification device and a purification method for nitrogen, and more specifically, an ultra-purification device and a purification method for purifying nitrogen with increased purity obtained by conventional purification methods to an even higher purity. This is a method for effectively purifying nitrogen using this equipment, and is useful in the field of manufacturing highly integrated circuits, which has been making rapid progress in recent years, as well as in the field of high purity required for academic research. The purpose is to provide a means to easily and reliably obtain nitrogen. [Prior Art] Nitrogen gas is a useful gas whose demand is gradually increasing in fields such as electronic industry, chemical industry, steel, and shipbuilding. The method of producing high-purity liquid nitrogen by compressing air using a compressor, then performing adiabatic expansion, and then repeating this process to rectify the obtained liquid air under high pressure has been an industrial method. This is a method for producing nitrogen that is commonly practiced, and it is sold commercially by filling containers as liquid nitrogen or gaseous nitrogen. Nitrogen is a typical inert gas and is widely used in the fields mentioned above as an atmospheric gas during metal heat treatment and semiconductor manufacturing processes, but it is especially used in ultra-precision microfabrication for the electronics industry. In such cases, it is necessary to further refine the product immediately before using it in the processing step to remove impurities and ensure high purity. Especially when used in large quantities industrially, liquid nitrogen is vaporized and used through piping, but impurities such as oxygen, carbon monoxide, carbon dioxide, hydrogen, hydrocarbons, and moisture contained in the vaporized nitrogen are removed. An important issue is how to remove it quickly and reliably. In order to remove such impurities and purify nitrogen to high purity, various nitrogen gas purifiers have been commercially available and used. For example, gas purification equipment (product model numbers TIP-10, TIP-30, TIP-60, TIP-
100, TIP−200, TIP−300, TIP−400, TIP−
Commercially available gas purifiers such as
Carbon monoxide, hydrocarbons, hydrogen, etc. are oxidized using an oxidizing agent using metal oxides such as copper, converting them into carbon dioxide and water, and then impurities are removed using zeolite-based molecular sieves or activated carbon. The gas is purified by adsorbing and removing it. These commercially available gas purifiers are convenient and widely used for easily obtaining high purity nitrogen. According to the catalog of the equipment, the impurities in the gas purified by these commercially available gas purification equipment are as follows.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述の市販のガス精製装置は、高純度の窒素ガ
スを得るのに簡便な優れたものであるが、最近の
半導体工業の進歩からすると将来の高集積度回路
の製造に於ては現在よりも更に超精密微細な加工
が要求されることから、更に高純度の窒素ガスが
求められることが予想され、既に試験用の高純度
ガスについては現実に強い要請がある。この要請
に応え、不純物の濃度をppmオーダーで更に1桁
低下させ、0.01ppm以下程度にするのが、本発明
の解決しようとする技術的課題である。 〔問題点を解決するための手段〕 上述の如く、窒素を精製して、従来よりも不純
物濃度をppmオーダーで更に1桁下げる手段につ
いて、本発明者等は鋭意研究を重ねた結果、従来
のガス精製装置による精製を行つた高純度ガスを
更に精製するための超精製装置並に方法を見出
し、本発明を完成するに至つた。 本発明の装置は、精製すべき窒素ガスの入口、
精製した窒素ガスの出口、上記ガスの入口と上記
ガスの出口とを結ぶガス流路、該ガス流路の中間
に設けた15〜30重量%の鉄と85〜70重量%のジル
コニウムとの合金より成るゲツターを充填した少
くとも1個のゲツター室、及びゲツターの吸着反
応温度を維持するための加熱装置を含む超精製装
置である。 また本発明の方法は、精製しようとする窒素ガ
スを、金属酸化物系酸化反応剤層中を酸化反応温
度に於て通過させた後、ゼオライト系分子篩など
の吸着剤層を通過させる既知のガス精製法により
精製し、得られる不純物含量の低い窒素ガスを、
更に、20〜500℃の温度に保持した15〜30重量%
の鉄と、85〜70重量%のジルコニウムとの合金よ
り成るゲツターを充填したゲツター層を通して窒
素中に含まれる不純物を吸着除去せしめることを
特徴とする窒素の精製方法をその基本構成とす
る。 本発明に於て用いる15〜30重量%の鉄と85〜70
重量%のジルコニウムとより成る合金系ゲツター
としては、アメリカ特許第4306887号明細書に記
載されているものを用いることができる。 窒素を吸着せず他の不純物を選択的に吸着する
という上記鉄−ジルコニウム合金より成るゲツタ
ーの特性から、特に好ましいのは、22〜25重量%
の鉄と75〜78重量%のジルコニウムとの合金から
成るゲツターである。 これ等の鉄−ジルコニウム系合金より成るゲツ
ターは、温度20〜500℃で、実質的に窒素を吸着
することなく、二酸化炭素、水分、水素等の不純
物を実際上完全に吸着除去せしめる。 鉄−ジルコニウムの組成は、上記鉄15〜30重量
%、ジルコニウム85〜70重量%の範囲が好まし
い。ジルコニウムがこの範囲よりも多くなると合
金は吸着されてはならない精製すべく窒素を実質
的な量で吸着する。ジルコニウムがこの範囲より
も少なくなると窒素からの活性ガスの除去(吸
着)効率が低下する。 ゲツター合金は、金属間化合物の形態で使用す
ることが好ましい。金属間化合物は微粉化し易い
ので製造上扱い易く、表面積が大きくなるので活
性も大きくなる。 これ等の合金の製法については、鉄−ジルコニ
ウム−バナジウム三元合金についてその製造法が
記載されている米国特許第4312669号明細書に開
示されている方法に準じて、実質的に、バナジウ
ム成分の添加を省略して同様の操作を行うことに
よつて所望の合金を製造することができるが、イ
タリア国、ミラノ市のサエス・ゲテルス・ソチエ
タ・ペル・アチオニ(SAES Getters S.p.A)の
製造・販売する市販製品が好適に使用される。 上記二成分合金系ゲツターは、精製すべき窒素
ガスの入口を精製した窒素ガスの出口を設けた外
容器の、上記ガスの入口と上記ガスの出口とを結
ぶガス流路の中間に設けた少くとも1個の充填部
に充填し、ゲツターの吸着反応温度を保持するた
めに外容器に付属して設置された加熱装置と共
に、本発明の窒素の超精製装置を構成する。この
装置に、精製すべき窒素を通して不純物をゲツタ
ーに接触させ吸着除去する。 ゲツター充填部に使用するゲツターの形状とし
ては、粉末状であるよりも、ペレツト状である方
が、ゲツター層中のゲツター同志の間にガス流通
の為の隙間が確保され易く有利である。またゲツ
ターが大きさ不揃いの小塊状であるよりも、粒径
の揃つたペレツト状である方が、ゲツター層中の
空隙率を一定にし易く、装置の設計に当つて便利
である。従つて、ゲツターは、粉末状或は小塊状
であつても差支えないが、工業的に窒素の超精製
装置を設計製作する場合、合金粉末を圧縮加工し
て作つたペレツト状のゲツターを使用するのが好
ましい方法である。 本発明の装置には、ゲツターの吸着反応温度を
保持するための加熱装置が設けられるが、後の実
施例の項でも説明する様に、加熱装置は種々の形
態で用いることができる。加熱方式としては電気
加熱、熱媒流通加熱等が、加熱位置も、ガスがゲ
ツター充填部に入る前の予熱部、ゲツター充填部
の周囲、ゲツター充填部の内部等に、適宜選定す
ることができる。ゲツターに於ける吸着反応が円
滑に進み、且つ、なるべく均等な温度分布の得ら
れる加熱が行われ得ればよいので、必要に応じ、
加熱方法や加熱位置は、種々組合せて設計して差
支えない。 本発明の装置に於けるゲツターの充填部は、外
容器内にゲツターを直接充填した構成とすること
もできるが、ゲツターの充填部が、ゲツターを充
填したカートリツジの少くとも1個より成り、該
カートリツジが外容器に対して着脱容易で交換可
能なものとすることも好ましい態様である。本発
明に於けるゲツター成分は、不純物を化学変化を
伴う化学吸着によつて吸着除去するものであるか
ら、化学量論的に消費されて一定の寿命を有し、
一定期間使用したらゲツターを取替えないと窒素
の超精製の目的を達し得なくなる。そこで超精製
装置をゲツターを収納した外容器ごと一体的に取
扱い適時装置を全体的に交換する方法を採用する
こともできるが、ゲツターをカートリツジに収容
し、適時カートリツジ部分のみを外容器から外し
て交換する方法も採用することができる。 カートリツジの態様としては、ガスが通過し易
い様に孔を穿つた金属容器を用いるのが好ましい
態様である。 本発明の超精製装置は、含有不純物各成分を
夫々0.01ppm以下程度に精製することを目的にし
ているので、窒素ガスと接触する装置材料として
は、ガス吸着の少い表面緻密で平滑に研磨或いは
焼鈍した、しかも腐蝕によつて粉末が出たりする
ことのない金属を用いることが好ましい。かゝる
金属材料の実例としては、ステンレス鋼、ハステ
ロイ、インコロイ、モネル合金等が挙げられる
が、これ等に限られるものではなく、上記の条件
に適合する金属材料であれば各種のものを適宜選
択使用することができる。 窒素ガスと接触する装置材料としては、ガス吸
着の少い表面緻密で平滑に研磨或いは焼鈍したも
のが好ましいことを述べたが、その平滑の程度を
数値的に表現すれば、窒素ガスと接触する内表面
の表面粗さが、中心線平均粗さ(Ra)値〔日本
工業規格(JIS)B0601−1970〕で0.5μm以下好ま
しくは0.25μm以下になる様に研磨された材料が
好ましい。この数値は、臨界的ではないが、間違
いのない安全範囲として奨められるところであ
る。 内面研磨或いは焼鈍により平滑にした部分はゲ
ツター室を通過させたガスと接触する部分に使用
して有効であるが、ゲツター室通過ガスと接触す
る部分に使用しても差支えないことは勿論であ
る。装置の設計上、ゲツター室通過後のガスの接
触する部分のみに使用することは寧ろ困難である
場合も多い。研磨や焼鈍により内面を平滑にした
管を用いたりベーキングを行うことにより、新し
い装置であつても高純度のガスや定常的に得られ
るまでの時間を大幅に短縮できる。 本発明の装置に於て、その技術的課題を解決す
るための手段は、この様に種々その実施態様を変
えて実施することができ、以上の例示も止まら
ず、本発明の範囲を逸脱しない限り、種々変形し
た態様に於て実施することができる。 本発明の方法に於て精製しようとする窒素ガス
を、金属酸化物系酸化反応剤層中を酸化反応温度
に於て通過させることを必須としているのは、窒
素ガス中に含まれる炭化水素や一酸化炭素を水及
び二酸化炭素に転化せしめ、ゼオライト系分子篩
などの吸着剤層を通過させて殆んど吸着除去する
ことにより、本発明に於て使用するゲツターのメ
タン等炭化水素に対する吸着能の不足を補う必要
があるからである。 既知のガス精製法により精製し、得られる不純
物含量の低い窒素ガスは、20〜500℃の温度に保
持した15〜30重量%の鉄と85〜70重量%のジルコ
ニウムとの合金より成るゲツターを充填したゲツ
ター層を通して窒素中に含まれる不純物を吸着除
去させる。ゲツター層中で窒素ガス中の不純物を
吸着させる反応温度が、20℃以下では、不純物は
ゲツター表面に吸着するが、ゲツター内部への拡
散が期待されず、ゲツターの本来有する能力が充
分発揮されないまゝ、表面飽和の状態で実際上吸
着が停止してしまう欠点があり、20〜500℃の範
囲では、ゲツターの吸着能が充分発揮されて、不
純物はゲツター内部にまで拡散するので、ゲツタ
ーの見掛けの寿命も長くなる。 一方500℃以上の温度領域では、窒素ガスがゲ
ツターに吸着され易くなるので、反応温度を500
℃以上に設定することは好ましくない。 上記の温度範囲20〜500℃の中でも最も好適に
は350〜450℃の温度範囲が選ばれる。この範囲で
は、吸着速度も大きく、不純物の内部への拡散が
充分行われる反面、水素の脱着の惧れも皆無であ
り、最も推奨される反応温度である。 <実施例> 以下本発明をその実施例に基いて更に詳細に説
明する。 本発明による窒素の超精製装置の実例を第1図
から第9図に例示した。第1図は、窒素ガス入口
1を上部に、窒素ガス出口2を下部に設けたステ
ンレス鋼管〔日本工業規格JIS G3448に記載され
ているSUS 304 TP〕から製造し断熱材12で
囲んだ外容器3の頂部に蓋体14を付け、蓋体1
4を通して、外容器3内部の空間25内に加熱装
置としてヒータ6を配置し、その下部に上部・下
部のバツフアー16及び15の間に充填したゲツ
ター4の層を設け、これ等は外容器3に取付けた
支持具13で支持された目皿7の上に置いた窒素
の超精製装置を示す。ゲツターとしては、サエ
ス・ゲテルス・ソチエタ・ペル・アチオニ社から
製造販売されている鉄(22〜25重量%)−ジルコ
ニウム(75〜78重量%)合金ゲツターで直径3
mm、高さ4mmの円柱型ペレツト状のものを用い
た。 15,16に示したバツフアは、ゲツター層中
へのガス流通の偏りをなくしたり、ゲツター微粉
末の飛散を防止しまた温度分布を均等ならしめる
ために、外径1〜4mmのアルミナ製小球を高さ約
5〜50mm程度に層状に積上げたものである。 なお、本実施例では、バツフアーにアルミナ製
小球を使用しているが、これはステンレス鋼製の
小球や網目の細かなステンレス鋼製の網を重ねた
ものに変えてもよく、また、バツフアーは必ずし
も使用しなくてもよいものであつて、バツフアー
を使用しない別の実施例も後に示される。 このバツフアー15,16の上部にはそれぞれ
温度センサー18,17を挿入した測温シーズ2
0,19が付設されている。温度センサーとして
は、クロメル−アルメル熱電対を使用した。 精製すべき窒素ガス9は入口1より導入され、
ヒータ6により加熱され、上部バツフアー16に
より均一な流れにされてゲツター層4に流入し、
不純物ガスを吸着された精製ガスは目皿7を通り
抜けて出口2から引出される。 第2図以下にさらに他の装置例を示す。なお、
各図を通じて共通の部分は同一の参照記号で示
し、その説明は省略または必要な限度に留める。 第2図は外容器3の周りに電熱ヒータ21を配
し、またその温度を計測する熱電対22を設けた
点を除けば第2図と同様に構成した超精製装置を
示す。この例によればゲツター層の温度制御が容
易になる。 第1,2図の例ではゲツター層4を外容器3の
内部に直接充填したが、別個に形成することもで
きる。第3図はこの例を示し、ゲツター4及びバ
ツフアー15,16は目皿7,7を有するカート
リツジ5に収容されている。従つて、一定期間使
用した後、蓋14を外してカートリツジ5を新し
いものと交換すれば良く、第1〜2図のものより
も能率的な作業が可能となる。 第4図はさらに他の装置11を示すもので、外
容器3は内壁24及び外壁23の2重構造となつ
ており、熱媒体入口30から出口31に向けてス
チーム等の熱媒体、場合によつては冷却媒体が流
通されるようになつている。内壁の内部にはカー
トリツジ5が挿入されている。カートリツジ内に
はゲツター4が充填され、その中に電熱ヒータ6
が埋設されており、リード8(一方のみ図示)、
端子12を介して外部電源に接続される。カート
リツジ5は支持板13により支持された同心状の
多孔内外壁26を有する。内壁24の下端にはフ
ランジ27が設けてあり、ここをガス入口導管
1、出口導管2が貫通している。導管2はカート
リツジ5の支持作用を行う。精製すべき窒素ガス
9は入口1から導入され、外側空間25に入り、
適当に加温された後多孔壁26から所定温度に維
持されたゲツター層4に流入し、精製されて内側
空間25′に流出し、出口2に引出される。 第5図は別の超精製装置11を示す。外容器3
は2重壁になつており、これらの間の空間に入口
30から熱媒体を導入し、出口31から排出する
ことにより温度制御を行うことができる。内壁内
には多孔壁で囲まれたゲツター層4を有するカー
トリツジ5を配置し、またその周囲にはヒータ6
を配置し、リード8により外部電源に接続する。
精製すべき窒素ガス9は入口1より導入されて熱
媒により予熱され、次いでヒータ6により所定温
度に維持されたゲツター層4を通過することによ
り精製され、出口2から引出される。 第6図は他の超精製装置11を示し、円筒状外
容器3は上下に設けた板(図示せず)によりカー
トリツジ5を支持する。カートリツジ5は内部に
リード8を有する電気ヒータ6を配し、上下の多
孔質板またはバツフアー層の間にゲツター4を充
填している。 第7図はさらに他の装置11を示し、断熱材1
2を充填した内外壁を有する外容器3の内部には
内筒が設けられ、間の空間にゲツター4が充填さ
れている。中心の空間にはセラミツク棒36の周
りに巻いた電気ヒータ6が配置される。精製すべ
き窒素ガス9は入口1より流入し、ゲツター4を
通つて精製されたガスは出口2より出て行く。 第8図はさらに他の超精製装置を示す。この例
は第3図の変形であり、精製窒素の熱を回収する
手段を有する。すなわち、精製すべき窒素9は装
置下部に設けられた熱交換器28に入り、出口ガ
スと熱交換して予熱された後、断熱材12により
囲まれた導管29を経て装置上部の入口1からゲ
ツター層4へ向けて流れる。精製ガスは熱交換器
28へ入つて冷却された後に、出口2に出て行
く。 第9図はさらに他の装置の例を示す。外容器3
は2重壁円筒であり、それらの間に入口33から
熱媒を導入し出口34から引出すようになつてい
る。外容器3の内部空間には気密支持筒35が配
置され、その内部が複数の外孔板7により水平に
仕切られていてそれらの各一対で形成される室に
ゲツター層4が充填されている。またゲツター層
の中には電気ヒータ6が配置され、リード10,
10′により給電される。精製すべき窒素ガス9
は入口1より流入し、精製された窒素ガスは出口
2に流出する。 次に、具体的なゲツター組成を用いた実施例を
説明する。 尚、以下の例でガス分析に用いた装置は次の通
りである。 ガス分析装置−ガスクロマトグラフ−質量分析器 TE−360B(Anelva Coup製) ガスクロマトグラフ−F.I.D MODEL GC−9A(島津製作所製) 水分計−ハイグロメータMODEL 700
(Panametric Co.製) 表面粗さ計−サーフコーダMODEL SE−3H
(KOSAKA Laboratory Co.Ltd) 例 1 重量比にしてZr76.6%、Fe23.4%の合金組成よ
り成り、粒子径が50〜250μmの粉末非蒸発性ゲツ
ター粉末を第1図に示した窒素ガス超精製装置に
充填した。ステンレス鋼(SUS304−既述の規格
名)製円筒は外径21.7mm、内径17.5mm、長さ350
mmであつた。そのうち200mmはゲツターで充填さ
れ、上下はアルミナ球バツフア材を10mmの厚さに
充填した。この超精製装置に温度25℃、圧力6
Kg/cm2(ゲージ圧)の不純物含有窒素ガスを0.17
/分の流量で導入した。窒素は375℃に維持し
たゲツター層に流通し、出口から圧力4Kg/cm2
(ゲージ圧)で流出した。ガスを流し始めてから
40分後に、出口ガスの不純物レベルを測定して表
の結果を得た。
The above-mentioned commercially available gas purification equipment is convenient and excellent for obtaining high-purity nitrogen gas, but recent advances in the semiconductor industry suggest that it will be easier to manufacture highly integrated circuits in the future than at present. Furthermore, as ultra-precision and fine processing is required, it is expected that even higher purity nitrogen gas will be required, and there is already a strong demand for high purity gas for testing. In response to this demand, the technical problem to be solved by the present invention is to further reduce the concentration of impurities by an order of magnitude on the order of ppm, to about 0.01 ppm or less. [Means for Solving the Problems] As mentioned above, the inventors of the present invention have conducted extensive research into methods for purifying nitrogen and lowering the impurity concentration by an order of magnitude on the order of ppm compared to conventional methods. The present invention was completed by discovering an ultra-refining device and method for further refining high-purity gas that has been purified by a gas purifying device. The device of the invention comprises an inlet for the nitrogen gas to be purified;
An outlet for purified nitrogen gas, a gas channel connecting the gas inlet and the gas outlet, and an alloy of 15 to 30% by weight iron and 85 to 70% by weight zirconium provided in the middle of the gas channel. The ultra-purification apparatus includes at least one getter chamber filled with a getter consisting of the following: and a heating device for maintaining the adsorption reaction temperature of the getter. In addition, the method of the present invention involves passing the nitrogen gas to be purified through a metal oxide oxidation reactant layer at the oxidation reaction temperature, and then passing it through an adsorbent layer such as a zeolite molecular sieve. Nitrogen gas with low impurity content is purified using a purification method,
Furthermore, 15-30% by weight kept at a temperature of 20-500℃
The basic structure of the nitrogen purification method is that impurities contained in nitrogen are adsorbed and removed through a getter layer filled with a getter made of an alloy of iron and 85 to 70% by weight of zirconium. 15-30% by weight of iron and 85-70% by weight used in the present invention
As the alloy getter comprising zirconium in the weight percent, those described in US Pat. No. 4,306,887 can be used. Particularly preferred is 22 to 25% by weight because of the characteristics of the getter made of the above-mentioned iron-zirconium alloy that it selectively adsorbs other impurities without adsorbing nitrogen.
The getter consists of an alloy of iron and 75-78% by weight zirconium. These getters made of iron-zirconium alloys can virtually completely adsorb and remove impurities such as carbon dioxide, moisture, and hydrogen at temperatures of 20 to 500° C. without adsorbing substantially nitrogen. The iron-zirconium composition is preferably in the range of 15 to 30% by weight of iron and 85 to 70% by weight of zirconium. Above this range of zirconium, the alloy adsorbs substantial amounts of nitrogen which should not be adsorbed. If the amount of zirconium is less than this range, the efficiency of removing (adsorbing) active gas from nitrogen will decrease. The Getter alloy is preferably used in the form of an intermetallic compound. Since intermetallic compounds are easily pulverized, they are easy to handle in production, and their surface area is large, which increases their activity. The manufacturing method for these alloys is substantially the same as that disclosed in U.S. Pat. The desired alloy can be manufactured by performing the same operation without adding any additives, but it is manufactured and sold by SAES Getters SpA of Milan, Italy. Commercially available products are preferably used. The above-mentioned binary alloy type getter is provided in the middle of a gas flow path connecting the above-mentioned gas inlet and the above-mentioned gas outlet in an outer container in which an inlet for the nitrogen gas to be purified is provided and an outlet for the purified nitrogen gas. Both are filled into one filling section, and together with a heating device attached to the outer container to maintain the getter adsorption reaction temperature, constitute the nitrogen ultra-purification device of the present invention. Nitrogen to be purified is passed through this device and impurities are brought into contact with the getter and adsorbed and removed. As for the shape of the getter used in the getter filling part, it is more advantageous to have a pellet shape than a powder shape because it is easier to secure gaps for gas flow between the getters in the getter layer. Furthermore, it is easier to maintain a constant porosity in the getter layer when the getter is in the form of pellets with uniform particle size rather than in the form of small lumps with irregular sizes, which is convenient in designing the device. Therefore, the getter may be in the form of a powder or a small lump, but when designing and manufacturing an industrial nitrogen ultra-purification device, a getter in the form of pellets made by compressing alloy powder is used. is the preferred method. The apparatus of the present invention is provided with a heating device for maintaining the adsorption reaction temperature of the getter, but as will be explained later in the Examples section, the heating device can be used in various forms. The heating method can be electrical heating, heat medium flow heating, etc., and the heating location can be selected as appropriate, such as in the preheating part before the gas enters the getter filling part, around the getter filling part, inside the getter filling part, etc. . As long as the adsorption reaction in the getter proceeds smoothly and heating can be performed to obtain as uniform a temperature distribution as possible, the heating may be performed as necessary.
