JPH0454149A - Production of high-purity isophthalic acid - Google Patents

Production of high-purity isophthalic acid

Info

Publication number
JPH0454149A
JPH0454149A JP2164217A JP16421790A JPH0454149A JP H0454149 A JPH0454149 A JP H0454149A JP 2164217 A JP2164217 A JP 2164217A JP 16421790 A JP16421790 A JP 16421790A JP H0454149 A JPH0454149 A JP H0454149A
Authority
JP
Japan
Prior art keywords
isophthalic acid
oxidation
acid
acetic acid
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2164217A
Other languages
Japanese (ja)
Other versions
JP2924104B2 (en
Inventor
Kazuo Tanaka
一夫 田中
Terumasa Yoshida
吉田 輝正
Fumio Ogoshi
二三夫 大越
Ichihei Motoyama
元山 市平
Tazuo Ota
太田 多寿雄
Toshiaki Abe
安倍 敏章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2164217A priority Critical patent/JP2924104B2/en
Priority to EP91305756A priority patent/EP0465100B1/en
Priority to ES91305756T priority patent/ES2064912T3/en
Priority to US07/722,555 priority patent/US5132450A/en
Priority to DE69104280T priority patent/DE69104280T2/en
Publication of JPH0454149A publication Critical patent/JPH0454149A/en
Application granted granted Critical
Publication of JP2924104B2 publication Critical patent/JP2924104B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To simply obtain high-purity isophthalic acid without providing expen sive purifying steps by oxidizing m-xylene with O2 in steps divided into the main oxidation and post-oxidation using specific hydrous acetic acid solvent and a catalyst. CONSTITUTION:m-Xylene is oxidized with O2 in the presence of a Co, Mn and Br-based catalyst in hydrous acetic acid solvent to provide isophthalic acid. In the process, the solvent and the catalyst are fed to an oxidation reactor so as to afford 10-35wt.% amount of the isophthalic acid and an intermediate, 300-1500ppm total amount of Co and Mn at 0.5-5 ratio of (Mn/Co) and 0.5-1.5 ratio [(Co + Mn)/Br] and the oxidation is carried out at 180-210 deg.C by keeping the O2 concentration of waste gases at 2-8vol.%. The main oxidation is performed at 500-10000ppm concentration of the 3-carboxybenzaldehyde in a crude product and the oxidation is further carried out to provide 100-800ppm concentration of the aforementioned aldehyde. The crude phthalic acid is then separated and crystals are purified simply by washing thereof with acetic acid. Thereby, the objective high-purity isophthalic acid is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明はメタキシレンの液相酸化によりイソフタル酸を
製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing isophthalic acid by liquid phase oxidation of meta-xylene.

高純度イソフタル酸は、不飽和ポリエステル樹脂、アル
キッド樹脂、改質ポリエステル繊維、耐熱性ポリアミド
等のポリマーの中間原料として有用である。
High-purity isophthalic acid is useful as an intermediate raw material for polymers such as unsaturated polyester resins, alkyd resins, modified polyester fibers, and heat-resistant polyamides.

[従来の技術] 芳香族カルボン酸の製造法として、脂肪族置換基を有す
る芳香族炭化水素を酢酸等の脂肪族カルボン酸の溶媒中
で重金属と臭素からなる触媒の存在下に分子状酸素によ
り液相酸化する方法が知られており (特公昭34−2
666号等)、この方法はイソフタル酸の製造にも通用
できる。
[Prior art] As a method for producing aromatic carboxylic acids, aromatic hydrocarbons having aliphatic substituents are treated with molecular oxygen in the presence of a catalyst consisting of heavy metals and bromine in an aliphatic carboxylic acid solvent such as acetic acid. A method of liquid phase oxidation is known (Special Publication No. 34-2
No. 666, etc.), this method can also be applied to the production of isophthalic acid.

