JPS60110803A - Method and device for producing metallic powder - Google Patents

Method and device for producing metallic powder

Info

Publication number
JPS60110803A
JPS60110803A JP21577683A JP21577683A JPS60110803A JP S60110803 A JPS60110803 A JP S60110803A JP 21577683 A JP21577683 A JP 21577683A JP 21577683 A JP21577683 A JP 21577683A JP S60110803 A JPS60110803 A JP S60110803A
Authority
JP
Japan
Prior art keywords
molten metal
drum
water
powder
rotating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21577683A
Other languages
Japanese (ja)
Other versions
JPS6139368B2 (en
Inventor
Tatsu Maeda
龍 前田
Kaisuke Shiroyama
城山 魁助
Mitsuo Kawada
川田 満雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP21577683A priority Critical patent/JPS60110803A/en
Publication of JPS60110803A publication Critical patent/JPS60110803A/en
Publication of JPS6139368B2 publication Critical patent/JPS6139368B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F2009/0804Dispersion in or on liquid, other than with sieves
    • B22F2009/0812Pulverisation with a moving liquid coolant stream, by centrifugally rotating stream

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To produce continuously fine and spherical metallic powder at a good yield by blowing a high-pressure gas from the side diagonal with the molten metal directed toward the liquid layer in a rotary drum so as to collide against the rotating liquid layer. CONSTITUTION:Water is supplied at a prescribed flow rate through a water replenishing port 6 into a drum 1 under rotation to form a rotary water layer 5 on the inside circumferential surface of the drum. A molten metal is then ejected from a molten metal ejecting nozzle 3 toward the water layer 5 and at the same time a high-pressure gas is ejected via high-pressure gas ejecting nozzles 4 from the side diagonal with the molten metal so as to collide against the layer 5 after disintegrating the molten metal into fine particles thereby pulverizing and solidifying further the molten metal. The solidified metallic powder deposits on the drum 1 and is rotated together with the drum 1. Such powder is continuously recovered together with the water through a powder recoveing port 7 and is contained into a powder recovering tank 8. The water flowing out through the port 7 is replenished by the water through the port 6 to balance the water flow.

Description

【発明の詳細な説明】 本発明は金属溶湯から直接金属粉末を製造する方法及び
装置に関するしので、特に微細で球状の金属粉末を歩留
り良く連続的に製造できるようにしたものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for producing metal powder directly from molten metal, and is particularly designed to continuously produce fine, spherical metal powder with a high yield.

一般に金属粉末はその用j工によって種々の形状のもの
が用いられており、導電塗料、触媒、粉末冶金等には主
とじで球状の粉末が用いられCいる。
In general, metal powders are used in various shapes depending on the application, and spherical powders are mainly used for conductive coatings, catalysts, powder metallurgy, etc.

このような球状粉末の製造方法としてはガス71〜マイ
ズ法が中心であるが、近江回転水アトマイズ法について
も検問されている。この方法は回転するドラム内に水を
入れ、遠心力にJ、リドラム内壁にドラムと共に回転す
る水層を形成し、該水層に向けて金属溶湯を噴出さけて
回転水により急冷粉砕するものである。
Although the gas 71-mize method is the main method for producing such spherical powder, the Omi rotating water atomization method is also being investigated. In this method, water is placed in a rotating drum, the centrifugal force is applied to J, a water layer is formed on the inner wall of the re-drum that rotates with the drum, and the molten metal is spouted toward the water layer and rapidly cooled and pulverized by the rotating water. be.

しかしこのj:うな方法で製造した粉末は平均粒径が5
0〜100μ瓦と粗く、しかも形状が不規則で′球状で
ないものも多く含まれており、楊1台によっては60メ
ツシ1以上のフレーク状粉末が含まれることもあり、こ
れ等の分離が非常に困難なばかりか、歩留りも低いしの
であった。更に製造された粉末はドラl入内の回転Jる
水層内にあるため、連続的に回収づ゛ることができず、
これが生産性を著しく阻害IJていた。
However, the powder produced by this method has an average particle size of 5.
The particles are coarse, ranging from 0 to 100 μm, and many of them are irregular in shape and not spherical, and depending on the size of the yang, 60 μm or more of flake-like powder may be included, making it extremely difficult to separate these. Not only was it difficult to process, but the yield was also low. Furthermore, the produced powder cannot be collected continuously because it is in the rotating water layer inside the drum.
This significantly hindered productivity.