The heating methods and heating positions may be designed in various combinations. The getter filling portion in the device of the present invention may have a structure in which the getter is directly filled into the outer container, but the getter filling portion may be composed of at least one cartridge filled with the getter, It is also a preferred embodiment that the cartridge is easily attachable to and detachable from the outer container and is replaceable. The getter component in the present invention adsorbs and removes impurities by chemisorption accompanied by chemical changes, so it is consumed stoichiometrically and has a certain lifespan.
If you do not replace the getter after using it for a certain period of time, you will not be able to achieve the purpose of ultra-purification of nitrogen. Therefore, it is possible to adopt the method of handling the ultra-purification device together with the outer container containing the Getter and replacing the entire device as needed, but it is also possible to store the Getter in a cartridge and remove only the cartridge part from the outer container at an appropriate time. A method of exchanging can also be adopted. As for the cartridge, it is preferable to use a metal container with holes for easy passage of gas. The purpose of the ultra-purification equipment of the present invention is to purify each impurity component to about 0.01 ppm or less, so the equipment material that comes into contact with nitrogen gas must be polished to a dense and smooth surface with little gas adsorption. Alternatively, it is preferable to use an annealed metal that does not generate powder due to corrosion. Examples of such metal materials include stainless steel, Hastelloy, Incoloy, Monel alloy, etc., but are not limited to these, and various metal materials may be used as appropriate as long as they meet the above conditions. Can be used selectively. As for equipment materials that come into contact with nitrogen gas, we have mentioned that it is preferable to have a surface that is polished or annealed to have a dense, smooth surface with little gas adsorption.If we express the degree of smoothness numerically, It is preferable to use a material that has been polished so that the inner surface has a center line average roughness (Ra) value [Japanese Industrial Standard (JIS) B0601-1970] of 0.5 μm or less, preferably 0.25 μm or less. Although this value is not critical, it is recommended as a safe range. It is effective to use the smoothed part by internal polishing or annealing in the part that comes into contact with the gas passing through the getter chamber, but it is of course possible to use it in the part that comes into contact with the gas passing through the getter chamber. . Due to the design of the device, it is often difficult to use it only in the parts that come into contact with the gas after it has passed through the getter chamber. By using a tube whose inner surface has been smoothed by polishing or annealing, or by performing baking, it is possible to significantly shorten the time it takes to consistently obtain high-purity gas even with new equipment. In the device of the present invention, the means for solving the technical problem can be implemented by changing the embodiments in various ways as described above, and the above examples do not stop and do not depart from the scope of the present invention. However, it can be implemented in various modified forms. In the method of the present invention, it is essential to pass the nitrogen gas to be purified through the metal oxide-based oxidation reactant layer at the oxidation reaction temperature. By converting carbon monoxide into water and carbon dioxide and passing it through an adsorbent layer such as a zeolite-based molecular sieve to adsorb and remove most of the carbon monoxide, the adsorption ability of Getter used in the present invention for hydrocarbons such as methane can be improved. This is because it is necessary to make up for the shortage. Nitrogen gas with a low impurity content obtained by purification by known gas purification methods is treated with a getter consisting of an alloy of 15-30% by weight iron and 85-70% by weight zirconium held at a temperature of 20-500°C. Impurities contained in nitrogen are adsorbed and removed through the filled getter layer. If the reaction temperature for adsorbing impurities in nitrogen gas in the getter layer is below 20°C, the impurities will be adsorbed on the getter surface, but they will not be expected to diffuse into the getter, and the getter's original ability will not be fully demonstrated. However, in the temperature range of 20 to 500°C, the adsorption ability of the getter is fully exerted, and impurities diffuse into the getter, causing the appearance of the getter to decrease. The lifespan of will also be longer. On the other hand, in a temperature range of 500°C or higher, nitrogen gas is easily adsorbed by the getter, so the reaction temperature is reduced to 500°C.
It is not preferable to set the temperature above ℃. Among the above temperature ranges of 20 to 500°C, a temperature range of 350 to 450°C is most preferably selected. In this range, the adsorption rate is high and impurities are sufficiently diffused into the interior, while there is no risk of desorption of hydrogen, and this is the most recommended reaction temperature. <Examples> The present invention will be described in more detail below based on Examples. Examples of the nitrogen ultra-purification apparatus according to the present invention are illustrated in FIGS. 1 to 9. Figure 1 shows an outer container made of stainless steel pipe (SUS 304 TP listed in Japanese Industrial Standards JIS G3448) and surrounded by a heat insulating material 12, with a nitrogen gas inlet 1 at the top and a nitrogen gas outlet 2 at the bottom. Attach the lid body 14 to the top of the lid body 1.
A heater 6 is disposed as a heating device in the space 25 inside the outer container 3 through the getter 4, and a layer of getter 4 filled between the upper and lower buffers 16 and 15 is provided below the getter 6. The nitrogen ultra-purification device is shown placed on a perforated plate 7 supported by a support 13 attached to the holder. The getter is an iron (22-25% by weight) - zirconium (75-78% by weight) alloy getter manufactured and sold by SAES Getters Sochieta Per Accioni with a diameter of 3.
A cylindrical pellet with a height of 4 mm and a height of 4 mm was used. The buffers shown in 15 and 16 are small alumina balls with an outer diameter of 1 to 4 mm in order to eliminate uneven gas flow into the getter layer, prevent scattering of getter fine powder, and equalize temperature distribution. are piled up in layers to a height of about 5 to 50 mm. In this example, alumina small balls are used for the buffer, but this may be replaced with stainless steel balls or fine-mesh stainless steel mesh. A buffer does not necessarily need to be used, and another embodiment that does not use a buffer will be shown later. At the top of the buffers 15 and 16, temperature measuring seeds 2 are inserted with temperature sensors 18 and 17, respectively.
0,19 are attached. A chromel-alumel thermocouple was used as a temperature sensor. Nitrogen gas 9 to be purified is introduced from inlet 1,
It is heated by the heater 6, made into a uniform flow by the upper buffer 16, and flows into the getter layer 4.
The purified gas on which impurity gases have been adsorbed passes through the perforated plate 7 and is drawn out from the outlet 2. Further examples of the apparatus are shown in FIG. 2 and below. In addition,
Common parts are indicated by the same reference symbols throughout the figures, and the explanation thereof will be omitted or limited to the necessary extent. FIG. 2 shows an ultra-refining apparatus constructed in the same manner as in FIG. 2, except that an electric heater 21 is arranged around the outer container 3, and a thermocouple 22 for measuring the temperature thereof is provided. According to this example, temperature control of the getter layer becomes easy. In the examples shown in FIGS. 1 and 2, the getter layer 4 is directly filled inside the outer container 3, but it can also be formed separately. FIG. 3 shows this example, in which the getter 4 and buffers 15, 16 are housed in a cartridge 5 having perforated plates 7, 7. Therefore, after using the cartridge for a certain period of time, it is sufficient to remove the lid 14 and replace the cartridge 5 with a new one, making it possible to work more efficiently than the cartridge shown in FIGS. 1 and 2. FIG. 4 shows still another device 11, in which the outer container 3 has a double structure of an inner wall 24 and an outer wall 23, and a heat medium such as steam, etc. Cooling medium is now being distributed. A cartridge 5 is inserted inside the inner wall. A getter 4 is filled in the cartridge, and an electric heater 6 is placed inside the getter 4.
is buried, lead 8 (only one shown),
It is connected to an external power source via a terminal 12. The cartridge 5 has concentric porous inner and outer walls 26 supported by a support plate 13. A flange 27 is provided at the lower end of the inner wall 24, through which the gas inlet conduit 1 and the outlet conduit 2 pass. The conduit 2 serves as a support for the cartridge 5. The nitrogen gas 9 to be purified is introduced through the inlet 1 and enters the outer space 25;
After being appropriately heated, it flows into the getter layer 4 maintained at a predetermined temperature through the porous wall 26, is purified, flows out into the inner space 25', and is drawn out to the outlet 2. FIG. 5 shows another ultra-refining device 11. Outer container 3
has double walls, and the temperature can be controlled by introducing a heat medium into the space between them from an inlet 30 and discharging it from an outlet 31. A cartridge 5 having a getter layer 4 surrounded by a porous wall is disposed within the inner wall, and a heater 6 is arranged around the cartridge 5.
and connect it to an external power source via lead 8.
Nitrogen gas 9 to be purified is introduced from inlet 1 and preheated by a heating medium, then purified by passing through getter layer 4 maintained at a predetermined temperature by heater 6, and drawn out from outlet 2. FIG. 6 shows another ultra-purification apparatus 11, in which a cylindrical outer container 3 supports a cartridge 5 by plates (not shown) provided above and below. An electric heater 6 having leads 8 is disposed inside the cartridge 5, and a getter 4 is filled between upper and lower porous plates or buffer layers. FIG. 7 shows yet another device 11, in which the heat insulating material 1
An inner cylinder is provided inside the outer container 3 having inner and outer walls filled with getter 2, and a getter 4 is filled in the space therebetween. An electric heater 6 wound around a ceramic rod 36 is placed in the central space. Nitrogen gas 9 to be purified flows in through the inlet 1, and the purified gas passes through the getter 4 and exits through the outlet 2. FIG. 8 shows yet another ultra-refining device. This example is a variation of FIG. 3 and includes means for recovering the heat of the purified nitrogen. That is, the nitrogen 9 to be purified enters the heat exchanger 28 provided at the bottom of the device, is preheated by exchanging heat with the outlet gas, and then passes through the conduit 29 surrounded by the heat insulating material 12 from the inlet 1 at the top of the device. It flows towards getter layer 4. The purified gas enters the heat exchanger 28 and is cooled before exiting at the outlet 2. FIG. 9 shows yet another example of the device. Outer container 3
is a double-walled cylinder between which a heating medium is introduced through an inlet 33 and drawn out through an outlet 34. An airtight support cylinder 35 is arranged in the internal space of the outer container 3, the inside of which is horizontally partitioned by a plurality of outer hole plates 7, and the chambers formed by each pair of these plates are filled with a getter layer 4. . Further, an electric heater 6 is arranged in the getter layer, and leads 10,
10'. Nitrogen gas to be purified 9
The nitrogen gas flows in through the inlet 1, and the purified nitrogen gas flows out through the outlet 2. Next, an example using a specific getter composition will be described. The equipment used for gas analysis in the following examples is as follows. Gas analyzer - Gas chromatograph - Mass spectrometer TE-360B (manufactured by Anelva Coup) Gas chromatograph - FID MODEL GC-9A (manufactured by Shimadzu Corporation) Moisture meter - Hygrometer MODEL 700
(Manufactured by Panametric Co.) Surface roughness meter - Surf coder MODEL SE-3H
(KOSAKA Laboratory Co.Ltd) Example 1 Non-evaporable getter powder consisting of an alloy composition of 76.6% Zr and 23.4% Fe with a particle size of 50 to 250 μm in nitrogen gas as shown in Figure 1. Filled into ultra-purification equipment. The cylinder made of stainless steel (SUS304 - standard name mentioned above) has an outer diameter of 21.7 mm, an inner diameter of 17.5 mm, and a length of 350 mm.
It was warm in mm. 200mm of this was filled with getter, and the top and bottom were filled with alumina ball buffer material to a thickness of 10mm. This ultra-purification equipment has a temperature of 25℃ and a pressure of 6.
Kg/cm 2 (gauge pressure) of impurity-containing nitrogen gas is 0.17
was introduced at a flow rate of /min. Nitrogen flows through the getter layer maintained at 375℃, and the pressure is 4Kg/cm 2 from the outlet.
(gauge pressure). After starting the gas flow
After 40 minutes, the impurity level of the exit gas was measured with the results in the table.

