JPH0454721B2 - - Google Patents

Info

Publication number
JPH0454721B2
JPH0454721B2 JP60294846A JP29484685A JPH0454721B2 JP H0454721 B2 JPH0454721 B2 JP H0454721B2 JP 60294846 A JP60294846 A JP 60294846A JP 29484685 A JP29484685 A JP 29484685A JP H0454721 B2 JPH0454721 B2 JP H0454721B2
Authority
JP
Japan
Prior art keywords
liquid
rotating plate
cup
powder
atomization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60294846A
Other languages
Japanese (ja)
Other versions
JPS62156205A (en
Inventor
Tatsu Maeda
Kaisuke Shiroyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP29484685A priority Critical patent/JPS62156205A/en
Publication of JPS62156205A publication Critical patent/JPS62156205A/en
Publication of JPH0454721B2 publication Critical patent/JPH0454721B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F2009/0804Dispersion in or on liquid, other than with sieves
    • B22F2009/0812Pulverisation with a moving liquid coolant stream, by centrifugally rotating stream

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電子材料や構成材料及びその他の用途
に用いられる各種金属微粉末の製造法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing various metal fine powders used for electronic materials, constituent materials, and other uses.

〔従来の技術〕 従来金属微粉末の製造法として合金粉末の製造
が可能な溶湯アトマイズ法が知られている。この
方法は溶融した単体又は合金の溶融をノズルより
噴出させ、これを高圧にガス又は水で噴霧させる
ものであるが、生成する金属粒子の微細化に限界
があり、通常10μm以下の微粒子の製造は困難で
あつた。
[Prior Art] As a conventional method for producing fine metal powder, a molten metal atomization method that can produce alloy powder is known. In this method, a molten element or alloy is ejected from a nozzle and atomized with gas or water under high pressure, but there is a limit to the miniaturization of the metal particles produced, and it is usually difficult to produce fine particles of 10 μm or less. was difficult.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

近年高圧の水アトマイズ法により10μm以下の
微粒子の製造が可能になりつつあるが、この方法
は高圧の水を大量に用いるため、装置全体が大き
くなる。これに鑑み本発明者等はノズルより噴出
した溶湯に酸素ガスを吹き付けて一次アトマイズ
した後、移動液面に衝突させて二次アトマイズさ
せることにより10μm前後の微粒子が得られるこ
とを知見し、これを特願昭59−193276号(特公昭
61−39364号公報)により提案した。しかしこの
方法によつても10μm前後が限界であり、用途に
よつてはより微細な粉末が要求されている。
In recent years, it has become possible to produce fine particles of 10 μm or less using high-pressure water atomization, but this method uses a large amount of high-pressure water, making the entire device large. In view of this, the present inventors have discovered that fine particles of around 10 μm can be obtained by spraying oxygen gas onto the molten metal ejected from a nozzle for primary atomization, and then colliding with the moving liquid surface for secondary atomization. Patent Application No. 193276 (1983)
61-39364). However, even with this method, the limit is around 10 μm, and depending on the application, finer powder is required.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はこれに鑑み更に検討の結果、上記二段
アトマイズの原理を応用し、連続してミクロンオ
ーダーの金属微粉末の製造法を開発したもので、
金属溶湯をノズルより流出又は噴出し、これに高
圧ガスを吹き付けて一次アトマイズした後、表面
に厚さ1mm以下の液膜を形成した開き角が50°以
上のカツプ状高速回転板に衝突させて二次アトマ
イズし、しかる後液膜を形成した液体と二次アト
マイズした金属微粒子を分離することを特徴とす
るものである。
In view of this, as a result of further studies, the present invention has developed a method for continuously producing micron-order fine metal powder by applying the principle of two-stage atomization.
Molten metal is flowed out or spouted from a nozzle, and after primary atomization is performed by spraying high-pressure gas on it, it is collided with a cup-shaped high-speed rotating plate with an opening angle of 50° or more, which forms a liquid film with a thickness of 1 mm or less on the surface. This method is characterized by performing secondary atomization and then separating the liquid that has formed a liquid film from the secondary atomized metal fine particles.