本発明はこれに鑑み種々検問の結果、微細で球状の金属
粉末を歩留り良く、連続的に製造することができる金属
粉末の製造方法及び装四を開発したbのである。
In view of this, and as a result of various investigations, the present invention has developed a metal powder manufacturing method and a device capable of continuously manufacturing fine, spherical metal powder with good yield.

即ら本発明製造方法は回転ドラム、内のドラムと」Lに
回転Jる流体層に向tプで金属溶湯を噴出せしめ、金屈
溶t)を回転流体により急冷粉砕する金属に5)末のl
!l′I造において、流体層に向【ノて噴出した金属溶
湯に、斜め側方にり高圧力スを吹きイ」けた後、回転液
体層に1Φj突さけることを特徴とするものである。
That is, the manufacturing method of the present invention involves jetting molten metal toward a rotating drum and a fluid layer rotating in the direction of the inner drum, and turning the molten metal into metal 5) powder which is rapidly cooled and pulverized by the rotating fluid. l of
! In the 1'I structure, the molten metal spouted toward the fluid layer is characterized by blowing high-pressure gas diagonally to the side and then thrusting it into the rotating liquid layer by 1Φj.

また本発明装置は回転ドラム内のドラムと共に回転する
液体層に向()て金属溶湯を噴出せしめ、金属溶湯を回
転する液体にJ:り急冷粉砕りる金属粉末の製造おいて
、液体層に向()て金属溶湯を噴出するノズルの斜め側
方より溶湯に向()で高11−ガスを噴出するノズルを
設け、溶湯噴出ノズルの前方に回転液体と共に金属粉末
を取出1回収管と、取出した液量に相当する液体を装入
づる供給管を設【プたことを特徴とJるものである。
Furthermore, the apparatus of the present invention jets molten metal toward a liquid layer that rotates with the drum in a rotating drum, and quenches and pulverizes the molten metal into the rotating liquid. A nozzle is provided that spouts a high 11-gas toward the molten metal from an oblique side of the nozzle that spouts the molten metal toward the molten metal, and a recovery pipe is provided in front of the molten metal spouting nozzle to extract the metal powder together with the rotating liquid. It is characterized by the provision of a supply pipe into which liquid equivalent to the amount of liquid taken out is charged.

これを図面を用いて詳細に説明する。This will be explained in detail using the drawings.