特公昭60−48497号にはメタキシレンを酢酸溶媒
中コバルト、マンガンならびに臭素の存在下に空気によ
りメタキシレンを酸化する具体的方法が記載され、広く
工業的に実施されている。かかる方法で得られるイソフ
タル酸中には3−カルボキシベンズアルデヒド(3CB
A)をはしめ多量の不純物が含まれており、このままポ
リマーにしても色相は優れず高機能用途には通さない。
Japanese Patent Publication No. 60-48497 describes a specific method of oxidizing meta-xylene with air in the presence of cobalt, manganese and bromine in an acetic acid solvent, and this method is widely practiced industrially. The isophthalic acid obtained by this method contains 3-carboxybenzaldehyde (3CB
A) contains a large amount of impurities, and even if it is made into a polymer as it is, the hue will not be excellent and it will not be suitable for high-performance applications.

特に近年産業技術の進歩と共に高機能性材料としてのポ
リエステル製品に対する品質要求が益々厳しくなり、ポ
リエステル原料としては高純度で、かつ白色度に優れた
イソフタル酸が望まれている。
In particular, with the progress of industrial technology in recent years, quality requirements for polyester products as highly functional materials have become increasingly strict, and isophthalic acid with high purity and excellent whiteness is desired as a raw material for polyester.

酸化で得られた粗イソフタル酸を高純度化するには、特
公昭51−38698号および特公昭51−32618
号に示されているような粗イソフタル酸の水溶液を高温
でパラジウム触媒の存在下に水素添加精製する方法が一
般に用いられる。
In order to highly purify the crude isophthalic acid obtained by oxidation, Japanese Patent Publication No. 51-38698 and Japanese Patent Publication No. 51-32618
A method of hydrogenating and refining an aqueous solution of crude isophthalic acid at high temperature in the presence of a palladium catalyst is generally used, as shown in No.

一方、テレフタル酸はイソフタル酸と同様の方法によっ
てパラキシレンを酸化して製造されるが、高純度テレフ
タル酸を直接製造する方法が行われている。すなわち特
公昭45−36732号には、コバルトに対しマンガン
を1〜20重量%とするコバルトを主成分とするコバル
ト・マンガン・臭素系触媒においてパラキシレンを酸化
することによる直接重合用テレフタル酸の製造方法が記
載されているた。しかしこの方法は高価なコバルトを多
量に使うことから、酸化条件や酸化方法を改良して触媒
および酢酸燃焼量を減らした高純度テレフタル酸の製造
法が数多く提案されている(特公昭57−42053号
、特開昭53−9736号、特公昭60−50775号
、特公昭56−21015号、特公昭53−30700
号、特開昭5379836、特開昭54−70235号
、特公昭56−14101号、特公昭56−5377号
、特開昭47−31947号、特開昭4571864号
)。
On the other hand, terephthalic acid is produced by oxidizing paraxylene in the same manner as isophthalic acid, but a method of directly producing high-purity terephthalic acid is used. Specifically, Japanese Patent Publication No. 36732/1983 describes the production of terephthalic acid for direct polymerization by oxidizing paraxylene in a cobalt-manganese-bromine catalyst containing 1 to 20% by weight of manganese based on cobalt. The method was described. However, since this method uses a large amount of expensive cobalt, many methods for producing high-purity terephthalic acid have been proposed in which the oxidation conditions and oxidation method have been improved to reduce the amount of catalyst and acetic acid burned (Japanese Patent Publication No. 57-42053 No., JP 53-9736, JP 60-50775, JP 56-21015, JP 53-30700
JP-A-5379836, JP-A-54-70235, JP-A-56-14101, JP-A-56-5377, JP-A-47-31947, JP-A-4571-864).