即ち本発明は第1図に示すように容器1内に矢
印方向に回転する開き角が50°以上のカツプ状高
速回転板2を設け、該回転板2の中心に配管3よ
り液体を供給し、該回転板2の表面に厚さ1mm以
下の液膜4を形成する。容器1上には周囲に加熱
装置5、例えば高周波誘導加熱コイルを設け、下
端にノズル7を有するルツボ6を配置し、ストツ
パー8を引き上げることにより内部に保持した単
体又は合金の溶湯9を流下又は噴出せしめる。こ
の流下又は噴出する溶湯の側方に高圧ガス噴出用
ノズル10を設けて、流下する溶湯を高圧ガス、
例えば不活性ガスにより噴霧して一次アトマイズ
し、これを液膜4を形成した開き角が50°以上の
カツプ状高速回転板2に衝突させて二次アトマイ
ズさせるものである。
That is, as shown in FIG. 1, the present invention provides a cup-shaped high-speed rotating plate 2 with an opening angle of 50° or more that rotates in the direction of the arrow in a container 1, and supplies liquid from a pipe 3 to the center of the rotating plate 2. , a liquid film 4 having a thickness of 1 mm or less is formed on the surface of the rotating plate 2. A heating device 5, such as a high-frequency induction heating coil, is provided around the container 1, and a crucible 6 having a nozzle 7 at the lower end is disposed, and by pulling up a stopper 8, the molten metal 9 of a single substance or alloy held inside flows down or Make it gush. A high-pressure gas jetting nozzle 10 is provided on the side of the flowing down or spouting molten metal, and the flowing down molten metal is
For example, primary atomization is performed by atomizing with an inert gas, and secondary atomization is performed by colliding with a cup-shaped high-speed rotating plate 2 with an opening angle of 50° or more on which a liquid film 4 is formed.

二次アトマイズした微粒子は液体と共に遠心力
により開き角が50°以上のカツプ状高速回転板2
の周方向に連続的に排出し、容器1の下部に接続
した下端に液体のみを通すフイルター12を有す
る下部容器11内に導入する。下部容器11の下
方にはフイルター12を通して排液室13を取付
け、該排液室13にバルブ14を介して減圧器1
5を接続する。このようにして排液室13内を減
圧し、フイルター12を通して下部容器11内の
液体を排液室13内に排出する。
The secondary atomized particles are generated by centrifugal force along with the liquid on a cup-shaped high-speed rotating plate 2 with an opening angle of 50° or more.
The liquid is continuously discharged in the circumferential direction and introduced into a lower container 11 having a filter 12 at the lower end connected to the lower part of the container 1 that allows only liquid to pass through. A drain chamber 13 is installed below the lower container 11 through a filter 12, and a pressure reducer 1 is connected to the drain chamber 13 through a valve 14.
Connect 5. In this way, the pressure inside the drain chamber 13 is reduced, and the liquid in the lower container 11 is discharged into the drain chamber 13 through the filter 12.

尚高圧ガスにArガス等を用いた場合には、図
に示すように下部容器11にバルブ16を介して
コンプレツサー17を取付け、下部容器11内の
気圧が1気圧以上のときにコンプレツサー17を
作動させ、Arガスを吸引圧縮して再利用すると
よい。
Furthermore, when Ar gas or the like is used as the high-pressure gas, a compressor 17 is attached to the lower container 11 via a valve 16 as shown in the figure, and the compressor 17 is activated when the pressure inside the lower container 11 is 1 atm or more. It is recommended to vacuum and compress the Ar gas and reuse it.

