JPS5867805A - Preparation of powder - Google Patents

Preparation of powder

Info

Publication number
JPS5867805A
JPS5867805A JP16644681A JP16644681A JPS5867805A JP S5867805 A JPS5867805 A JP S5867805A JP 16644681 A JP16644681 A JP 16644681A JP 16644681 A JP16644681 A JP 16644681A JP S5867805 A JPS5867805 A JP S5867805A
Authority
JP
Japan
Prior art keywords
cooling medium
rotor
rotating body
molten metal
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16644681A
Other languages
Japanese (ja)
Inventor
Shigeki Sawa
澤 繁樹
Akira Horata
亮 洞田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP16644681A priority Critical patent/JPS5867805A/en
Publication of JPS5867805A publication Critical patent/JPS5867805A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/10Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying using centrifugal force

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To simply obtain a metal powder suitable for powder metallurgy, by a method wherein a liquid cooling medium is flowed on the surface of a rotor and a molten metal is atomized while being flowed onto the cooling medium to prevent the deposition of the metal to the surface of the rotor. CONSTITUTION:The interior of a container is held under a non-oxidative atmosphere or a reductive atmosphere and a rotor 5 is rotated at a high speed. A liquid cooling medium 8 is flowed on the rotor 5 from a cooling medium supply pipe 7 and a slide nozzle 4 is opened to flow the molten metal 3 in a crucible on the cooling medium. This molten metal 3 is flowed on the rotor 5 along the liquid cooling medium while exerted by the centrifugal force by the rotor 5 and scattered and atomized by impact force to the rotor 5, the centrifugal force received from the rotor 5 and intumescent force of the cooling medium. At the same time, atomized particles are rapidly solidified from the surfaces thereof by the evaporation heat of the cooling medium 8 and solidified while an irregular shape during scattering remains to fall into a powder container 9.

Description

【発明の詳細な説明】 この発明は、回転体表面に溶融金属を流して霧化させる
ことにより粉末を#造する方法の改良に関するものでお
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a method for producing powder by pouring molten metal onto the surface of a rotating body and atomizing it.

金属粉末全製造する方法の一つに遠心噴霧法がのる。こ
の遠心I!Jm法は、従来より多用されている浴融金属
の高速流体により霧化させる溶湯噴霧法とは異なり、回
転体表面に溶融金属を流すことにより機械的な衝撃力お
よび遠心力等の作用によって当該溶融金属を飛散霧化さ
せる方法であって、例えば、特公昭35−6527号公
報や、特公昭51−47564号公報等にその機構が開
示されている。この遠心噴霧法は、その機構上、生成さ
れる粉末の汚染を避けることが容易であり、装d的にも
比較的簡琳で、噴霧エネルギが比較的少ないという利点
を有しているが、反面、溶融金属が直接回転体に接触す
るために、回転体表面に金属が凝着したり、回転体表面
を損傷したりするという問題を有している。このため、
特に高融点金属の噴霧には適用しがたいのが実情である
。また、冷却速度が限られるため、得られる粉末は球状
に近く、粉末冶金用としては必らずしも十分でないとい
う問題点も有している。
Centrifugal spraying is one of the methods for producing metal powder. This centrifugal I! The Jm method differs from the conventionally widely used molten metal atomization method in which a high-speed fluid is used to atomize the molten metal in a bath.The Jm method uses molten metal to flow onto the surface of a rotating body and atomizes the molten metal by mechanical impact force, centrifugal force, etc. This is a method of scattering and atomizing molten metal, and its mechanism is disclosed in, for example, Japanese Patent Publication No. 35-6527 and Japanese Patent Publication No. 51-47564. Due to its mechanism, this centrifugal atomization method has the advantage that it is easy to avoid contamination of the powder produced, is relatively simple in terms of packaging, and requires relatively little atomization energy. On the other hand, since the molten metal comes into direct contact with the rotating body, there is a problem that the metal may adhere to the rotating body surface or damage the rotating body surface. For this reason,
The reality is that it is particularly difficult to apply to the spraying of high melting point metals. Furthermore, since the cooling rate is limited, the resulting powder has a nearly spherical shape, which is not necessarily sufficient for use in powder metallurgy.