[発明が解決しようとする問題点] 従来のパラジウム触媒の存在下に水素添加する粗イソフ
タル酸の精製方法は、別個に水添反応装置や晶析装置等
が必要であり、精製装置に多額の投資と労力を要し製造
コストの上昇を招く。
[Problems to be solved by the invention] The conventional method for purifying crude isophthalic acid by hydrogenating in the presence of a palladium catalyst requires a separate hydrogenation reactor, crystallizer, etc., and requires a large amount of equipment for the purification equipment. This requires investment and labor, leading to an increase in manufacturing costs.

発明者らは、前記パラキシレンの酸化による高純度テレ
フタル酸製造法をメタキシレンの酸化によるイソフタル
酸の製造に適用を試みた結果、次のような問題点があり
従来のテレフタル酸における方法をそのままイソフタル
酸の製造に適用できないことが分かった。
The inventors attempted to apply the above-mentioned method for producing high-purity terephthalic acid by oxidizing para-xylene to the production of isophthalic acid by oxidizing meta-xylene, but found the following problems. It was found that it cannot be applied to the production of isophthalic acid.

(1)メタキシレンの酸化でも特開昭47−31947
号に記載されているように主酸化反応の次に後酸化を行
えば中間体のメタトルイル酸と3CBAを殆ど無くする
ことができるが、3 CBAがある量よりも減らし過ぎ
ると白色度の優れたイソフタル酸は得られず、かえって
着色性不純物の増加し品質が悪化する。
(1) For the oxidation of meta-xylene, JP-A No. 47-31947
If post-oxidation is carried out after the main oxidation reaction as described in the issue, the intermediate metatoluic acid and 3CBA can be almost eliminated, but if the amount of 3CBA is reduced too much, the whiteness will be poor. Isophthalic acid is not obtained, and on the contrary, coloring impurities increase and the quality deteriorates.

(2)テレフタル酸製造法で示されている方法で酢酸を
回収することができないので酢酸の損失量が大きくなる
。これは沸点付近における酢酸に対するイソフタル酸の
溶解度はテレフタル酸よりも10倍程高く、結晶を分離
して得られる母液に溶解するイソフタル酸が多くなり、
釜残高沸物の流動性が低下するため薄膜蒸発器を使用で
きないためである。
(2) Since acetic acid cannot be recovered by the method shown in the terephthalic acid production method, the amount of acetic acid loss increases. This is because the solubility of isophthalic acid in acetic acid near the boiling point is about 10 times higher than that of terephthalic acid, and more isophthalic acid dissolves in the mother liquor obtained by separating the crystals.
This is because a thin film evaporator cannot be used because the fluidity of the boiling material remaining in the pot decreases.

本発明の目的は、高価な精製工程を設けることなく、酸
化工程と簡単な洗浄のみで白色度に優れた高純度イソフ
タル酸を高収率で得られる、工業的に有利な製造法を提
供することである。
An object of the present invention is to provide an industrially advantageous production method that can obtain high-purity isophthalic acid with excellent whiteness at a high yield through only an oxidation step and simple washing without providing an expensive purification step. That's true.

[問題点を解決するための手段] 本発明者らは、メタキシレンの酸化の特性に着目し、高
純度テレフタル酸の製造法に係わる前記の方法の通用を
更に鋭意研究を重ねた結果、特定量の含水酢酸溶媒と触
媒を用い主酸化と後酸化に分けて一定限度まで酸化を行
えば、結晶を分離した母液を薄膜蒸発器を用いて精製し
て酢酸を回収できるようになり、また反応器における酢
酸の燃焼量を減らせること、および得られた結晶を新し
い酢酸で洗浄することにより白色度に優れた高純度イソ
フタル酸の得られることを見出し本発明を完成した。
[Means for Solving the Problems] The present inventors focused on the oxidation characteristics of meta-xylene, and as a result of further intensive research into the applicability of the above-mentioned method for producing high-purity terephthalic acid, If oxidation is carried out to a certain limit by dividing it into main oxidation and post-oxidation using a certain amount of aqueous acetic acid solvent and catalyst, it becomes possible to recover acetic acid by purifying the mother liquor from which the crystals have been separated using a thin film evaporator, and also to recover acetic acid. The present invention was completed by discovering that it is possible to reduce the amount of acetic acid burned in the vessel, and that by washing the obtained crystals with fresh acetic acid, high purity isophthalic acid with excellent whiteness can be obtained.

