JP2002060209A - Method and device for purifying nitrogen - Google Patents

Method and device for purifying nitrogen

Info

Publication number
JP2002060209A
JP2002060209A JP2000370234A JP2000370234A JP2002060209A JP 2002060209 A JP2002060209 A JP 2002060209A JP 2000370234 A JP2000370234 A JP 2000370234A JP 2000370234 A JP2000370234 A JP 2000370234A JP 2002060209 A JP2002060209 A JP 2002060209A
Authority
JP
Japan
Prior art keywords
nitrogen
getter
methane
filled
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000370234A
Other languages
Japanese (ja)
Inventor
Taek Hong Lee
澤洪 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atto Co Ltd
Original Assignee
Atto Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atto Co Ltd filed Critical Atto Co Ltd
Publication of JP2002060209A publication Critical patent/JP2002060209A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/04Purification or separation of nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/04Purification or separation of nitrogen
    • C01B21/0405Purification or separation processes
    • C01B21/0494Combined chemical and physical processing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0001Separation or purification processing
    • C01B2210/0003Chemical processing
    • C01B2210/0006Chemical processing by reduction
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0001Separation or purification processing
    • C01B2210/0009Physical processing
    • C01B2210/0014Physical processing by adsorption in solids
    • C01B2210/0023Physical processing by adsorption in solids in getters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/20Capture or disposal of greenhouse gases of methane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Catalysts (AREA)
  • Gas Separation By Absorption (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and a device for purifying nitrogen in which impurities such as methane, carbon monoxide and carbon dioxide can be removed at the same time. SOLUTION: A getter alloy consisting of Zr-V-Fe, Zr-Fe and Zr as principal components is reacted with nitrogen at 200-450 deg.C in a state that the air outside is cut off or in high vacuum to prepare a nitrided getter. The lower part of a nitrogen purifying column (the lower column when double columns are used) is filled with the prepared nitrided getter and the upper part (the upper column when double columns are used) is filled with a Pd/Al2O3 catalyst. The methane component in the nitrogen stream to be purified at 200-450 deg.C is oxidized (if necessary, while supplying oxygen equivalent to methane) and then the impurities such as water, carbon dioxide, carbon monoxide and oxygen are removed by the nitrided getter.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、窒素精製方法及び
精製装置に関するものである。特に本発明は窒素精製用
合金を窒素化させたゲッター(getter)を使用
し、Pd/Al23触媒を使用してメタンを二酸化炭素
と水に酸化させて他の不純物と共に窒素化されたゲッタ
ーに吸着、除去することを特徴とする。
TECHNICAL FIELD The present invention relates to a method and an apparatus for purifying nitrogen. In particular, the present invention uses a getter obtained by nitrifying a nitrogen-purifying alloy, and oxidizes methane to carbon dioxide and water using a Pd / Al 2 O 3 catalyst to be nitrogenated together with other impurities. It is characterized by being adsorbed and removed by a getter.

【0002】[0002]

【従来の技術】窒素は、電子産業、化学工業、鉄鋼及び
造船業等の分野でその需要が増加している有用なガスで
ある。圧縮器を使用して空気を圧縮し、その圧縮空気が
液化ガスになるときまで、単熱膨張を繰り返してから、
純度の高い液化窒素を形成するために高圧状態で分別蒸
流する方法は、工業過程で実施されている一般的な窒素
製造方法である。窒素は、液化状態、又はガス状態で容
器に充電されて市販されている。窒素は、代表的な不活
性ガスであり、金属の熱処理加工、半導体製造工程等で
大気ガスとして上述のいろいろな分野で広く使用されて
いる。特に、電子産業等の超精密微細加工に使用される
場合には、加工工程に入る直前に精製度を高めるため
に、不純物を除去して高純度を確保することが要求され
る。特に工業生産工程で大量使用する場合には、液化窒
素を気化(vaporize)させて配管を通して使用
される。このとき、気化された窒素のうち、含まれる酸
素、一酸化炭素、二酸化炭素、水素、炭化水素、水等の
不純物をどのように迅速、確実に除去するかという問題
に直面するようになる。このうち、炭化水素は、半導体
中の収率に直接的な影響を及ぼさない程度に必ず除去さ
れなければならない成分である。
2. Description of the Related Art Nitrogen is a useful gas whose demand is increasing in fields such as the electronics industry, the chemical industry, the steel and shipbuilding industries. Compress the air using a compressor, repeat the single thermal expansion until the compressed air becomes a liquefied gas,
The method of fractionating and steaming under high pressure to form high-purity liquefied nitrogen is a general nitrogen production method practiced in industrial processes. Nitrogen is commercially available by charging a container in a liquefied state or a gas state. Nitrogen is a typical inert gas, and is widely used as an atmospheric gas in the above-described various fields in heat treatment of metals, semiconductor manufacturing processes, and the like. In particular, when used in ultra-precision microfabrication in the electronics industry or the like, it is necessary to remove impurities and ensure high purity in order to increase the degree of purification immediately before entering the processing step. In particular, when used in large quantities in an industrial production process, liquefied nitrogen is vaporized and used through piping. At this time, there is a problem of how to quickly and reliably remove impurities such as oxygen, carbon monoxide, carbon dioxide, hydrogen, hydrocarbons, and water contained in the vaporized nitrogen. Of these, hydrocarbons are components that must be removed to such an extent that they do not directly affect the yield in the semiconductor.