ルツボには単体又は合金と反応し難いものを用
い、ルツボ内に挿入した単体又は合金を加熱装置
により溶解するか、又は他の溶解炉で溶解した溶
湯をルツボ内に連続的に供給する。このようにし
て所定温度に保持してストツパーを引き上げ、溶
湯を自重又はルツボ内の加圧により、ノズルより
流出又は噴出させる。これに高圧ガスを吹き付け
て一次アトマイズするが、ガス圧はなるべく高い
方が微粒化に効果的であり、ガスの種類として粉
末を酸化させないためにはAr、N2、He等の不活
性ガスを使用し、後工程で粉末の還元工程を必要
とする場合には空気又は酸素ガスを用いることが
できる。ノズルの形状はV字形、環状その他任意
の形状のものが使用できる。またカツプ状高速回
転板には溶湯と反応しないものが望ましく、例え
ば金属、セラミツク、金属上にセラミツクをコー
テイングしたもので、高速回転に十分耐えうるも
のが望ましい。
The crucible is made of a material that does not easily react with the element or alloy, and the element or alloy inserted into the crucible is melted by a heating device, or the molten metal melted in another melting furnace is continuously supplied into the crucible. In this manner, the temperature is maintained at a predetermined level, the stopper is pulled up, and the molten metal flows out or is ejected from the nozzle due to its own weight or pressurization inside the crucible. Primary atomization is performed by spraying high-pressure gas onto the powder, but the higher the gas pressure, the more effective it is at atomizing the powder.In order to prevent the powder from oxidizing, use an inert gas such as Ar, N 2 or He. air or oxygen gas can be used if a reduction step of the powder is required in a subsequent step. The shape of the nozzle can be V-shaped, annular or any other shape. The cup-shaped high-speed rotating plate is preferably made of a material that does not react with the molten metal, such as metal, ceramic, or ceramic coated on metal, which can withstand high-speed rotation.

〔作用〕[Effect]

本発明によればノズルより流化又は噴出する金
属溶湯に高圧ガスを吹き付けて一次アトマイズ
し、これを表面に厚さ1mm以下の液膜を形成した
開き角が50°以上のカツプ状高速回転板に衝突さ
せて二次アトマイズすることにより、従来製造困
難であつたミクロンオーダーの金属微粉末の連続
的製造を可能にし、かつ凝固時の冷却速度が速
く、組成の均一な微粉末又はアモルフアス合金微
粉末を製造することができる。
According to the present invention, a high-pressure gas is sprayed onto the molten metal flowing or spouted from a nozzle to primary atomize the molten metal, and a cup-shaped high-speed rotating plate with an opening angle of 50° or more forms a liquid film on the surface of the molten metal with a thickness of 1 mm or less. By causing secondary atomization by colliding with the metal, it is possible to continuously produce micron-order fine metal powder, which was previously difficult to produce, and the cooling rate during solidification is fast, making it possible to produce fine powder or amorphous alloy fine powder with a uniform composition. A powder can be produced.