この発明は、上述した従来の問題点を解消するためにな
され念もので、回転体表面に溶融金属を流して霧化させ
るに際し、回転体表面に金鴫が凝着するのを防ぎ、冷却
速度、の調整も可能であって、粉末冶金用に適した金属
粉末を得ることができる粉末の製造方法を提供すること
を目的としている。
This invention was made in order to solve the above-mentioned conventional problems, and when molten metal is poured onto the surface of the rotating body and atomized, it prevents gold drop from adhering to the surface of the rotating body, and speeds up the cooling rate. It is an object of the present invention to provide a powder manufacturing method that allows adjustment of , and obtains a metal powder suitable for powder metallurgy.

すなわち、この発明は、回転体表面に溶融金属を流して
その際に生ずる衝撃力および遠心力等によって当該溶融
金属を霧化させることにより粉末を〜、占する方法にお
・いて、前6己回転体表面に液状冷却媒体を流すと共に
、前記回転体表面を流れる液状冷却媒体上に溶融金属を
流して霧化させるととにより粉末金製欲することをl待
機としている。
That is, the present invention relates to a method for atomizing powder by pouring molten metal onto the surface of a rotating body and atomizing the molten metal by impact force, centrifugal force, etc. generated at that time. A liquid cooling medium is flowed on the surface of the rotating body, and molten metal is poured onto the liquid cooling medium flowing on the surface of the rotating body to atomize it, thereby producing powder metal.

以下、この発明の秘殉態悸を図面に基いてさらに、洋1
ii11に説明する。
Below, the secrets of this invention will be further explained based on the drawings.
This will be explained in ii11.

、a’y 1 iJはこの発明↓でよる粉末の製造装置
etの一構造tall ’、s: 、概略的に示す折面
説明図でちって、1は容器、2は容器1内VC設置した
るつは(高周波誘導1寺であってもよい。)、6はるつ
ぼ2内に収容17た14融金属、4けるつぼ2の底部開
口3aを開閉す、6スライドノズル、5はるつぼ2の下
方に設1rtt、/こ回転体、6は回転+Il+6a′
!il−介して同転体5を回転させるモータ、7は回転
体5−ヒに液状冷却媒体8を供給する冷却媒体供給管、
9は粉末収納W +i’、yである。″また、るつぼ2
と回転体5と冷却媒体1d、給管7の位遁関係は、第2
図に示すように、冷却媒体供給骨7から供給される液状
冷却媒体8の中心Mが、回転体5の回転中心Cから若干
離れた位置となるようにすると共に、るつぼ2から供給
される溶融金属6の中心Nが前記回転体表1釦ヲ流れる
液状冷却媒体8上に来るようにそれぞれ定める。
, a'y 1 iJ is a structure of the powder manufacturing apparatus et according to this invention↓tall',s: , In the folded explanatory diagram schematically shown, 1 is a container, and 2 is a VC installed in the container 1. 6 is a melting metal housed in the crucible 2; 4 is a slide nozzle for opening and closing the bottom opening 3a of the crucible 2; 5 is a melting metal; 1rtt is installed below, / is a rotating body, 6 is rotation + Il + 6a'
! A motor for rotating the rotary body 5 through il; 7 a cooling medium supply pipe for supplying a liquid cooling medium 8 to the rotary body 5;
9 is powder storage W +i', y. ``Also, Crucible 2
The positional relationship between the rotating body 5, the cooling medium 1d, and the supply pipe 7 is as follows:
As shown in the figure, the center M of the liquid cooling medium 8 supplied from the cooling medium supply bone 7 is located at a position slightly apart from the rotation center C of the rotating body 5, and the melting medium supplied from the crucible 2 is The center N of the metal 6 is positioned above the liquid cooling medium 8 flowing through the rotor table 1 button.