【0003】このような不純物を除去して、窒素を高度
に精製するために今まで各種の窒素ガス精製装置が市販
されて使用されている。
[0003] In order to remove such impurities and purify nitrogen to a high degree, various types of nitrogen gas purifying apparatuses have hitherto been marketed and used.

【0004】市販されているガス精製装置には、ニッケ
ル、クロム及び銅等の金属酸化物の酸化触媒を用いて一
酸化炭素、炭化水素、水素等を酸化して二酸化炭素及び
水に変化させた後、分子ふるい(Molecular
Sieve)や活性炭等を用いて不純物を吸着、除去す
ることによってガスの精製が行われた。
[0004] Commercially available gas purifiers use a catalyst for oxidizing metal oxides such as nickel, chromium and copper to oxidize carbon monoxide, hydrocarbons, hydrogen and the like to carbon dioxide and water. After, molecular sieve (Molecular
The gas was purified by adsorbing and removing impurities using Sieve) or activated carbon.

【0005】また、水素吸着型合金のTi−Mn系、T
i−Fe系、灰土類−Ni系合金等も使用されている
が、精製性能が低下される短所がある。
In addition, Ti—Mn based hydrogen absorbing alloys, T
Although i-Fe-based and ash-earth-Ni-based alloys are also used, they have a disadvantage that purification performance is reduced.

【0006】米国特許第4、306、887号は、15
−30重量%の鉄と70−85重量%のジルコニウムと
からなる、窒素を吸着せず他の不純物を選択的に吸着す
る鉄−ジルコニウムゲッター合金を開示している。
[0006] US Patent No. 4,306,887 teaches that
Disclosed is an iron-zirconium getter alloy comprising -30% by weight of iron and 70-85% by weight of zirconium, which does not adsorb nitrogen and selectively adsorbs other impurities.

【0007】本発明の発明者らは、上記米国特許のゲッ
ター合金を加工して窒素ガスの精製性能を向上させよう
と努力した結果、本発明を完成した。
The inventors of the present invention have worked to improve the purifying performance of nitrogen gas by processing the getter alloy of the above-mentioned US patent, and have completed the present invention.

【0008】[0008]

【発明が解決しようとする課題】従って、本発明の目的
は、メタン、一酸化炭素、二酸化炭素等の不純物を同時
に除去できる窒素精製方法及び精製装置を提供すること
にある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a method and an apparatus for purifying nitrogen capable of simultaneously removing impurities such as methane, carbon monoxide and carbon dioxide.

【0009】本発明の他の目的は、従来のゲッター合金
の改善された精製性能を有するゲッター合金の加工方法
を提供することである。
It is another object of the present invention to provide a method of processing a getter alloy having improved refining performance of a conventional getter alloy.