【表】 出口ガス中の不純物レベルは1030時間変化がな
かつた。 例 2 例1で用いたと同じ組成及び粒子寸法の非蒸発
性ゲツター合金を圧縮成形して直径3mm、長さ4
mmのペレツトを製造した。これらのペレツトを第
2図に示す超精製装置に充填した。ステンレス鋼
(SUS304)円筒は外径89.1mm、内径83.1mmを有し
た。長さは660mmであつた。円筒のうち、上下バ
ツフアー(アルミナ球)の厚さ10mmも含めてゲツ
ターペレツトが占める長さは185mmであつた。不
純物含有窒素ガスを温度25℃、圧力4Kg/cm2(ゲ
ージ)及び流量12/分で超精製装置に導入し
た。 不純物含有窒素ガスはスパイラル抵抗ヒータに
より375℃の温度に保つた非蒸発性ゲツター床に
流通し、3.95Kg/cm2(ゲージ圧)の圧力で出口に
流出した。窒素ガスの流通開始後40分後にこの流
出ガスの不純物レベルを測定して表の結果を得
た。
[Table] The impurity level in the outlet gas did not change for 1030 hours. Example 2 A non-evaporable Getter alloy with the same composition and particle size as used in Example 1 was compression molded to a diameter of 3 mm and a length of 4 mm.
mm pellets were produced. These pellets were charged into the ultra-purification apparatus shown in FIG. The stainless steel (SUS304) cylinder had an outer diameter of 89.1 mm and an inner diameter of 83.1 mm. The length was 660mm. The length of the cylinder, including the 10 mm thickness of the upper and lower buffers (alumina spheres), occupied by the getter pellets was 185 mm. Impure nitrogen gas was introduced into the ultra-purifier at a temperature of 25° C., a pressure of 4 Kg/cm 2 (gauge) and a flow rate of 12/min. The impure nitrogen gas was passed through a non-evaporable getter bed maintained at a temperature of 375° C. by a spiral resistance heater and exited at the outlet at a pressure of 3.95 Kg/cm 2 (gauge pressure). Forty minutes after the start of nitrogen gas flow, the impurity level of this outflow gas was measured and the results shown in the table were obtained.