しかして高速回転板の形状は第2図イ,ロに示
すように開き角(θ)が50°以上のカツプ状回転
板2とすることが必要であり、開き角(θ)が
50°未満ではカツプ状回転板の内面に粉末が堆積
して均一な液膜の形成が困難となり、粉末の微粒
化と連続製造の妨げとなる。また第3図に示すよ
うに一時アトマイズされた噴霧粒子がカツプ状回
転板2と衝突する入射角度(α)は30°以上とす
ることが望ましく、入射角度(α)が30°未満で
はカツプ状回転板2と衝突した後、該回転板から
反射して入射方向と反対方向に飛散する割合が高
く、30°以上でこの割合が低くなり、90°近辺で最
も少なく、ほとんどがカツプ状回転板に衝突して
二次アトマイズされる。液膜を形成する液体は粉
末の形状、大きさ、酸化程度、粉末の凝固時の冷
却速度及び回転板との密着性に影響を与える。一
般には酸化してもよい粉末の製造には水を用いる
ことが望ましく、アルミニウム合金粉末、超合金
粉末、ハンダ粉末等なるベく表面酸化のない粉末
を製造する場合には酸素含有量の少ない液体、例
えば油、フツ素系不活性液体、有機系液体、脱酸
処理した水等を用いる。供給する液体はその量が
多い程、粉末粒子が球形に近く、また凝固速度が
大きく、カツプ状回転板への密着性も少ない。し
かし液体供給量が多く、カツプ状回転板表面に厚
さが1mmを超える液膜が形成されると、該液膜が
障害となり、一次アトマイズされた噴霧粒子がカ
ツプ状回転板に直接衝突できず、二次アトマイズ
の効果が減少し生成する粉末は粗大化する。
Therefore, the shape of the high-speed rotating plate must be a cup-shaped rotating plate 2 with an opening angle (θ) of 50° or more, as shown in Figure 2 A and B.
If the angle is less than 50°, the powder will accumulate on the inner surface of the cup-shaped rotating plate, making it difficult to form a uniform liquid film, which will hinder the atomization of the powder and continuous production. Furthermore, as shown in Fig. 3, it is desirable that the incident angle (α) at which the temporarily atomized spray particles collide with the cup-shaped rotary plate 2 is 30° or more; if the incident angle (α) is less than 30°, the cup-shaped After colliding with the rotating plate 2, there is a high proportion of reflection from the rotating plate and scattering in the opposite direction to the incident direction, and this proportion decreases at an angle of 30° or more, and is lowest near 90°, and most of the particles are scattered on the cup-shaped rotating plate. collides with and becomes secondary atomized. The liquid that forms the liquid film affects the shape, size, degree of oxidation, cooling rate during solidification of the powder, and adhesion to the rotating plate. In general, it is preferable to use water to produce powders that may be oxidized, and liquids with low oxygen content to produce powders that do not have surface oxidation, such as aluminum alloy powders, superalloy powders, and solder powders. For example, oil, fluorine-based inert liquid, organic liquid, deoxidized water, etc. are used. The larger the amount of liquid supplied, the more spherical the powder particles become, the faster the solidification rate is, and the less the adhesion to the cup-shaped rotary plate. However, if the amount of liquid supplied is large and a liquid film with a thickness of more than 1 mm is formed on the surface of the cup-shaped rotating plate, this liquid film becomes an obstacle, preventing the primary atomized spray particles from colliding directly with the cup-shaped rotating plate. , the effect of secondary atomization decreases and the resulting powder becomes coarser.

カツプ状回転板に衝突して二次アトマイズされ
た粉末はカツプ状回転板の周方向へ液体と共に霧
状に飛行し、容器の壁に付着して液下と共に流化
し、下部容器内に導入されるから、下部容器より
液体のみを通過させるフイルターを通して液体の
みを排液室内に移し、粉末は容器から取出して乾
燥する。
The powder that collides with the cup-shaped rotating plate and becomes secondary atomized flies along with the liquid in the circumferential direction of the cup-shaped rotating plate, adheres to the wall of the container, flows with the liquid below, and is introduced into the lower container. Therefore, only the liquid is transferred from the lower container to the drainage chamber through a filter that allows only the liquid to pass through, and the powder is taken out from the container and dried.