【0010】[0010]

【課題を解決するための手段】本発明の目的は、Zr−
V−Fe、Zr−Fe、Zrを主成分とするゲッター合
金を200〜450℃の温度で外部大気と遮断、或いは
高真空状態で窒素と反応させて精製列の下部(2重列の
場合、下部の列)に充填し、上部にPd/Al 23触媒
を充填した後(2重列の場合、上部の列)、200〜4
50℃の温度で精製しようとする窒素ストリームのう
ち、メタン成分を酸化させた後(必要なとき、メタンと
同じ当量の酸素供給が必要)、窒素化されたゲッターで
水、二酸化炭素、一酸化炭素、酸素等の不純物を除去す
ることからなる窒素精製方法によって達成される。
SUMMARY OF THE INVENTION An object of the present invention is to provide a Zr-
Getter alloy containing V-Fe, Zr-Fe, and Zr as main components
Insulate gold from outside air at a temperature of 200-450 ° C, or
React with nitrogen under high vacuum to lower the purification column (double column
In the case, the lower row) is filled, and Pd / Al TwoOThreecatalyst
(Upper row in case of double row),
The nitrogen stream to be purified at a temperature of 50 ° C.
After oxidizing the methane component (when necessary,
Requires the same equivalent oxygen supply), with a nitrogenated getter
Remove impurities such as water, carbon dioxide, carbon monoxide, and oxygen
And a nitrogen purification method.

【0011】本発明の目的は、Zr−V−Fe、Zr−
Fe、Zrを主成分とするゲッター合金を200〜45
0℃の温度で外部大気と遮断、或いは高真空状態で窒素
と反応させた合金を精製列下部に、Pd/Al23触媒
を上部に充填して列を設置したこと、或いは2つの別の
列を構成した後、上部列にはPd/Al23を充填し、
連結される下部列には窒素化されたゲッター合金を充填
することを特徴とする窒素精製装置によって達成され
る。
An object of the present invention is to provide Zr-V-Fe, Zr-
200-45 getter alloys containing Fe and Zr as main components
An alloy which was cut off from the outside atmosphere at a temperature of 0 ° C. or reacted with nitrogen in a high vacuum state was installed at the bottom of the purification column, and a Pd / Al 2 O 3 catalyst was filled at the top, and a column was installed. , The upper row is filled with Pd / Al 2 O 3 ,
This is achieved by a nitrogen purifier characterized in that the connected lower row is filled with a nitrogenated getter alloy.

【0012】[0012]

【発明の実施の形態】以下、本発明をより詳しく説明す
る。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail.

【0013】窒素精製用Zr−V−Fe、Zr−Fe、
Zrを主成分とするゲッターを常温で容器に入れる。容
器は、窒素ガスが接触するようになる装置の内壁主成分
はガス吸着が最小化されるように表面が緻密でなめらか
に研磨された金属で形成し、腐食に応じて粉末の生ずる
ことがないことが望ましい。そのような金属材料の例と
して、ステインレス鋼とハステロイ(Hastello
y)、インコロイ(Incoloy)及びモネル金属
(Monel Metal)等を挙げるが、これに限定
されることなく、上記の条件に適合な金属材料であれ
ば、その他の金属材料も適切に選択、使用できる。
Zr-V-Fe for nitrogen purification, Zr-Fe,
A getter containing Zr as a main component is put in a container at room temperature. The container is made of metal whose surface is dense and smooth polished so that gas adsorption is minimized, and the powder is not generated in response to corrosion. It is desirable. Examples of such metallic materials include stainless steel and Hastelloy.
y), Incoloy, Monel Metal, and the like, but are not limited thereto, and other metal materials can be appropriately selected and used as long as the metal material meets the above conditions. .

【0014】容器を200〜450℃に加熱してから、
その温度を維持しながら市販用純度(99.9999%
以上)の窒素気体を容器に導入させる。この窒素ガス導
入は、望ましくは0.1乃至10絶対圧力範囲の圧力で
行う。反応は、外部大気と遮断、又は高真空状態で行わ
れる。窒素が吸収されることによって合金が窒素化され
て黄金色に変色される。反応が完了すると、窒素反応容
器のうち残っている気体を簡単にポンピングさせたり、
パージングさせて除去できる。
After heating the container to 200-450 ° C,
While maintaining the temperature, purity for commercial use (99.9999%
The above nitrogen gas is introduced into the container. This nitrogen gas introduction is desirably performed at a pressure in the range of 0.1 to 10 absolute pressure. The reaction is performed in a state of being cut off from the outside atmosphere or in a high vacuum state. When the nitrogen is absorbed, the alloy is nitrogenated and turned golden. When the reaction is completed, the remaining gas in the nitrogen reaction vessel can be easily pumped,
Can be purged and removed.