第1図及び第2図は本発明装置の一例ケ承りもので、図
において(1)は回転ドラム、(2)は回転軸、(3)
は溶湯噴出ノズル、(4)は高圧ガス噴出ノズル、(6
)は補給水口、(7)は粉末回収口を示し、回転ドラム
(1)は側壁の−hを内側に突出する環状壁(1a)を
残して間[]シ、使方の側壁5に回転軸(2)を設【ノ
で矢印方向に高速回転する。ドラム(1)の間口部より
ドラム(1)内周面に向けて溶湯を噴出するノズル(3
)と、該ノズル(3)より噴出する溶湯に向けて斜め側
方より高圧ガスを噴出量るノズル(4)とを設(プ、両
ノズル(3)、(4ンのnIJ方にドラム(1)内周面
に水層(6a)を形成覆る補給水口(6)と、更にその
前方にドラム(1)内周面より水と共に金属わ)末を回
収する回収口(7)を設()たものである。尚、歯にお
いて(3a)は溶湯++(l出ノスル(33)の外周に
設けた加熱用高周波コイル、(6a)は水補給用パイプ
、(7a)は金n1′Yi’t)未回収用パイプ、(8
)は金属粉未回収用タンクを承り、。
Figures 1 and 2 are examples of the device of the present invention. In the figures, (1) is a rotating drum, (2) is a rotating shaft, and (3) is a rotating drum.
(4) is a high-pressure gas jet nozzle, (6) is a molten metal jet nozzle, and (6) is a high-pressure gas jet nozzle.
) indicates the supply water port, (7) indicates the powder collection port, and the rotating drum (1) rotates on the side wall 5 of the usage side, leaving the annular wall (1a) projecting inward at -h of the side wall. Set the shaft (2) to rotate at high speed in the direction of the arrow. A nozzle (3) spouts molten metal from the frontage of the drum (1) toward the inner peripheral surface of the drum (1).
) and a nozzle (4) that jets high-pressure gas from the diagonal side toward the molten metal spouted from the nozzle (3). 1) A replenishment water inlet (6) that forms and covers the water layer (6a) on the inner peripheral surface, and a collection port (7) that collects metal powder together with water from the inner peripheral surface of the drum (1) in front of the replenishment water port (6). ).In the teeth, (3a) is a heating high-frequency coil installed around the outer circumference of the molten metal++ (l outlet nostle (33), (6a) is a water supply pipe, and (7a) is gold n1'Yi. 't) Uncollected pipe, (8
) accepts tanks for uncollected metal powder.

本賢明(は上記装圃を用い、回転覆るドラム内に補給水
l]より所定の流攪で水を供給し、遠心力にJ、リドラ
ム内周面に回凪水層を形成づる。次に溶湯噴出ノズルよ
り水層に向【ノて溶湯を噴出Vしめるど共に、噴出する
溶湯に向りて斜め側方より高圧力ス噴出ノ゛スルから高
圧ガスを噴出し、溶湯を細粉化しCから水層に衝突せし
めて更に細粉化、固化せしめる。固化した金属粉末は遠
心力により1−ラム内周面にJ(# ((i L/ドラ
ムと共に回転する。これを粉末回収[]より水と共に連
続的に回収し、粉末回収タンク内に収納するものである
。粉末回収口より流出する水量は補給水口より供給する
水量とバランスさせることにより、ドラム内周面の回転
水層を一定量に保持するものである。
Using the above-mentioned agricultural equipment, water is supplied with a specified flow and agitation from the supply water into the rotating drum, and the centrifugal force is applied to form a recirculating water layer on the inner peripheral surface of the re-drum.Next, The molten metal is spouted from the molten metal spouting nozzle toward the water layer, and at the same time, high-pressure gas is spouted from the high-pressure gas spouting nozzle diagonally toward the spouting molten metal to pulverize the molten metal. The solidified metal powder is further pulverized and solidified by colliding with the water layer.The solidified metal powder is transferred to the inner peripheral surface of the 1-ram by centrifugal force and rotates with the drum. It is continuously collected together with water and stored in a powder collection tank.By balancing the amount of water flowing out from the powder collection port with the amount of water supplied from the replenishment water port, the rotating water layer on the inner circumferential surface of the drum is kept at a constant level. It is to be kept as such.