〔実施例〕〔Example〕

実施例 1 第1図に示す方法によりPb−Sn系ハンダ合金
の微粉末を製造した。ルツボにはステンレス製を
用いてPb−Sn系ハンダ合金60Kgを高周波誘導加
熱により溶解し、ルツボ内で500℃に保持した。
減圧器に真空ポンプを用い、これを作動させて容
器、下部容器及び排液室を10-2torr以下の真空と
した後、開き角90°、外径500mmのアルミニウム合
金製カツプ状回転板を毎分6000回転させ、該回転
板の中心に住友スリーエム社製フツ素系不活性液
体(フロリナート(商標名、型番:FC40))を毎
分500c.c.の割合で供給し、該回転板の厚さ0.01mm
の液膜を形成した。このようにしてガスノズルに
より30気圧のArガスを噴出させると同時に、ル
ツボのストツパーを引き上げて溶湯をノズルより
流下させ、Arガスにより一次アトマイズした。
続いて一次アトマイズしたハンダ粒子を入射角度
70〜90°の間で、前記カツプ状回転板に衝突させ
て二次アトマイズした。尚容器、下部容器が1気
圧以上なつたときにコンプレツサーを作動させて
Arガスを圧縮し、これを再利用した。
Example 1 Fine powder of a Pb-Sn solder alloy was produced by the method shown in FIG. A stainless steel crucible was used to melt 60 kg of Pb-Sn solder alloy by high-frequency induction heating, and the temperature was maintained at 500°C within the crucible.
A vacuum pump is used as a pressure reducer, and after it is operated to create a vacuum of 10 -2 torr or less in the container, lower container, and drainage chamber, a cup-shaped rotating plate made of aluminum alloy with an opening angle of 90° and an outer diameter of 500 mm is inserted. The rotating plate was rotated at 6,000 rpm, and a fluorine-based inert liquid (Florinart (trade name, model number: FC40) manufactured by Sumitomo 3M Co., Ltd.) was supplied to the center of the rotating plate at a rate of 500 c.c. per minute. Thickness 0.01mm
A liquid film was formed. In this way, 30 atmospheres of Ar gas was ejected from the gas nozzle, and at the same time, the stopper of the crucible was pulled up to cause the molten metal to flow down from the nozzle, and was primarily atomized by the Ar gas.
Next, the incident angle of the primary atomized solder particles is
Secondary atomization was performed by colliding with the cup-shaped rotary plate at an angle of 70 to 90°. Please operate the compressor when the pressure in the container or lower container exceeds 1 atm.
Argon gas was compressed and reused.

このようにして約30分間ハンダ粉末を連続的に
製造した。その結果粉末は前記カツプ状回転板に
付着することなく、液体と供に下部容器内に流下
した。
Solder powder was produced continuously in this manner for about 30 minutes. As a result, the powder flowed down into the lower container together with the liquid without adhering to the cup-shaped rotating plate.

これをアトマイズ終了後、真空ポンプを作動さ
せ、不活性液体のみを下部容器から排液室に移
し、残留するハンダ合金粉末を真空乾燥させた。
その結果得られた粉末粒子はほとんど球形で平均
粒径は6.5μm、酸化量は300ppmであつた。
After the atomization was completed, the vacuum pump was operated to transfer only the inert liquid from the lower container to the drainage chamber, and the remaining solder alloy powder was vacuum dried.
The resulting powder particles were almost spherical, had an average particle size of 6.5 μm, and had an oxidation amount of 300 ppm.

比較のためArガスによる一次アトマイズを省
略し、溶湯を直接前記カツプ状回転板上に流下さ
せた。その結果アトマイズした粉末粒子は平均
35μmであつた。
For comparison, primary atomization using Ar gas was omitted, and the molten metal was allowed to flow directly onto the cup-shaped rotating plate. As a result, the atomized powder particles have an average
It was 35 μm.

また前記カツプ状回転板の開き角を45°として
Arガスによる一次アトマイズした粒子を該回転
板に衝突させて二次アトマイズを行なつたとこ
ろ、ハンダ合金粉末が該回転板の上面に付着し、
良好なアトマイズを行なうことができなかつた。
Also, the opening angle of the cup-shaped rotary plate is 45°.
When secondary atomization was performed by colliding particles that had been primarily atomized with Ar gas against the rotating plate, solder alloy powder adhered to the top surface of the rotating plate.
Good atomization could not be achieved.

実施例 2 実施例1において容器、下部容器及び排液室を
真空に保持し、Arガスの代りに空気を用い、不
活性液体の代りに水を用い、実施例1との同様に
してPb−Sh系合金ハンダの微粉末を製造した。
その結果得られた微粉末は平均粒形5.0μm、酸素
量23000ppmであつた。
Example 2 Pb- Fine powder of Sh-based alloy solder was manufactured.
The resulting fine powder had an average particle size of 5.0 μm and an oxygen content of 23,000 ppm.