そこで、このような装置を使用して粉末を製造するに際
しては、例えば容器1内t−あらかじめ不活性ガスもし
くは還元性ガスで置換してるつぼ2内を非酸化性あるい
は還元性雰囲気とし、モータ6を作動させて回転体5を
高速回転させる。次に、冷却媒体供給管7から液状冷却
媒体8を回転体5上に流す。すると、この液状冷却媒体
8は遠心力によって第2図に示すような軌跡を描いて回
転体表面を流れる。この状態で、スライドノズル4を開
いて溶融金属6を流すと、溶融金属6は前記回転体表面
を流れる液状冷却媒体a上に流下し、この溶融金属6は
回転体5により遠心力を付与されて第2図に示すような
軌跡を描いて液状冷却媒体8と共に回転体5上を流れ、
この間溶融金属6は回転体5への衝撃力や回転体5から
受ける遠心力、さらには液状冷却媒体8の泡沸力等によ
って飛散磁化すると同時に、液状冷却媒体8の大きな気
化熱のために霧化粒子の表面から急速に凝固し、飛翔時
の不規則形状が残ったまま凝固して粉未収納谷器9内に
落下する。
Therefore, when producing powder using such an apparatus, for example, the inside of the container 1 is replaced with an inert gas or a reducing gas to create a non-oxidizing or reducing atmosphere inside the crucible 2, and the inside of the crucible 2 is made into a non-oxidizing or reducing atmosphere. is operated to rotate the rotating body 5 at high speed. Next, liquid cooling medium 8 is flowed onto rotating body 5 from cooling medium supply pipe 7 . Then, this liquid cooling medium 8 flows on the surface of the rotating body, drawing a trajectory as shown in FIG. 2 due to centrifugal force. In this state, when the slide nozzle 4 is opened and the molten metal 6 flows, the molten metal 6 flows down onto the liquid cooling medium a flowing on the surface of the rotating body, and the molten metal 6 is subjected to centrifugal force by the rotating body 5. The liquid coolant 8 flows over the rotating body 5 along with the liquid cooling medium 8, drawing a trajectory as shown in FIG.
During this time, the molten metal 6 is dispersed and magnetized by the impact force on the rotating body 5, the centrifugal force received from the rotating body 5, and the bubble boiling force of the liquid cooling medium 8, and at the same time, it becomes foggy due to the large heat of vaporization of the liquid cooling medium 8. The particles rapidly solidify from the surface, solidify with the irregular shape left during flight, and fall into the valley 9 where no powder is stored.

なお、回転体5の材質は耐熱性の高いものが望ましいが
、溶融金属6の流下量が多い場合には耐衝撃性や耐熱衝
撃性を考慮して金属質のものとすることもできる。また
、第3図に示すように、回転体5を溶融金属受部51と
回転軸取付部52とに分けてこれらを所定間隔で止具5
5により固定し、これらの間に断熱材54を配設して、
溶融全域3の熱が回転軸6aに直接伝わらないような構
造とすることもできる。
The material of the rotating body 5 is preferably one with high heat resistance, but if the amount of molten metal 6 flowing down is large, it may be made of a metal material in consideration of impact resistance and thermal shock resistance. Further, as shown in FIG. 3, the rotating body 5 is divided into a molten metal receiving part 51 and a rotating shaft mounting part 52, and these parts are connected to each other by a stopper 5 at a predetermined interval.
5, and a heat insulating material 54 is arranged between them,
It is also possible to adopt a structure in which the heat in the melting area 3 is not directly transmitted to the rotating shaft 6a.

さらに、回転体5の形状は、図示例のような円錐状のも
のに限らず、平板状のものであっても良い。また、液状
冷却媒体としては、液化Ar 、 H・。
Furthermore, the shape of the rotating body 5 is not limited to a conical shape as shown in the illustrated example, but may be a flat plate shape. In addition, as the liquid cooling medium, liquefied Ar, H.

N2等の不活性あるいは非酸化性のものを使用すること
ができる。
An inert or non-oxidizing material such as N2 can be used.

このようにして金属粉末を製造した1合には、■ 液状
冷却媒体8が流れる回転体50表面にガス膜が形成され
るため、回転体5の冷却が良好に行なわれ、ガス膜の厚
さtX整することによって溶融金属3が回転体5に凝着
したり、回転体5を損傷し九りするのをより一層防止す
ることができる。
When the metal powder is manufactured in this way, (1) a gas film is formed on the surface of the rotating body 50 through which the liquid cooling medium 8 flows, so that the rotating body 5 is cooled well, and the thickness of the gas film is reduced; By adjusting tX, it is possible to further prevent the molten metal 3 from adhering to the rotating body 5 and damaging and breaking the rotating body 5.

■ 溶融金属60回転体5への衝撃力、回転体5からの
遠心力、さらには液状冷却媒体8の泡沸力等によって、
溶融金属6の霧化がより強力にかつ効果的に行なわれ、
回転体50回転数を過度に上昇させなくとも溶融金Ji
i3の霧化を良好に行なうことができる。
■ Due to the impact force on the molten metal 60 rotating body 5, the centrifugal force from the rotating body 5, and the bubbling force of the liquid cooling medium 8, etc.
The molten metal 6 is atomized more strongly and effectively,
50 molten metal without excessively increasing the rotation speed of the rotating body
i3 can be atomized well.