このように本発明はノズルより噴出する金属溶湯流を先
ず高圧ガスの噴出で噴霧し、続いて回転水層によって噴
霧する二段噴霧にJ:す、従来の回転水層による噴霧に
比べ、平均粒径30μnLと約1/2〜1/3となり、
粉末の形状もほぼ球状となり、不規則形状やフレーク状
のものはほと/vど含まれない。金属粉末の大きさは、
溶湯噴出と高圧力ス噴出の相対的な位置関係、回転水層
までの距離、回転水層の周速度、溶湯の温度、噴出圧、
流径、高圧ガスの噴出圧、噴出量等を調整することによ
り変えることができる。しかして溶湯噴出ノズルの口径
を0.3〜5 mm %噴出圧力を0.5〜10KfJ
 / trdの範囲内とし、高圧ガスとしては金属溶湯
の種類に応じて空気又は窯素、二酸化炭素、アルゴン等
の非酸化性ガスを用い、噴出圧力を3#/cd以上とし
、更に回転ドラムには内径300 mm以−E、幅50
1B1B以上のものを用い、その周速度を30TrL/
sec以上とすることが望ましい。
As described above, the present invention employs two-stage spraying in which the molten metal flow ejected from the nozzle is first atomized by a jet of high-pressure gas, and then is sprayed by a rotating water layer. The particle size is 30 μnL, which is about 1/2 to 1/3,
The shape of the powder is also almost spherical, and contains almost no irregular or flaky particles. The size of the metal powder is
The relative positional relationship between the molten metal spout and the high-pressure gas jet, the distance to the rotating water layer, the peripheral speed of the rotating water layer, the temperature of the molten metal, the jet pressure,
It can be changed by adjusting the flow diameter, jetting pressure of high-pressure gas, jetting amount, etc. Therefore, the diameter of the molten metal spouting nozzle is set to 0.3 to 5 mm, and the jetting pressure is set to 0.5 to 10 KfJ.
/trd, and the high pressure gas is air or non-oxidizing gas such as silica, carbon dioxide, argon, etc. depending on the type of molten metal, the ejection pressure is 3#/cd or more, and the rotating drum is Inner diameter 300 mm or more - E, width 50
Use 1B1B or more, and set the circumferential speed to 30TrL/
It is desirable to set it to sec or more.

以上回転水層を用いた例について説明したが、これに限
るものではなく、金属溶湯と反応しない不燃性の液体で
あれば、種々のものを用いることができる。
Although an example using a rotating water layer has been described above, the present invention is not limited to this, and various nonflammable liquids that do not react with the molten metal can be used.

以下本発明の効果を明らかにりるため、実施例について
説明する。
Examples will be described below in order to clarify the effects of the present invention.

第1図に承り一装置を用いて銅粉末を製造した。Copper powder was produced using the apparatus shown in FIG.

回転ドラムには内径400 mm、幅60mmの鉄製ド
ラムを用い、溶湯噴出ノズルと回転水層間の距離を30
mmに固定し、第1表に示す条件で溶湯噴出ノズルJ、
す1300℃の溶湯を1.1<9 / c#Iの圧力で
噴出し、これに高圧窒素ガスを吹きイ1【ノた後、回転
水層に衝突さμk。このようにして得らた粉末について
粒庶分布を測定した。これ等の結果を高圧窒素ガスを用
いない従来り法と仕較し゛C第1表に併記した。
An iron drum with an inner diameter of 400 mm and a width of 60 mm was used as the rotating drum, and the distance between the molten metal spout nozzle and the rotating water layer was 30 mm.
mm, and under the conditions shown in Table 1, the molten metal spouting nozzle J,
The molten metal at 1,300℃ is ejected at a pressure of 1.1<9/c#I, and after being blown with high-pressure nitrogen gas, it collides with a rotating water layer. The grain size distribution of the powder thus obtained was measured. These results are compared with the conventional method that does not use high-pressure nitrogen gas and are also listed in Table 1.