〔発明の効果〕〔Effect of the invention〕

このように本発明によれば、従来製造が困難で
あつたミクロンオーダーの金属微粉末が容易に得
られ、各種粉末治金の分野において高強度、高耐
熱性、高靭性を有する材料の開発が可能となり、
更に粉末を直接用いた各種ペーストや触媒材料等
の機能材料の開発が可能になる等工業上顕著な効
果を奏するものである。
As described above, according to the present invention, it is possible to easily obtain micron-order fine metal powder, which has been difficult to produce in the past, and it is possible to develop materials with high strength, high heat resistance, and high toughness in various fields of powder metallurgy. It becomes possible,
Furthermore, it is possible to develop functional materials such as various pastes and catalyst materials by directly using the powder, which brings about remarkable industrial effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明製造法の一例を示す説明図、第
2図イ,ロはそれぞれ本発明におけるカツプ状回
転板の開き角の説明図、第3図は本発明における
一次アトマイズした金属粒子が衝突するカツプ状
回転板への入射角の説明図である。 1……容器、2……カツプ状回転板、3……液
体供給用ノズル、4……液膜、5……加熱装置、
6……ルツボ、7……ノズル、8……ストツパ
ー、9……金属溶湯、10……高圧ガスノズル、
11……下部容器、12……フイルター、13…
…排液室、14……バルブ、15……減圧器。
FIG. 1 is an explanatory diagram showing an example of the manufacturing method of the present invention, FIG. 2 A and B are explanatory diagrams of the opening angle of the cup-shaped rotating plate in the present invention, and FIG. FIG. 4 is an explanatory diagram of the angle of incidence on the cup-shaped rotary plate that collides with the cup-shaped rotary plate. DESCRIPTION OF SYMBOLS 1... Container, 2... Cup-shaped rotating plate, 3... Liquid supply nozzle, 4... Liquid film, 5... Heating device,
6... Crucible, 7... Nozzle, 8... Stopper, 9... Molten metal, 10... High pressure gas nozzle,
11...lower container, 12...filter, 13...
... Drainage chamber, 14 ... Valve, 15 ... Pressure reducer.

Claims (1)

【特許請求の範囲】 1 金属溶湯をノズルより流出又は噴出し、これ
に高圧ガスを吹き付けて一次アトマイズした後、
表面に厚さ1mm以下の液膜を形成した開き角が
50°以上のカツプ状高速回転板に衝突させて二次
アトマイズし、しかる後、液膜を形成した液体と
二次アトマイズした金属微粒子を分離することを
特徴とする金属微粉末の製造法。 2 高圧ガスに不活性ガスを用いる特許請求の範
囲第1項記載の金属微粉末の製造法。 3 一次アトマイズした金属粒子が衝突する開き
角が50°以上のカツプ状高速回転板への入射角を
30°以上とする特許請求の範囲第1項又は第2項
記載の金属微粉末の製造法。 4 二次アトマイズした金属粒子と液膜を形成し
た液体を、下端に液体のみを通すフイルターを設
けた容器内に導入し、フイルターを通して液体を
吸引分離する特許請求の範囲第1項、第2項又は
第3項記載の金属微粉末の製造法。
[Claims] 1. Molten metal flows out or spouts out from a nozzle, and after primary atomization is performed by spraying high-pressure gas onto it,
The opening angle that forms a liquid film of 1 mm or less on the surface
A method for producing fine metal powder, which is characterized by colliding with a cup-shaped high-speed rotating plate of 50° or more for secondary atomization, and then separating the liquid that has formed a liquid film from the secondary atomized metal fine particles. 2. The method for producing fine metal powder according to claim 1, in which an inert gas is used as the high-pressure gas. 3. The angle of incidence on the cup-shaped high-speed rotating plate with an opening angle of 50° or more at which the primary atomized metal particles collide.
A method for producing fine metal powder according to claim 1 or 2, wherein the angle is 30° or more. 4. The secondary atomized metal particles and the liquid forming a liquid film are introduced into a container equipped with a filter at the lower end that allows only the liquid to pass through, and the liquid is separated by suction through the filter.Claims 1 and 2 Or the method for producing fine metal powder according to item 3.
JP29484685A 1985-12-27 1985-12-27 Production of pulverized metallic powder Granted JPS62156205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29484685A JPS62156205A (en) 1985-12-27 1985-12-27 Production of pulverized metallic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29484685A JPS62156205A (en) 1985-12-27 1985-12-27 Production of pulverized metallic powder