すなわち本発明は、含水酢酸溶媒中でコバルト・マンガ
ン・臭素系触媒の存在下酸素含有ガスによりメタキシレ
ンを酸化してイソフタル酸を製造する方法において、 (a)酸化反応器において溶媒重量当りイソフタル酸と
その中間体の合計量が10〜35重量%、コバルトおよ
びマンガンの合計量が300〜1500ppm、コバル
トに対するマンガンの原子比が0.5〜5倍、コバルト
およびマンガンの合計量に対する臭素の原子比が0.5
〜1.5倍となるように溶媒および触媒を供給し、温度
180〜210°C1排ガスの酸素濃度を2〜8容量χ
に維持しながら酸化反応を行い、且つ該工程で得られる
粗イソフタル酸の3−カルボキンヘンズアルデヒドの濃
度が500〜110000ppの範囲になるように酸化
反応を行う第1工程、 (b)第1工程で得られた酸化反応生成混合物を更に酸
化して粗イソフタル酸中の3−ヘンズアルデヒド濃度を
100〜800ppmとし、粗イソフタル酸を分離した
後、母液を薄r11i!蒸発装置を用いて精製して酢酸
を回収する第2工程、および (c)第2工程で得られたイソフタル酸結晶を新しい酢
酸と混合し100°C以上の温度で撹拌処理した後、精
製イソフタル酸を分離する第3工程を有することを特徴
とする高純度イソフタル酸の製造方法である。
That is, the present invention provides a method for producing isophthalic acid by oxidizing meta-xylene with an oxygen-containing gas in the presence of a cobalt-manganese-bromine catalyst in a hydrous acetic acid solvent. and its intermediates from 10 to 35% by weight, the total amount of cobalt and manganese from 300 to 1500 ppm, the atomic ratio of manganese to cobalt from 0.5 to 5 times, the atomic ratio of bromine to the total amount of cobalt and manganese. is 0.5
The solvent and catalyst are supplied so that the concentration is ~1.5 times, and the oxygen concentration of the exhaust gas is adjusted to 2 to 8 volumes χ at a temperature of 180 to 210°C.
(b) a first step in which the oxidation reaction is carried out while maintaining the temperature of The oxidation reaction product mixture obtained in the step is further oxidized so that the concentration of 3-henzaldehyde in the crude isophthalic acid is 100 to 800 ppm, and after separating the crude isophthalic acid, the mother liquor is diluted to a dilute r11i! A second step of purifying and recovering acetic acid using an evaporator, and (c) mixing the isophthalic acid crystals obtained in the second step with fresh acetic acid and stirring at a temperature of 100°C or higher, and then producing purified isophthalic acid. This is a method for producing high-purity isophthalic acid, characterized by having a third step of separating acid.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明の方法においては、まず第1工程でメタキシレン
を含水酢酸溶媒中でコバルト化合物、マンガン化合物お
よび臭素化合物からなる触媒の存在下に酸素含有ガスに
より酸化する。
In the method of the present invention, in the first step, meta-xylene is oxidized in a hydrous acetic acid solvent with an oxygen-containing gas in the presence of a catalyst consisting of a cobalt compound, a manganese compound, and a bromine compound.

酸化原料としては通常メタキシレンが使用されるが、置
換基はメチル基に限定されず、エチル、プロピル、j−
プロピル基でも良く、或いはアルデヒド、アセチル基の
如くカルボキル基に酸化されるものであれば良い。また
置換基の片方がカルボキシル基であっても良い。
Meta-xylene is usually used as the oxidation raw material, but the substituents are not limited to methyl groups, but include ethyl, propyl, j-
It may be a propyl group, or one that can be oxidized to a carboxyl group such as an aldehyde or acetyl group. Further, one of the substituents may be a carboxyl group.