【0015】精製列の下部(2重列の場合、下部の列)
に工程によって窒素化されたゲッターを充填し、上部に
Pd/Al23触媒を充填した後(2重列の場合、上部
の列)、200〜450℃の温度で精製しようとする窒
素ストリームのうちのメタン成分を酸化させる。使用さ
れる触媒の量は、精製される窒素ストリームに含まれる
メタンの含量によって違い、ゲッター合金重量に対して
0.001−10重量%の量を使用する。メタンの含量
が高い場合、必要によってメタンと同じ当量の酸素を供
給することができる。メタンは酸化されて二酸化炭素と
水に分解される。酸化された二酸化炭素と水、そして不
純物に含有された一酸化炭素と酸素等は下部に設けられ
たゲッターによって吸着、除去される。
The lower part of the purification column (the lower column in the case of a double column)
After the process is filled with a getter that has been nitrogenated by the process, and the upper part is filled with a Pd / Al 2 O 3 catalyst (in the case of a double row, the upper row), and then the nitrogen stream to be purified at a temperature of 200 to 450 ° C. To oxidize the methane component. The amount of catalyst used depends on the content of methane in the nitrogen stream to be purified, and is used in an amount of 0.001-10% by weight, based on the weight of the getter alloy. When the content of methane is high, the same amount of oxygen as methane can be supplied if necessary. Methane is oxidized and broken down into carbon dioxide and water. Oxidized carbon dioxide and water, and carbon monoxide and oxygen contained in impurities are adsorbed and removed by a getter provided below.

【0016】既存の窒素化されたゲッターを使用した場
合は、精製しようとする窒素ストリームのうち、メタン
及びハイドロカーボン類等は除去が不可能であったが、
本発明のように上部にはPd/Al23、下部には窒素
化されたゲッターを連結して200〜450℃の範囲で
使用すると、窒素ストリームのうち、メタン、水、酸
素、一酸化炭素、二酸化炭素等の不純物を除去できる。
When the existing nitrogenated getter is used, methane and hydrocarbons cannot be removed from the nitrogen stream to be purified.
When used at the top for the Pd / Al 2 O 3, the range of 200 to 450 ° C. in the lower part connects the nitrogenated getter as in the present invention, among the nitrogen stream, methane, water, oxygen, carbon monoxide Impurities such as carbon and carbon dioxide can be removed.

【0017】以下、実施例を通して本発明をより詳しく
説明する。
Hereinafter, the present invention will be described in more detail with reference to examples.

【0018】実施例1 イタリア(Italy)のミラノ所在のサエズゲッター
ス社(SAES Getters S.P.A)で製造
販売している22−25%重量比の鉄と75−78%の
ジルコニウムとからなる合金をゲッターとして、3mm
直径と4mmの高さになした柱状小粒体(column shape
small particle body)形態のZr−Feゲッター40
0gを、総容量約1lのガラス容器及び圧力測定変換器
と相互交換された小型加圧容器に置いた。真空ポンプを
用いて空気を25ミリ−トル未満に排気させ、真空ポン
プのバルブを空け、約1300トル絶対圧に窒素を添加
した時間に対する函数(function)として、圧
力変化を記録して窒素吸収を観察した。反応が完結した
後、空気安定化反応を行った。
EXAMPLE 1 An alloy comprising 22-25% by weight iron and 75-78% zirconium manufactured and sold by SAES Getters SPA of Milan, Italy. 3mm as a getter
Column shape with a diameter and 4 mm height
Zr-Fe getter 40 in the form of small particle body)
0 g was placed in a glass container with a total volume of about 1 l and a small pressurized container interchanged with a pressure measuring transducer. The air was evacuated to less than 25 millitorr using a vacuum pump, the valve of the vacuum pump was evacuated, and the pressure change was recorded as a function to the time of nitrogen addition to about 1300 torr absolute to record nitrogen absorption. Observed. After the reaction was completed, an air stabilization reaction was performed.