0 −7男40c+、 +rs、−電 1 →− 1叙 gl + 田− °゛巳 区ゝ\ ♀言″−08111 室 !l:! ψ 〜 2 −への寸0■「\の■ 第1表から明らかなJ:うに従来方法N017〜9によ
り製造した粉末は何れも平均粒径が50〜100μIn
と比較的大きく、またバラツキも大きいばかりか、粒形
ち不規則なものである。これに対し本発明方法No、1
〜4にJ:り製造した粉末は平均粒径が22μmと小さ
く、バラツキも少なしx、ばかりか、粒形は粉末の粒径
大小に関係なく、何れも球状をなしCいた。また本発明
方法NO35〜6から判るように、溶湯流に高圧ガスを
吹き(=i l)でも、ガスLE力が小さいか又はドラ
ムの周速度が低いと、粒形はほば球状をな゛りも、平均
粒径及びバラツキも人さくなる傾向を示す。従って本発
明方法により平均粒径が30μlrL以下でバラツキが
少ない粉末を1りるためには、特に高圧ガスの噴出圧力
を3Kg/cni Iス1どし、かつドラムの周速度を
30m/sec以上どづることが望J、しいことが判る
0 -7 male 40c+, +rs, -den 1 →- 1 gl + 田- °゛巳区ゝ\ ♀Word″-08111 Room! l:! J: It is clear from the table that the average particle size of all the powders produced by conventional methods No. 017 to 9 is 50 to 100 μIn.
Not only are they relatively large and have large variations, but their grain shapes are irregular. In contrast, method No. 1 of the present invention
The powders produced in 4 to 4 had a small average particle size of 22 μm, with little variation, and the particle shape was spherical regardless of the particle size of the powder. Furthermore, as can be seen from Methods No. 35 to 6 of the present invention, even if high-pressure gas is blown into the molten metal flow (= i l), if the gas LE force is small or the circumferential speed of the drum is low, the grain shape will not be nearly spherical. However, the average particle size and dispersion also tend to be less sensitive. Therefore, in order to produce powder with an average particle size of 30 µlrL or less and little variation using the method of the present invention, the ejection pressure of the high-pressure gas must be set at 3 kg/cni, and the circumferential speed of the drum must be set at 30 m/sec or more. I want to be able to pronounce it, and I know what's right.

このJ:うに本発明にJ:れば11f1出溶湯流を高圧
ガス−C噴霧し、続いて回転液層により噴nすることに
J、す、平均粒径を30μm以下に微細化量ると共に粉
末形状ヲtJは球形化し、歩留り良く連続的に製造し得
る等工業上顕著な効果を奏づるものである。
In the present invention, the 11f1 molten metal flow is atomized with high-pressure gas-C, and then sprayed with a rotating liquid layer to refine the average particle size to 30 μm or less. The powder form is spherical and can be manufactured continuously with good yield, which provides remarkable industrial effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置の一例を示す説明図、第2図は第1
図における要部断面を示寸°斜視図ある。 1、回転ドラム 2、回転軸 3、溶湯噴出ノズル 4、高圧ガス噴出ノズル 5、水層 6、補給水口 ア、金属粉未回収口 第1図 第2図 ■
FIG. 1 is an explanatory diagram showing an example of the device of the present invention, and FIG.
FIG. 1 is a perspective view showing a cross section of a main part in the figure. 1. Rotating drum 2, rotating shaft 3, molten metal jetting nozzle 4, high pressure gas jetting nozzle 5, water layer 6, replenishment water port A, metal powder uncollected port Figure 1 Figure 2 ■

Claims (3)

【特許請求の範囲】[Claims] (1)回転ドラム内のドラムと共に回転覆る液体層に向
(プて金属溶湯を噴出せしめ、金属溶湯を回転り゛る液
体により急冷粉砕する金属粉末の製造において、液体層
に向けて噴出した金属溶湯に、斜め側方より高圧ガスを
吹き(=J I〕だ後、回転液体層に衝突さけることを
特徴と覆る金属粉末の製造lj法
(1) In the production of metal powder, the molten metal is quenched and pulverized by the rotating liquid, in which the molten metal is quenched and pulverized by the rotating liquid. A method for manufacturing metal powder that is characterized by blowing high-pressure gas into the molten metal from the side diagonally (=JI) and then avoiding collision with the rotating liquid layer.
(2)回転ドラム内より回転づる液体と共に金属粉末を
連続的に回収し、取出した液体に相当する液体量をドラ
ム内に供給Jる特許請求の範囲第1項記載の金属粉末の
製造方法
(2) The method for producing metal powder according to claim 1, wherein the metal powder is continuously collected together with the rotating liquid from inside the rotating drum, and an amount of liquid corresponding to the extracted liquid is supplied into the drum.
(3)回転ドラム内のドラムと共に回転する液体層に向
【ノて金属溶湯を噴出せしめ、金属溶湯を回転する液体
により急冷粉砕する金属粉末の製造において、液体層に
向けて金属溶湯を噴出するノズルの斜め側方より溶湯に
向けて高圧ガスを噴出すノズルを設け、溶湯噴出ノズル
の前方に回転液体と共に金属粉末を取出す回収管と、取
出した液量に相当する液体を装入する供給管を設(プた
ことを特徴とする金属し)末の製造装置
(3) In the production of metal powder, the molten metal is spouted toward the liquid layer that rotates with the drum in the rotating drum, and the molten metal is rapidly cooled and pulverized by the rotating liquid. A nozzle is installed to eject high-pressure gas toward the molten metal from the diagonal side of the nozzle, and in front of the molten metal ejection nozzle there is a collection pipe that takes out the metal powder along with the rotating liquid, and a supply pipe that charges the liquid equivalent to the amount of liquid taken out. A metal powder manufacturing device characterized by the following:
JP21577683A 1983-11-16 1983-11-16 Method and device for producing metallic powder Granted JPS60110803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21577683A JPS60110803A (en) 1983-11-16 1983-11-16 Method and device for producing metallic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21577683A JPS60110803A (en) 1983-11-16 1983-11-16 Method and device for producing metallic powder