メタキシレンは酸化反応器に連続的に供給される。その
供給速度は反応器保有の溶媒容積1r当り毎時0.05
〜0.2kgであり、反応時間は10〜120分、好ま
しくは20〜90分の範囲である。
Meta-xylene is continuously fed to the oxidation reactor. The feed rate is 0.05 per hour per liter of solvent volume in the reactor.
~0.2 kg, and the reaction time is in the range of 10 to 120 minutes, preferably 20 to 90 minutes.

反応溶媒として含水酢酸を用いる。酸化反応器における
酢酸中の水分濃度は3〜15重量%、好ましくは5〜1
2重量%の範囲である。水分濃度が低すぎるとイソフタ
ル酸のカラー品質が悪化し易く、また酢酸の燃焼量が増
加する。また水分濃度が高すぎると酸化活性が低下する
Hydrous acetic acid is used as a reaction solvent. The water concentration in acetic acid in the oxidation reactor is 3 to 15% by weight, preferably 5 to 1% by weight.
It is in the range of 2% by weight. If the water concentration is too low, the color quality of isophthalic acid tends to deteriorate and the amount of acetic acid burned increases. Furthermore, if the water concentration is too high, the oxidation activity will decrease.

溶媒の使用量は酸化反応器においてイソフタル酸とその
中間体(メタトルイル酸及び3CBA)の合計量が10
〜35重量%となる量である。通常この場合の溶媒の供
給量はメタキシレンに対し1〜15重量倍、好ましくは
3〜12重量倍である。イソフタル酸とその中間体の合
計量の濃度が10χより低い場合には相対的に溶媒量が
多くなるために大型の結晶分離器を必要とし、また溶媒
回収工程で処理する溶媒量が多くなるので経済的でない
。またこの濃度が35χより高い場合には後酸化反応器
から粗イソフタル酸の晶析器に至る配管や晶析器等にお
いて閉塞を生し易い。
The amount of solvent used is such that the total amount of isophthalic acid and its intermediates (methatoluic acid and 3CBA) is 10% in the oxidation reactor.
The amount is 35% by weight. Usually, the amount of solvent supplied in this case is 1 to 15 times by weight, preferably 3 to 12 times by weight, based on meta-xylene. If the total concentration of isophthalic acid and its intermediates is lower than 10χ, the amount of solvent will be relatively large, requiring a large crystal separator, and the amount of solvent to be treated in the solvent recovery process will be large. Not economical. Moreover, if this concentration is higher than 35χ, clogging is likely to occur in the pipes and crystallizers leading from the post-oxidation reactor to the crude isophthalic acid crystallizer.

触媒のコバルト化合物、マンガン化合物および臭素化合
物は、各々、コバルトイオン、マンガンイオンおよび臭
素イオンを発生する化合物で、液相酸化に使用される周
知の化合物、たとえばコバルトおよびマンガンの炭酸塩
、酢酸塩4水和物、臭化物等が使用される。臭素化合物
は溶媒に溶解してすくにイオンに解離する無機化合物が
好ましく、特に臭化水素酸、臭化コバルト、臭化マンガ
ンなどが用いられる。
The cobalt compounds, manganese compounds and bromine compounds of the catalysts are compounds that generate cobalt ions, manganese ions and bromide ions, respectively, and are well-known compounds used in liquid phase oxidation, such as carbonates and acetates of cobalt and manganese4. Hydrates, bromides, etc. are used. The bromine compound is preferably an inorganic compound that easily dissociates into ions when dissolved in a solvent, and particularly hydrobromic acid, cobalt bromide, manganese bromide, etc. are used.