Publications (2)

Publication Number Publication Date
JPS62156205A JPS62156205A (en) 1987-07-11
JPH0454721B2 true JPH0454721B2 (en) 1992-09-01

Family

ID=17813009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29484685A Granted JPS62156205A (en) 1985-12-27 1985-12-27 Production of pulverized metallic powder

Country Status (1)

Country Link
JP (1) JPS62156205A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01198410A (en) * 1988-02-02 1989-08-10 Furukawa Electric Co Ltd:The Apparatus for manufacturing metal powder
JPH02258906A (en) * 1989-03-30 1990-10-19 Kubota Ltd Manufacture of rapidly cooling solidified metal powder
JP2774711B2 (en) * 1991-06-05 1998-07-09 株式会社クボタ Method and apparatus for producing metal powder
JPH0754019A (en) * 1993-08-17 1995-02-28 Nippon Sozai Kk Production of powder by multistage fissure and quenching
JPH08209207A (en) * 1995-02-02 1996-08-13 Masumoto Takeshi Production of metal powder
JP2008183621A (en) * 2008-02-04 2008-08-14 Mitsui Mining & Smelting Co Ltd Solder powder
JP2010209409A (en) * 2009-03-10 2010-09-24 Nec Tokin Corp Method for producing amorphous soft magnetic alloy powder, amorphous soft magnetic alloy powder, and formed body using the same
CN104084596B (en) * 2014-07-15 2017-05-03 中国科学院宁波材料技术与工程研究所 Method and device for manufacturing amorphous powder
JP6993674B2 (en) * 2016-09-28 2022-02-04 国立大学法人東北大学 Amorphous nanoparticles manufacturing method, amorphous nanoparticles and amorphous nanoparticles dispersion

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5867805A (en) * 1981-10-20 1983-04-22 Daido Steel Co Ltd Preparation of powder
JPS60110803A (en) * 1983-11-16 1985-06-17 Furukawa Electric Co Ltd:The Method and device for producing metallic powder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5867805A (en) * 1981-10-20 1983-04-22 Daido Steel Co Ltd Preparation of powder
JPS60110803A (en) * 1983-11-16 1985-06-17 Furukawa Electric Co Ltd:The Method and device for producing metallic powder

Also Published As

Publication number Publication date
JPS62156205A (en) 1987-07-11

Similar Documents

Publication Publication Date Title
US6059853A (en) Production of powder
EP3504020B1 (en) Low melting point metal or alloy powders atomization manufacturing processes
JPH0454721B2 (en)
EP3752304B1 (en) High melting point metal or alloy powders atomization manufacturing processes
CN110125425A (en) A kind of method that electrode induction aerosolization continuous flow prepares globular metallic powder
US6481638B1 (en) Method and device for producing fine powder by atomizing molten material with gases
CN105618773A (en) Gas atomization device for preparing 3D printing metal powder
US5738705A (en) Atomizer with liquid spray quenching
JPS60114507A (en) Manufacture of metal fine powder
Schade et al. Atomization
JP2719074B2 (en) Method and apparatus for producing metal powder
JPS6224481B2 (en)
JP2004269956A (en) Apparatus for producing metallic powder, and method for producing metallic powder using the apparatus
US5876794A (en) Process for atomizing a dispersible liquid material
CN88204942U (en) Spraying powder-manufacturing device
US3533136A (en) Apparatus for producing metal powder
JP2788919B2 (en) Method and apparatus for producing metal powder
JPH0754019A (en) Production of powder by multistage fissure and quenching
CN108754389A (en) A kind of aeroponics and spray coating method prepare the method and device of metallic composite
JP2580616B2 (en) Method for producing spherical metal powder
JP2993029B2 (en) Manufacturing method of metal powder
JP2528333B2 (en) Liquid spray method
Wang et al. Combination of spray forming and metal powder productions by the internal mixing atomizer with a substrate
Wang et al. Lead powder atomization) new type of nozzle
JPS62112710A (en) Production of metallic powder