【表】 出口不純物レベルは760時間にわたつて一定で
あつた。 例 3 例2と同じ方法でペレツトを製造し、第3図に
示すカートリツジに充填した。カートリツジは外
径80mm、内径78mm、長さ244mmを有した。例2と
同じ量のペレツトを用いた。カートリツジを例2
と同じ円筒(ただし長さ719mm)に入れた。不純
物含有窒素ガスを例2と同じ入口圧力、温度及び
流量で流した。カートリツジは375℃に維持した。
出口ガス組成は窒素ガス流通の開始から40分後に
例2と同じになつた。出口ガス中の不純物レベル
は760時間一定であつた。 例 4 例2において円筒の内表面粗さをRa=0.5μm
とし(通常はRa=2.5μmである)、ステンレス鋼
出口管は外径9.5mm、内径7.5mm、表面粗さRa=
0.2μmとし、同じ実験を行つた。窒素ガスを流し
初めてから40分後に表の結果を得た。
Table: Outlet impurity levels remained constant over 760 hours. Example 3 Pellets were prepared in the same manner as in Example 2 and filled into the cartridge shown in FIG. The cartridge had an outer diameter of 80 mm, an inner diameter of 78 mm, and a length of 244 mm. The same amount of pellets as in Example 2 was used. Cartridge example 2
It was placed in the same cylinder (but with a length of 719 mm). Impure nitrogen gas was flowed at the same inlet pressure, temperature and flow rate as in Example 2. The cartridge was maintained at 375°C.
The outlet gas composition became the same as in Example 2 40 minutes after the start of nitrogen gas flow. The impurity level in the outlet gas remained constant for 760 hours. Example 4 In Example 2, the inner surface roughness of the cylinder is Ra=0.5μm
(usually Ra = 2.5 μm), and the stainless steel outlet pipe has an outer diameter of 9.5 mm, an inner diameter of 7.5 mm, and a surface roughness of Ra =
The same experiment was conducted with the thickness of 0.2 μm. The results shown in the table were obtained 40 minutes after the first flow of nitrogen gas.