触媒の金属濃度は、上記の化合物によりコバルトおよび
マンガンの合計量で溶媒重量当り300〜1500pp
m 、好ましくは400〜1200ppmの範囲であり
、かつコバルトに対してマンガンの比率が原子比で0.
5〜5倍、好ましくは0.8〜4倍であるある。臭素は
コバルトおよびマンガンの合計量に対して原子比で0.
5〜1.5倍、好ましく0.6〜1.2倍の比率になる
濃度で用いられる。各金属成分の濃度を上記範囲とする
ことにより、主酸化および後酸化を経て3CBA濃度が
適当に保たれ、且つ色相の優れたイソフタル酸が得られ
、また酢酸の燃焼量を極めて低くできる。
The metal concentration of the catalyst is between 300 and 1500 pp per weight of solvent in the total amount of cobalt and manganese depending on the above compounds.
m is preferably in the range of 400 to 1200 ppm, and the ratio of manganese to cobalt is 0.
It is 5 to 5 times, preferably 0.8 to 4 times. The atomic ratio of bromine to the total amount of cobalt and manganese is 0.
It is used at a concentration of 5 to 1.5 times, preferably 0.6 to 1.2 times. By setting the concentration of each metal component within the above range, the 3CBA concentration can be maintained appropriately through the main oxidation and post-oxidation, isophthalic acid with excellent hue can be obtained, and the amount of acetic acid burned can be extremely low.

第1工程の反応温度は180〜210°Cである。圧力
は溶媒の液相を保持するに十分な圧力であり、通常10
〜25 kg/c+n”の範囲で反応が行われる。
The reaction temperature in the first step is 180-210°C. The pressure is sufficient to maintain the liquid phase of the solvent, usually 10
The reaction is carried out in the range of ~25 kg/c+n''.

酸素含有ガスとしては通常空気が用いられる。Air is usually used as the oxygen-containing gas.

酸化反応の排ガス中の酸素濃度が2〜8容1χ、好まし
くは3〜6容量χに維持されるように、反応液中に空気
を供給する。
Air is supplied into the reaction solution so that the oxygen concentration in the exhaust gas from the oxidation reaction is maintained at 2 to 8 volumes 1χ, preferably 3 to 6 volumes χ.

第1工程の主酸化反応においては、上に記載した範囲の
条件下で酸化して得られる粗イソフタル酸の3CBAを
500〜110000ppの範囲となるように滞留時間
、反応温度等の操作因子を制御する。
In the main oxidation reaction of the first step, operating factors such as residence time and reaction temperature are controlled so that the 3CBA of crude isophthalic acid obtained by oxidation under the conditions described above is in the range of 500 to 110,000 pp. do.

この段階で3CBAが低すぎると酸化度が過度になり、
結果的に着色性不純物を増すことになって後酸化しても
効果が上がらず、カラー品質は良くならない。また酢酸
燃焼量が増えることになって経済的に極めて不利になる
。この範囲を越えて3CBAが多くなると後酸化しても
3CBAが十分に酸化されず高純度イソフタル酸が得ら
れない。
If 3CBA is too low at this stage, the degree of oxidation will be excessive,
As a result, the amount of coloring impurities is increased, and post-oxidation is not effective and the color quality is not improved. Furthermore, the amount of acetic acid burned increases, which is extremely disadvantageous economically. If the amount of 3CBA exceeds this range, 3CBA will not be sufficiently oxidized even after post-oxidation, and high purity isophthalic acid will not be obtained.

なお上記の粗イソフタル酸の3CBAは、第1工程の反
応器から抜き出した酸化反応混合物を固液分離して得た
粗イソフタル酸結晶について測定したものである。
The above 3CBA of crude isophthalic acid was measured on crude isophthalic acid crystals obtained by solid-liquid separation of the oxidation reaction mixture extracted from the reactor of the first step.