【0019】ゲッターを精製器列の下部に装着し、上部
にはPd/Al23触媒を充填した。235.5ppm
の一酸化炭素、195.9ppmの二酸化炭素、21
8.8のメタンを不純物に含む窒素ガスの精製を400
℃で行った。不純物の含まれた窒素ガスは、摂氏25度
の温度と6kg/cm2の圧力(ゲージ圧)及び0.1
7l/分の流速で精製器に導入される。窒素ガスは、摂
氏400度に維持されたゲッター層を通過して排気口か
ら41kg/cm2の圧力(ゲージ圧)に排気される
が、不純物に対する準位は、窒素ガスが管流して40分
後にいろいろなガスに対して測定する。精製前後のデー
タを図1及び図2に表示した。
A getter was attached to the lower part of the row of purifiers, and the upper part was filled with a Pd / Al 2 O 3 catalyst. 235.5 ppm
Carbon monoxide, 195.9 ppm carbon dioxide, 21
Purification of nitrogen gas containing 8.8 methane as impurities
C. was performed. Nitrogen gas containing impurities is subjected to a temperature of 25 degrees Celsius, a pressure of 6 kg / cm 2 (gauge pressure) and 0.1
It is introduced into the purifier at a flow rate of 7 l / min. Nitrogen gas passes through the getter layer maintained at 400 degrees Celsius and is exhausted from the exhaust port to a pressure (gauge pressure) of 41 kg / cm 2. It will be measured later for various gases. The data before and after purification are shown in FIG. 1 and FIG.

【0020】分析条件は次のようである。The analysis conditions are as follows.

【0021】 分析器(GC):HP−5890 Series II 検出器:FID(Methanizer) 列:PorapakQ オーブン温度:35℃の定温(constant) 検出温度:250℃ 注入A温度:50℃ 注入B温度:375℃ キャリア:He20ml/分Analyzer (GC): HP-5890 Series II Detector: FID (Methanizer) Column: PorapakQ Oven temperature: constant at 35 ° C. (constant) Detection temperature: 250 ° C. Injection A temperature: 50 ° C. Injection B temperature: 375 ℃ Carrier: He 20 ml / min

【0022】[0022]

【発明の効果】以上のように、本発明によるゲッター合
金は優秀な精製性能を示す。一酸化炭素ガス、二酸化炭
素ガス、そしてメタンガスを殆ど完全に除去した。
As described above, the getter alloy according to the present invention exhibits excellent refining performance. Carbon monoxide gas, carbon dioxide gas, and methane gas were almost completely removed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の窒素精製装置で処理する前の窒素ガス
を分析したガスクロマトグラムである。
FIG. 1 is a gas chromatogram obtained by analyzing nitrogen gas before being processed by a nitrogen purifying apparatus of the present invention.

【図2】本発明の窒素精製装置で処理した後の窒素ガス
を分析したガスクロマトグラムである。
FIG. 2 is a gas chromatogram obtained by analyzing nitrogen gas after being processed by the nitrogen purifying apparatus of the present invention.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Zr−V−Fe、Zr−Fe、Zrを主
成分とするゲッター合金を200〜450℃の温度で外
部大気と遮断、或いは高真空状態で窒素と反応させて精
製列の下部(2重列の場合、下部の列)に充填し、上部
にPd/Al 23触媒を充填した後(2重列の場合、上
部の列)、200〜450℃の温度で精製しようとする
窒素ストリームのうち、メタン成分を酸化させた後、前
記窒素化されたゲッターで水、二酸化炭素、一酸化炭
素、酸素等の不純物を除去することからなることを特徴
とする窒素精製方法。
1. Zr-V-Fe, Zr-Fe and Zr are mainly used.
Getter alloy as a component at a temperature of 200-450 ° C
In the atmosphere, or react with nitrogen in a high vacuum to refine
Fill the lower part of the row (in the case of double row, the lower row)
Pd / Al TwoOThreeAfter filling the catalyst (for double rows,
Column), to be purified at a temperature of 200-450 ° C.
After oxidizing the methane component of the nitrogen stream,
Water, carbon dioxide, carbon monoxide with a nitrogenated getter
Characterized by removing impurities such as oxygen and oxygen
Nitrogen purification method.
【請求項2】 前記メタン成分の酸化を促進するため
に、少量の酸素を付加することを特徴とする請求項1に
記載の窒素精製方法。
2. The nitrogen purification method according to claim 1, wherein a small amount of oxygen is added to promote the oxidation of the methane component.
【請求項3】 Zr−V−Fe、Zr−Fe、Zrを主
成分とするゲッター合金を200〜450℃の温度で外
部大気と遮断、或いは高真空状態で窒素と反応した合金
を精製列下部に、Pd/Al23触媒を上部に充填して
列を設置したこと、或いは2つの別の列を構成した後、
上部列にはPd/Al23を充填し、連結される下部列
には窒素化されたゲッター合金を充填したことを特徴と
する窒素精製装置。
3. A getter alloy containing Zr-V-Fe, Zr-Fe, or Zr as a main component is cut off from the outside atmosphere at a temperature of 200 to 450 ° C., or an alloy reacted with nitrogen in a high vacuum state is purified. After the Pd / Al 2 O 3 catalyst was filled at the top and rows were installed, or after two separate rows were configured,
A nitrogen purifier wherein the upper row is filled with Pd / Al 2 O 3 and the connected lower row is filled with a nitrogenated getter alloy.
JP2000370234A 2000-08-10 2000-12-05 Method and device for purifying nitrogen Pending JP2002060209A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020000046417A KR100356611B1 (en) 2000-08-10 2000-08-10 Purification Method and Apparatus for Nitrogen
KR2000-46417 2000-08-10