【表】 出口ガス中の不純物レベルは760時間一定であ
つた。 例 5 この例では、精製すべき窒素ガスを先ず、外径
89.1mm、内径83.1mm及び長さ660mmのステンレス
鋼(SUS304)円筒に多孔質粉末CuO成形ペレツ
ト(ペレツト寸法は直径3mm、長さ4mm)を充填
高さ185mmまで充填して成る450℃に保つた筒に通
した。次いで、外径89.1mm、内径83.1mm、長さ
350mmのステンレス鋼(SUS304)円筒に200mmの
床高さまでモレキユラーシーブ5A(ペレツト寸法
は直径3.2mm、長さ4mm)を充填して成る25℃に
保つた乾燥器に流すことにより、精製すべき窒素
ガスの水蒸気含有量を減じた。このガスを例2の
方法に従つて処理した。乾燥器の出口圧力すなわ
ち超精製装置の入口圧力は4Kg/cm2(ゲージ圧)
であつた。温度の効果を見るために、ゲツター温
度を変えた。結果は表に示す通りであつた。
[Table] The impurity level in the outlet gas remained constant for 760 hours. Example 5 In this example, the nitrogen gas to be purified is first
A stainless steel (SUS304) cylinder with a diameter of 89.1 mm, an inner diameter of 83.1 mm, and a length of 660 mm was filled with porous powder CuO molded pellets (pellet dimensions were 3 mm in diameter and 4 mm in length) to a filling height of 185 mm, and the cylinder was kept at 450 °C. I passed it through the tube. Next, outer diameter 89.1mm, inner diameter 83.1mm, length
The refining process is carried out through a dryer kept at 25℃, which consists of a 350mm stainless steel (SUS304) cylinder filled with molecular sieve 5A (pellet dimensions: 3.2mm in diameter and 4mm in length) to a floor height of 200mm. The water vapor content of nitrogen gas should be reduced. This gas was treated according to the method of Example 2. The outlet pressure of the dryer, i.e. the inlet pressure of the ultra-refining equipment, is 4Kg/cm 2 (gauge pressure).
It was hot. To see the effect of temperature, we varied the getter temperature. The results were as shown in the table.