Publications (2)

Publication Number Publication Date
JPS60110803A true JPS60110803A (en) 1985-06-17
JPS6139368B2 JPS6139368B2 (en) 1986-09-03

Family

ID=16678036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21577683A Granted JPS60110803A (en) 1983-11-16 1983-11-16 Method and device for producing metallic powder

Country Status (1)

Country Link
JP (1) JPS60110803A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62156205A (en) * 1985-12-27 1987-07-11 Furukawa Electric Co Ltd:The Production of pulverized metallic powder
JPH02258906A (en) * 1989-03-30 1990-10-19 Kubota Ltd Manufacture of rapidly cooling solidified metal powder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62156205A (en) * 1985-12-27 1987-07-11 Furukawa Electric Co Ltd:The Production of pulverized metallic powder
JPH0454721B2 (en) * 1985-12-27 1992-09-01 Furukawa Electric Co Ltd
JPH02258906A (en) * 1989-03-30 1990-10-19 Kubota Ltd Manufacture of rapidly cooling solidified metal powder

Also Published As

Publication number Publication date
JPS6139368B2 (en) 1986-09-03

Similar Documents

Publication Publication Date Title
KR101512772B1 (en) Method and atomizer apparatus for manufacturing metal powder
EP3504020B1 (en) Low melting point metal or alloy powders atomization manufacturing processes
KR20180025260A (en) Apparatus and Method for Producing Alloy Powder by the Gas and Water Hybrid Process
JPS63307202A (en) Wet metallurgical method for producing finely divided copper or copper alloy powder
CN114433855A (en) Equipment and method for preparing metal powder
JPS60114507A (en) Manufacture of metal fine powder
KR20160048262A (en) Method for producing a metal powder by using a rotating disk and gas atomization
JPS60110803A (en) Method and device for producing metallic powder
US3533136A (en) Apparatus for producing metal powder
US5876794A (en) Process for atomizing a dispersible liquid material
JPS62156205A (en) Production of pulverized metallic powder
JPS63307201A (en) Wet metallurgical method for producing finely divided iron base powder
JPH0754019A (en) Production of powder by multistage fissure and quenching
JP2834348B2 (en) Manufacturing method of metal powder
JPH01198410A (en) Apparatus for manufacturing metal powder
JPH01205004A (en) Method and apparatus for producing metal powder
CN100544860C (en) Water atomization is produced the injection apparatus of global type metal dust
JPH06172817A (en) Production of quenched metal powder
KR102293284B1 (en) Complex atomizer
JPS6139364B2 (en)
JPH04276005A (en) Production of fine metal powder
JP2877742B2 (en) Method and apparatus for producing rapidly solidified metal powder
JPH0211704A (en) Method and apparatus for producing atomized powder
JPH01104704A (en) Production of super quenched metal alloy powder
JPS6024304A (en) Device for producing alloy powder