Publications (1)

Publication Number Publication Date
JP2002060209A true JP2002060209A (en) 2002-02-26

Family

ID=19682686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000370234A Pending JP2002060209A (en) 2000-08-10 2000-12-05 Method and device for purifying nitrogen

Country Status (4)

Country Link
JP (1) JP2002060209A (en)
KR (1) KR100356611B1 (en)
FR (1) FR2812823A1 (en)
TW (1) TW539644B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102588567B1 (en) * 2021-07-16 2023-10-16 주식회사 원익홀딩스 METHOD OF REMOVING SURFACE IMPURITY OF Zr-BASED GETTER

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS623006A (en) * 1985-06-28 1987-01-09 大陽酸素株式会社 Nitrogen super purification facilities and purification process
IT1227219B (en) * 1988-09-26 1991-03-27 Getters Spa APPARATUS AND RELATED METHOD TO REMOVE GASEOUS IMPURITIES FROM INERT GASES AND ENSURE EXTREMELY LOW HYDROGEN LEVELS
DE3926015A1 (en) * 1989-08-05 1991-02-07 Messer Griesheim Gmbh METHOD FOR THE FINE PURIFICATION OF GASES

Also Published As

Publication number Publication date
FR2812823A1 (en) 2002-02-15
KR20020013059A (en) 2002-02-20
TW539644B (en) 2003-07-01
KR100356611B1 (en) 2002-10-18

Similar Documents

Publication Publication Date Title
JP3351815B2 (en) Purification method of inert gas
EP2085356B1 (en) Removal of gaseous contaminants from argon
US4713224A (en) One-step process for purifying an inert gas
JP3634115B2 (en) Gas purification method and apparatus
JPH08332375A (en) Adsorbent and method for removing trace of oxygen from inertgas
GB2173182A (en) Methods and apparatus for purifying inert gas streams
KR930006690B1 (en) Superpurifier for nitrogen and process for purifying same
US5492682A (en) Hydrogen purification
JPH10507735A (en) Method for removing oxygen from ammonia at room temperature
CA2291388C (en) Purification of gases
JPS623008A (en) Argon super purification facilities and purification process
WO1997011768A1 (en) Low temperature inert gas purifier
WO1997011768A9 (en) Low temperature inert gas purifier
TW445170B (en) Process for the removal of water from evacuated chambers or from gases
KR930012038B1 (en) Refining method of inert gas stream
KR20020047114A (en) Rejuvenable ambient temperature purifier
JP2002060209A (en) Method and device for purifying nitrogen
JPS59107910A (en) Method for purifying gaseous argon
US5737941A (en) Method and apparatus for removing trace quantities of impurities from liquified bulk gases
US4215008A (en) Rare earth-containing alloys and method for purification of hydrogen gas therewith
KR19990014226A (en) Method and apparatus for producing high purity inert gas
EP1005895A1 (en) Purification of gases
JP2747753B2 (en) Method and apparatus for removing trace impurity gas components in inert gas
JPS60155521A (en) Process for purifying carbon monoxide from mixed gas containing carbon monoxide using adsorption process
JP3213851B2 (en) Removal method of carbon monoxide in inert gas

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040303