【表】【table】

【表】 表から分るように、20〜500℃の温度範囲で本
ゲツターはすぐれた精製能力を有することが分
る。 例 6,7 重量比にしてZr84%、Fe16%の合金(実施例
6)及びZr71%、Fe29%の合金(実施例7)よ
り成り、粒子径が50〜250μm(平均150μm)の粉
末非蒸発性ゲツター粉末を圧縮して直径3mm、長
さ4mmのペレツトを製造した。これらのペレツト
を例2と同一の方法で同一の構成の超精製装置に
充填した。不純物含有窒素ガスを温度25℃、圧力
4Kg/cm2(ゲージ)及び流量12/分で超精製装
置に導入した。 不純物含有窒素ガスはスパイラル抵抗ヒータに
より375℃の温度に保つた非蒸発性ゲツター床に
流通し、3.95Kg/cm2(ゲージ)の圧力で出口に流
出した。窒素ガスの流通開始後40分後にこの流出
ガスの不純物レベルを測定して表の結果を得
た。
[Table] As can be seen from the table, this getter has excellent purification ability in the temperature range of 20 to 500°C. Examples 6, 7 Non-evaporable powder with a particle size of 50 to 250 μm (average 150 μm) consisting of an alloy of 84% Zr and 16% Fe (Example 6) and an alloy of 71% Zr and 29% Fe (Example 7) by weight The getter powder was compressed to produce pellets with a diameter of 3 mm and a length of 4 mm. These pellets were loaded in the same manner as in Example 2 into a superpurifier of the same configuration. Impure nitrogen gas was introduced into the ultra-purifier at a temperature of 25° C., a pressure of 4 Kg/cm 2 (gauge) and a flow rate of 12/min. The impure nitrogen gas was passed through a non-evaporable getter bed maintained at a temperature of 375° C. by a spiral resistance heater and exited at the outlet at a pressure of 3.95 Kg/cm 2 (gauge). Forty minutes after the start of nitrogen gas flow, the impurity level of this outflow gas was measured and the results shown in the table were obtained.

【表】 出口不純物レベルは夫々960時間及び690時間一
定であつた。
Table: Outlet impurity levels remained constant for 960 hours and 690 hours, respectively.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第9図は、何れも夫々本発明の装置の
実施例の縦断面図である。 1……窒素ガス入口、2……精製ガス出口、3
……外容器、4……ゲツター、5……カートリツ
ジ、6……ヒータ、7……目皿、8……ターミナ
ル、9……窒素ガス、10……リード線、11…
…窒素超精製装置、12……断熱材、13……支
持具、14……蓋体、15……下部バツフアー、
16……上部バツフアー、17,18……温度
計、19,20……温度計鞘、21……ヒータ、
22……熱電対、23……外壁、24……内壁、
25……空間、26……多孔質壁、27……フラ
ンジ、28……熱交換器、29……導管、30…
…熱媒入口、31……熱媒出口、32……リード
線管、33……冷却液入口、34……冷却液出
口、35……カートリツジ部、36……セラミツ
クス。
1 to 9 are longitudinal cross-sectional views of embodiments of the apparatus of the present invention. 1...Nitrogen gas inlet, 2...Purified gas outlet, 3
... Outer container, 4 ... Getter, 5 ... Cartridge, 6 ... Heater, 7 ... Perforated plate, 8 ... Terminal, 9 ... Nitrogen gas, 10 ... Lead wire, 11 ...
...Nitrogen super purification device, 12...Insulating material, 13...Support, 14...Lid, 15...Lower buffer,
16... Upper buffer, 17, 18... Thermometer, 19, 20... Thermometer sheath, 21... Heater,
22... thermocouple, 23... outer wall, 24... inner wall,
25... Space, 26... Porous wall, 27... Flange, 28... Heat exchanger, 29... Conduit, 30...
...Heat medium inlet, 31...Heat medium outlet, 32...Lead wire tube, 33...Cooling liquid inlet, 34...Cooling liquid outlet, 35...Cartridge portion, 36...Ceramics.