■ 液状冷却媒体8の気化による大きな吸熱によって、
溶融金属6は回転体5に衝突しかつ遠心力によって霧化
され九後直ちに凝固するため、粉末の不規則形状が保持
され、特に粉末冶金用として好ましいものが得られる。
■ Due to large heat absorption due to vaporization of liquid cooling medium 8,
Since the molten metal 6 collides with the rotating body 5 and is atomized by centrifugal force and immediately solidifies, the irregular shape of the powder is maintained and a powder particularly suitable for powder metallurgy is obtained.

そして、表面の急速凝固によって、たとえ活性な金属あ
るいは活性な金属を含む合金の場合であってもその汚染
を最小限にとどめることができる。
Rapid solidification of the surface can minimize contamination even in the case of active metals or alloys containing active metals.

■ 回転体50表面に流す液状冷却媒体8の流下位1a
を回転体5の回転中心からずらし、回転体5の一部分で
液状冷却媒体8の軌跡が形成されるようにしたときでも
、溶融金属6の霧化を良好に行なうことができるため、
液状冷却媒体8の使用量を著しく低減することができる
■ Lower part 1a of the liquid cooling medium 8 flowing onto the surface of the rotating body 50
Even when the liquid cooling medium 8 is shifted from the center of rotation of the rotating body 5 so that the trajectory of the liquid cooling medium 8 is formed in a part of the rotating body 5, the molten metal 6 can be atomized well.
The amount of liquid cooling medium 8 used can be significantly reduced.

■ 液状冷却媒体8を回転体50表面に向けて流すこと
によって、冷却媒体8の回転体表面に対する密着性を良
好なものとすることができ、溶融金属6の霧化を安定し
て行なうことができるようになる。
■ By flowing the liquid cooling medium 8 toward the surface of the rotating body 50, the adhesion of the cooling medium 8 to the surface of the rotating body can be made good, and the molten metal 6 can be stably atomized. become able to.

などの利点ヲ有している。It has advantages such as:

次に実施例を説明する。Next, an example will be described.

実施例 1 第1図に示す装置において、容器1内をアルゴンガスで
置換した後、プラズマアーク溶解により溶解したIN 
100相当材(0,06チC1帆10チSi 、 0.
02 To Mn 、 0.003 % P 、 0.
002 * S 。
Example 1 In the apparatus shown in Fig. 1, after replacing the inside of the container 1 with argon gas, the IN melted by plasma arc melting
100 equivalent material (0.06 inch C1 sail 10 inch Si, 0.06 inch C1 sail 10 inch Si, 0.
02 To Mn, 0.003% P, 0.
002*S.

3、l−Mo 、 5.5チAZ −18−I To 
Co t 4−0チTl 。
3, l-Mo, 5.5chi AZ-18-I To
Cot 4-0 Chi Tl.

0.7 % V 、残部Ni)ノ溶融金属3’1150
0℃でるつぼ2内に注湯し友。また、半径10cInの
円錐状回転体5(頂角120°)を高速回転させた。
0.7% V, balance Ni) molten metal 3'1150
Pour hot water into crucible 2 at 0℃. Further, a conical rotating body 5 (apex angle of 120°) with a radius of 10 cIn was rotated at high speed.

このとき、回転体50回転速度はエアモータ6に対する
空気量を調節することによって1000〜15000 
rpmの範囲で変え念。次に、回転体50回転中心から
半径方向1.7 crsの位置に、冷却媒体供給管7よ
り直径3−の液化アルゴン8を1@ / l@aの速度
で流下式せた。次いで上記液化アルゴン8の軌跡上に、
高さ10国の位置から前記るつぼ2内の溶融金属6を自
然落下させた。このときの流下速度は約4 Kg / 
minであり、噴霧は約1分間行なった。その後、得ら
れた粉末を調べたところ、表1に示すような結果となっ
た。
At this time, the rotational speed of the rotating body 50 can be increased from 1000 to 15000 by adjusting the amount of air to the air motor 6.
Make sure to change the rpm range. Next, at a position 1.7 crs in the radial direction from the center of rotation of the rotating body 50, liquefied argon 8 having a diameter of 3 mm was allowed to flow down from the cooling medium supply pipe 7 at a rate of 1@/l@a. Next, on the trajectory of the liquefied argon 8,
The molten metal 6 in the crucible 2 was allowed to fall naturally from a height of 10 mm. The flow rate at this time is approximately 4 kg/
spraying was performed for about 1 minute. Thereafter, the obtained powder was examined and the results shown in Table 1 were obtained.