Claims (1)

【特許請求の範囲】 1 精製すべき窒素ガスが導入される金属酸化物
系酸化反応剤層、前記反応剤層を酸化反応温度に
維持する手段、前記反応剤層からのガスから窒素
を精製する吸着剤層、前記吸着剤層からのガスを
導入する入口、精製した窒素ガスの出口、上記ガ
スの入口と上記ガスの出口とを結ぶガス流路、該
ガス流路内の中間に設けた15〜30重量%の鉄と85
〜70重量%のジルコニウムとの合金より成るゲツ
ターを充填した少くとも1個のゲツター室、及び
ゲツターの作動温度を保持するための加熱装置よ
り成る窒素の超精製装置。 2 ゲツター充填部に使用するゲツターが、鉄−
ジルコニウム合金粉末を圧縮加工して作つたペレ
ツト状のものであることを特徴とする特許請求の
範囲第1項に記載の窒素の超精製装置。 3 ゲツターに使用する合金の組成が、22〜25重
量%の鉄と75〜78重量%のジルコニウムであるこ
とを特徴とする特許請求の範囲第1項及び第2項
に記載の装置。 4 ゲツターに使用する合金が鉄−ジルコニウム
金属間化合物であることを特徴とする特許請求の
範囲第1項より第3項までの何れかに記載の方
法。 5 ゲツターの充填部が、ゲツターを充填したカ
ートリツジの少くとも1個より成り、該カートリ
ツジが,外容器に対して着脱容易で交換可能なも
のであることを特徴とする特許請求の範囲第1項
より第4項までの何れかに記載の装置。 6 各々のカートリツジが、孔を穿つた金属容器
にゲツターを充填したものであることを特徴とす
る特許請求の範囲第5項記載の装置。 7 窒素ガスと接触する装置材料として、窒素ガ
スと接触する内表面の測定全区間の振幅平均によ
つて与える中心線平均の表面粗さ(Ra)が
0.5μm以下の材料を使用することを特徴とする特
許請求の範囲第1項から第6項までの何れかに記
載の装置。 8 炭化水素を除去する前処理装置を付加したこ
とを特徴とする特許請求の範囲第1項より第7項
までの何れかに記載の装置。 9 炭化水素を除去する前処理装置として、窒素
ガスを通す様に、金属酸化物系酸化反応剤層を配
置した酸化装置と、酸化反応により生成した水
分、一酸化炭素、二酸化炭素等の不純物を含む窒
素ガスを通す様にゼオライト系分子篩などの吸着
剤層を設けた吸着装置とを使用することを特徴と
する特許請求の範囲第8項記載の装置。 10 精製しようとする窒素ガスを、金属酸化物
系酸化反応剤層中を酸化反応温度に於て通過させ
た後、ゼオライト系分子篩などの吸着剤層を通過
させる既知のガス精製法により精製し、得られる
不純物含量の低い窒素ガスを、更に、20〜500℃
の温度に保持した15〜30重量%の鉄と85〜70重量
%のジルコニウムとの合金より成るゲツターを充
填したゲツター層を通して、窒素中に含まれる不
純物を吸着除去せしめることを特徴とする窒素の
精製方法。 11 350〜450℃の温度に保持した15〜30重量%
の鉄と85〜70重量%のジルコニウムとの合金より
成るゲツターを充填したゲツター層を使用するこ
とを特徴とする特許請求の範囲第7項記載の方
法。
[Scope of Claims] 1. A metal oxide-based oxidation reactant layer into which nitrogen gas to be purified is introduced, means for maintaining the reactant layer at the oxidation reaction temperature, and purification of nitrogen from the gas from the reactant layer. an adsorbent layer, an inlet for introducing gas from the adsorbent layer, an outlet for the purified nitrogen gas, a gas flow path connecting the gas inlet and the gas outlet, and a gas flow path provided in the middle of the gas flow path. ~30 wt% iron and 85
An apparatus for ultra-purification of nitrogen comprising at least one getter chamber filled with a getter consisting of an alloy with ~70% by weight of zirconium and a heating device for maintaining the operating temperature of the getter. 2 The getter used in the getter filling part is made of iron.
2. The nitrogen ultra-purification device according to claim 1, which is in the form of pellets made by compressing zirconium alloy powder. 3. The device according to claims 1 and 2, characterized in that the composition of the alloy used for the getter is 22-25% by weight of iron and 75-78% by weight of zirconium. 4. The method according to any one of claims 1 to 3, wherein the alloy used for the getter is an iron-zirconium intermetallic compound. 5. Claim 1, characterized in that the getter filling part consists of at least one cartridge filled with the getter, and the cartridge is easily attachable to and detachable from the outer container and replaceable. The device according to any one of items 4 to 4. 6. The apparatus according to claim 5, wherein each cartridge is a perforated metal container filled with a getter. 7 For equipment materials that come into contact with nitrogen gas, the centerline average surface roughness (Ra) given by the amplitude average of the entire measurement section of the inner surface that comes into contact with nitrogen gas is
The device according to any one of claims 1 to 6, characterized in that a material with a diameter of 0.5 μm or less is used. 8. The apparatus according to any one of claims 1 to 7, further comprising a pretreatment device for removing hydrocarbons. 9 As a pre-treatment device for removing hydrocarbons, there is an oxidation device in which a metal oxide-based oxidizing agent layer is placed so as to pass nitrogen gas, and an oxidation device that removes impurities such as moisture, carbon monoxide, and carbon dioxide generated by the oxidation reaction. 9. The apparatus according to claim 8, further comprising an adsorption device provided with an adsorbent layer such as a zeolite-based molecular sieve so as to pass the nitrogen gas contained therein. 10 Purify the nitrogen gas to be purified by a known gas purification method in which the nitrogen gas to be purified is passed through a metal oxide oxidation reactant layer at the oxidation reaction temperature and then passed through an adsorbent layer such as a zeolite molecular sieve, The resulting nitrogen gas with low impurity content is further heated at 20 to 500℃.
A method for removing impurities contained in nitrogen by adsorption through a getter layer filled with a getter made of an alloy of 15 to 30% by weight of iron and 85 to 70% by weight of zirconium maintained at a temperature of Purification method. 11 15-30% by weight maintained at a temperature of 350-450℃
8. A method as claimed in claim 7, characterized in that a getter layer is used which is filled with a getter made of an alloy of iron and 85 to 70% by weight of zirconium.
JP60140628A 1985-06-28 1985-06-28 Nitrogen super purification facilities and purification process Granted JPS623006A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP60140628A JPS623006A (en) 1985-06-28 1985-06-28 Nitrogen super purification facilities and purification process
CA000512229A CA1300346C (en) 1985-06-28 1986-06-23 Superpurifier for nitrogen and process for purifying same
DE3621013A DE3621013C2 (en) 1985-06-28 1986-06-23 Nitrogen purifier and nitrogen purification process
FR8609026A FR2584062B1 (en) 1985-06-28 1986-06-23 SUPER NITROGEN PURIFIER AND METHOD FOR PURIFYING THIS GAS.
BE2/61004A BE904998A (en) 1985-06-28 1986-06-26 SUPER NITROGEN FOR NITROGEN AND METHOD FOR PURIFYING THIS GAS.
GB8615619A GB2177080B (en) 1985-06-28 1986-06-26 Superpurifier for nitrogen and process for purifying same
KR1019860005146A KR930006690B1 (en) 1985-06-28 1986-06-26 Superpurifier for nitrogen and process for purifying same
IT20963/86A IT1204420B (en) 1985-06-28 1986-06-27 SUPER-PURIFIER FOR NITROGEN AND RELATED PURIFICATION PROCESS
NL8601692A NL192104C (en) 1985-06-28 1986-06-27 Apparatus and method for purifying nitrogen.
SE8602870A SE463149B (en) 1985-06-28 1986-06-27 SUPER CLEANING DEVICE FOR PURIFICATION OF NITROGEN GAS AND SUITABLE FOR SUPERRANE NITROGEN GAS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60140628A JPS623006A (en) 1985-06-28 1985-06-28 Nitrogen super purification facilities and purification process

Publications (2)

Publication Number Publication Date
JPS623006A JPS623006A (en) 1987-01-09
JPH0456763B2 true JPH0456763B2 (en) 1992-09-09

Family

ID=15273115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60140628A Granted JPS623006A (en) 1985-06-28 1985-06-28 Nitrogen super purification facilities and purification process

Country Status (10)

Country Link
JP (1) JPS623006A (en)
KR (1) KR930006690B1 (en)
BE (1) BE904998A (en)
CA (1) CA1300346C (en)
DE (1) DE3621013C2 (en)
FR (1) FR2584062B1 (en)
GB (1) GB2177080B (en)
IT (1) IT1204420B (en)
NL (1) NL192104C (en)
SE (1) SE463149B (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1227219B (en) * 1988-09-26 1991-03-27 Getters Spa APPARATUS AND RELATED METHOD TO REMOVE GASEOUS IMPURITIES FROM INERT GASES AND ENSURE EXTREMELY LOW HYDROGEN LEVELS
DE3835825C1 (en) * 1988-10-21 1990-03-08 Kernforschungsanlage Juelich Gmbh, 5170 Juelich, De
FR2642678A1 (en) * 1989-02-07 1990-08-10 Air Liquide Process for producing a gaseous atmosphere in contact with a metal at high temperature
DE3926015A1 (en) * 1989-08-05 1991-02-07 Messer Griesheim Gmbh METHOD FOR THE FINE PURIFICATION OF GASES
IT1237944B (en) * 1990-01-05 1993-06-19 Getters Spa METHOD FOR DETERMINING THE END OF THE USEFUL LIFE OF AN INERT GAS PURIFIER AND RELATED EQUIPMENT
IT1246358B (en) * 1990-07-12 1994-11-17 Getters Spa PROCESS TO ELIMINATE IMPURITIES FROM A WATER GAS
IT1244006B (en) * 1990-11-02 1994-06-28 Getters Spa PURIFICATION PROCESS OF AMMONIA.
IT1270875B (en) * 1993-04-29 1997-05-13 Getters Spa HYDROGEN PURIFICATION PROCEDURE AND RELATIVE PURIFIER
US5238469A (en) * 1992-04-02 1993-08-24 Saes Pure Gas, Inc. Method and apparatus for removing residual hydrogen from a purified gas
US6436352B1 (en) 1993-04-29 2002-08-20 Saes Getter, S.P.A. Hydrogen purification
JPH1157371A (en) * 1997-08-11 1999-03-02 Taiyo Toyo Sanso Co Ltd Production of ultraclean air
ES2171044T3 (en) 1997-10-15 2002-08-16 Saes Pure Gas Inc GAS PURIFICATION SYSTEM EQUIPPED WITH A GAS PURIFICATION SECURITY DEVICE AND PROCEDURE.
US6068685A (en) * 1997-10-15 2000-05-30 Saes Pure Gas, Inc. Semiconductor manufacturing system with getter safety device
US6299670B1 (en) * 1999-06-10 2001-10-09 Saes Pure Gas, Inc. Integrated heated getter purifier system
KR100356611B1 (en) * 2000-08-10 2002-10-18 주식회사 아토 Purification Method and Apparatus for Nitrogen
ITMI20010930A1 (en) 2001-05-07 2002-11-07 Getters Spa METHOD FOR THE MEASUREMENT OF THE CONCENTRATION OF HYDROGEN AND METHANE IN NITROGEN BY IONIC MOBILITY SPETROSCOPY
ITMI20011193A1 (en) 2001-06-06 2002-12-06 Getters Spa METHOD FOR MEASUREMENT USING IONIC MOBILITY SPECTROSCOPY OF THE CONCENTRATION OF WATER IN ARGON, HYDROGEN, NITROGEN AND HELIUM
JP4918255B2 (en) * 2005-12-22 2012-04-18 ウチヤ・サーモスタット株式会社 Nitrogen gas generator
CN110759323A (en) * 2018-07-27 2020-02-07 隆基绿能科技股份有限公司 Gas purification reactor and gas purification method
CN112978692B (en) * 2021-03-04 2022-08-05 北京高麦克仪器科技有限公司 780 helium purifier
JP7210803B1 (en) * 2022-10-04 2023-01-23 レール・リキード-ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード gas purifier

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55154546A (en) * 1979-04-06 1980-12-02 Getters Spa Zrrfe alloy as low temperature hydrogen adsorbent
JPS6020323A (en) * 1983-07-15 1985-02-01 Toshiba Corp Disk device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3535074A (en) * 1965-10-29 1970-10-20 Hitachi Ltd Method and apparatus for purifying crude inert gases
BE792561A (en) * 1972-12-11 1973-03-30 Getters Spa Gas purifier - esp for rare gases and hydrogen with regeneration system for absorber cartridges
DE3137569A1 (en) * 1981-09-22 1983-04-21 Leybold-Heraeus GmbH, 5000 Köln METHOD AND DEVICE FOR PRODUCING HIGH PURITY NITROGEN

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55154546A (en) * 1979-04-06 1980-12-02 Getters Spa Zrrfe alloy as low temperature hydrogen adsorbent
JPS6020323A (en) * 1983-07-15 1985-02-01 Toshiba Corp Disk device

Also Published As

Publication number Publication date
KR930006690B1 (en) 1993-07-22
FR2584062B1 (en) 1990-12-21
SE8602870D0 (en) 1986-06-27
DE3621013C2 (en) 1996-02-15
SE463149B (en) 1990-10-15
JPS623006A (en) 1987-01-09
DE3621013A1 (en) 1987-01-08
IT1204420B (en) 1989-03-01
GB8615619D0 (en) 1986-07-30
NL8601692A (en) 1987-01-16
SE8602870L (en) 1986-12-29
KR870000237A (en) 1987-02-17
CA1300346C (en) 1992-05-12
GB2177080A (en) 1987-01-14
NL192104C (en) 1997-02-04
BE904998A (en) 1986-10-16
IT8620963A0 (en) 1986-06-27
GB2177080B (en) 1989-08-31
NL192104B (en) 1996-10-01
FR2584062A1 (en) 1987-01-02

Similar Documents

Publication Publication Date Title
JPH0456763B2 (en)
JPH0456771B2 (en)
JPS5953201B2 (en) Hydrogen gas purification method
GB2188620A (en) One-step process for purifying an inert gas
US3361531A (en) Removal of oxygen from gas mixtures
JP2009517314A (en) Method for producing nanoporous carbide-derived carbon having a high specific surface area
JPH04308011A (en) Manufacture of tungsten powder using fluidized bed
US7993431B2 (en) Gas purifier apparatus and method for gas purification
JP2004344694A (en) Method for purifying original air in air liquefying/separating apparatus
CN217909777U (en) Gas treatment equipment
JP2002060209A (en) Method and device for purifying nitrogen
JPS6159169B2 (en)
JP5189342B2 (en) Gas processing method
JPS60239303A (en) Purifying vessel for gaseous hydrogen
JPH02293310A (en) Equipment for high-purity refining of rare gas
JPS63305936A (en) Adsorptive structural body excellent in heat transfer property
JPH05123575A (en) Steam refining method
JP2008024566A (en) Method and apparatus for producing hydrogen
JPS60166206A (en) Production of nitrogen highly free of oxygen and apparatus therefor
JPS61232210A (en) Method of separating co