表1に示すように、液化アルゴンを流下させ、その流れ
の軌跡上に溶融金属3を流した場合には、不定形粉末が
得られた。しかし、液化アルゴンを使用しない場合には
、得られた粉末にi片状のも5のが多く混在しており、
しかも溶融金@6が回転体5しこ凝嘴し、表面の損傷が
大きいことがわかった。
As shown in Table 1, when liquefied argon was allowed to flow down and molten metal 3 was flowed on the trajectory of the flow, an amorphous powder was obtained. However, when liquefied argon is not used, the resulting powder contains a large amount of I-shaped particles,
Furthermore, it was found that the molten gold @6 had condensed onto the rotating body 5, and the surface was severely damaged.

実殉例 2 回転体5の材質として、ステンレス鋼、カーボ10ン、
窒化けい素、アルミナを用い、直径101M。
Actual example 2 The material of the rotating body 5 is stainless steel, carbon 10,
Made of silicon nitride and alumina, diameter 101M.

頂角120°のものを使用し、液状冷却媒体8として液
化窒素を用いた。また、[IJ1転体5の回転数ti 
1200 Orpmと一定にし、その他の条件は実施例
1の場合と同じにした。その結果を表2に示火2しこ示
すように、液状冷却媒体(液化窒素)を用いない場合に
は、回転体に対する熱amが大きいため、窒化けい素お
よびアルミナから作成した回転体は噴霧開始直後に破損
を生じ、その後継続することができなかった。また、破
損を生じないまでもステンレス鋼およびカーボンから作
成した回転体では、金WtO凝着が生じていた。また、
カーボンから作成した回転体では、液化窒素を使用しな
い場合VCより多くのカーボン捕捉現象が克られ、粉末
の汚染を生じた。これに別して、液化4素を用いた場合
には、いずれの回転体についても良好な結果が得られ、
見掛は北東も高いものが得られた。
The apex angle was 120°, and liquid nitrogen was used as the liquid cooling medium 8. Also, [rotational speed ti of IJ1 rolling element 5
The other conditions were the same as in Example 1. As the results are shown in Table 2, when a liquid cooling medium (liquefied nitrogen) is not used, the heat am to the rotating body is large, so the rotating body made from silicon nitride and alumina is sprayed. The project broke down immediately after starting and was unable to continue. Furthermore, gold WtO adhesion occurred in rotating bodies made of stainless steel and carbon, even though no damage occurred. Also,
Rotating bodies made from carbon overcome more carbon trapping phenomena than VC without the use of liquefied nitrogen, resulting in powder contamination. Separately, when liquefied four elements were used, good results were obtained for all rotating bodies,
The appearance was also high in the northeast.

以、1:説明してきたように、この発明によれば、回鴨
体表面に溶融金属を流して4化させることにより粉末を
製造する方法において、前記回転体表−シこ液状冷却媒
体を流すと共に、Ui前記回転体表面を流れる液状冷却
媒体上に溶融金@を流して霧化させるようにしたから、
回転体に破損金主じたり、回転体に金稿が擬着したりす
ることなく、特に粉末冶金用に適し九粉末を極めて良好
に製造することができ、従来既に知られていながら十分
に活用されなかった遠心噴霧法による粉末の製造を簡便
に行なうことができるという著大なる効果を有する。
Hereinafter, 1: As explained above, according to the present invention, in the method for producing powder by pouring molten metal onto the surface of the rotating body and causing it to become quaternized, a liquid cooling medium is poured over the surface of the rotating body. At the same time, since the molten gold is atomized by flowing onto the liquid cooling medium flowing on the surface of the rotating body,
It is possible to produce extremely good powder especially suitable for powder metallurgy without causing damage to the rotating body or gold plate adhering to the rotating body, and it is already known and fully utilized. This method has the great effect of making it possible to easily produce powder by centrifugal spraying, which has not been done previously.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明による粉末の製造に使用される装置の
一構造例を概略的に示す断面説明図、第2図は回転体表
面での液状冷却媒体および溶融金属の流れの軌跡を示す
説明図、第3図は回転体の他の構造例を示す断面説明図
である。 1・・・容器、2・・・るつぼ、6・・・溶融金属、5
・・・回転体、6・・・モータ、7・・・冷却媒体、供
給管、8・・・液状冷却媒体。 特許出願人  大同特殊鋼株式会社 代理人弁理士   小  塩     豊□ 腸 第2図 第3図
Fig. 1 is a cross-sectional explanatory diagram schematically showing an example of the structure of an apparatus used for producing powder according to the present invention, and Fig. 2 is an explanatory diagram showing the trajectory of the flow of the liquid cooling medium and molten metal on the surface of the rotating body. 3 are cross-sectional explanatory views showing other structural examples of the rotating body. 1... Container, 2... Crucible, 6... Molten metal, 5
...Rotating body, 6...Motor, 7...Cooling medium, supply pipe, 8...Liquid cooling medium. Patent Applicant Daido Steel Co., Ltd. Representative Patent Attorney Yutaka Oshio Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] (1)  回転体表面に溶融金属を流して霧化させるこ
とにより粉末を製造する方法において、前6己回転体表
簡に液状冷却媒体を流すと共に、前dr2回転体表面を
流れる液状冷却媒体上に溶融金mを流して霧化させるこ
とを特徴とする粉末の製造方法。
(1) In a method of producing powder by pouring molten metal onto the surface of a rotating body and atomizing it, a liquid cooling medium is flowed on the surface of the front dr2 rotor, and at the same time a liquid cooling medium is flowed on the surface of the front dr2 rotor. A method for producing powder, characterized by flowing molten gold m into a powder and atomizing it.
JP16644681A 1981-10-20 1981-10-20 Preparation of powder Pending JPS5867805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16644681A JPS5867805A (en) 1981-10-20 1981-10-20 Preparation of powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16644681A JPS5867805A (en) 1981-10-20 1981-10-20 Preparation of powder

Publications (1)

Publication Number Publication Date
JPS5867805A true JPS5867805A (en) 1983-04-22

Family

ID=15831552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16644681A Pending JPS5867805A (en) 1981-10-20 1981-10-20 Preparation of powder

Country Status (1)

Country Link
JP (1) JPS5867805A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62156205A (en) * 1985-12-27 1987-07-11 Furukawa Electric Co Ltd:The Production of pulverized metallic powder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62156205A (en) * 1985-12-27 1987-07-11 Furukawa Electric Co Ltd:The Production of pulverized metallic powder
JPH0454721B2 (en) * 1985-12-27 1992-09-01 Furukawa Electric Co Ltd

Similar Documents

Publication Publication Date Title
JPH03505896A (en) Atomization equipment and manufacturing method
US5954112A (en) Manufacturing of large diameter spray formed components using supplemental heating
JPH10110206A (en) Production of fine-grained (chromium carbide)-(nickel chromium) powder
EP0000926A1 (en) Method and apparatus for producing flakes from molten material
US4523621A (en) Method for making metallic glass powder
US4482375A (en) Laser melt spin atomized metal powder and process
US4242069A (en) Apparatus for producing flake
JPH0151523B2 (en)
US4355057A (en) Formation of alloy powders through solid particle quenching
US4701289A (en) Method and apparatus for the rapid solidification of molten material in particulate form
JPS5867805A (en) Preparation of powder
JPH0754019A (en) Production of powder by multistage fissure and quenching
US3532775A (en) Method for producing aluminum particles
WO1982003809A1 (en) Apparatus for spraying metal or other material
Zdujić et al. Production of atomized metal and alloy powders by the rotating electrode process
US4377375A (en) Apparatus for forming alloy powders through solid particle quenching
JPS60190503A (en) Production of metallic powder
JPH0321602B2 (en)
JPH024906A (en) Manufacture of flaky rapidly cooling solidified metal powder
JPH064886B2 (en) Cream solder manufacturing method
JPH02290907A (en) Method and apparatus for manufacturing solder fine powder
JPH02145710A (en) Manufacture of metal fine powder
WO1993013898A1 (en) Production of atomized powder of quenched high-purity metal
JP2857807B2 (en) Manufacturing method of long tubular preform by spray-deposit method
JPS62112709A (en) Production of metallic powder