第2工程においてはまず第1工程の酸化反応生成混合物
が酸素含有ガスにより後酸化される。通常この後酸化は
、連続式の場合には第1工程の主酸化反応器から晶析槽
に移して行われるが、第1工程の主反応に引続く冷却過
程で行うこともできる。後酸化の温度は第1工程の酸化
反応温度とそれより30°C低い温度の間の温度である
。第2工程の酸化反応温度を第1工程の温度より高くす
ることは、加熱を必要とするので工業的に不利であるば
かりでなく、カラー品質の悪化を招き易い。また温度が
低すぎると後酸化が不十分になり、高純度イソフタル酸
が得られない。
In the second step, the oxidation reaction product mixture of the first step is first post-oxidized with an oxygen-containing gas. Generally, in the case of a continuous system, this post-oxidation is carried out by transferring the reactor from the main oxidation reactor in the first step to a crystallization tank, but it can also be carried out in the cooling process following the main reaction in the first step. The temperature of the post-oxidation is between the oxidation reaction temperature of the first step and a temperature 30° C. lower than the oxidation reaction temperature of the first step. Setting the oxidation reaction temperature in the second step higher than the temperature in the first step is not only industrially disadvantageous because heating is required, but also tends to cause deterioration in color quality. Furthermore, if the temperature is too low, post-oxidation will be insufficient and high purity isophthalic acid will not be obtained.

後酸化に用いる酸素含有ガスとしでは空気が使用できる
が、また第1工程の酸化排ガスを使うこともできる。第
2工程における排ガス中の酸素濃度は2〜7容量χを維
持する。
Air can be used as the oxygen-containing gas for post-oxidation, but the oxidation exhaust gas from the first step can also be used. The oxygen concentration in the exhaust gas in the second step is maintained at 2 to 7 volumes χ.

後酸化の処理時間は実質的に目的の酸化が進行するに十
分な時間を与えれば良く、1〜300分、好ましくは2
〜120分の範囲である。
The treatment time for the post-oxidation should be sufficient time for the desired oxidation to substantially proceed, and is 1 to 300 minutes, preferably 2 minutes.
~120 minutes.

第2工程において最も重要な点は後酸化において得られ
る酸化反応液中の3CBAの濃度を100〜800pp
mとすることである。これは次の理由からであり、発明
者等が鋭意検討した結果得られたものである。
The most important point in the second step is to adjust the concentration of 3CBA in the oxidation reaction solution obtained in the post-oxidation to 100 to 800 pp.
m. This is due to the following reason, and was obtained as a result of intensive study by the inventors.

(])酸化処理した反応混合物は冷却してイソフタル酸
を晶出させ、結晶のイソフタル酸を固液分離し、イソフ
タル酸は次の第3工程で精製されるが、酸化反応液中の
3CBAの濃度を上記範囲とすることにより第3工程に
おいて高純度で且つ白色度の優れたイソフタル酸を得る
ことができる。
(]) The oxidized reaction mixture is cooled to crystallize isophthalic acid, and the crystalline isophthalic acid is separated into solid and liquid.Isophthalic acid is purified in the next third step, but 3CBA in the oxidized reaction solution By setting the concentration within the above range, isophthalic acid with high purity and excellent whiteness can be obtained in the third step.

(2)イソフタル酸を固液分離した際に得られる母液に
は酢酸、水、安息香酸、メタトルイル酸、3CBA、イ
ソフタル酸と、フタル酸、トリメリット酸および着色性
物質等の高沸物が含まれる。発明者等の詳細検討の結果
、高沸物の流動性はイソフタル酸に対する安息香酸、3
CBA、メタトルイル酸、トリメリット酸の組成比に大
きく依存し、3 CBAを上記範囲とすることにより酢
酸溶液と他の成分を薄膜蒸発器を使用して分離すること
ができことが分かった。従って3CBAの濃度を上記範
囲とすることにより、酢酸が回収できるようになる。
(2) The mother liquor obtained when isophthalic acid is separated into solid and liquid contains acetic acid, water, benzoic acid, metatoluic acid, 3CBA, isophthalic acid, and high boiling substances such as phthalic acid, trimellitic acid, and coloring substances. It will be done. As a result of detailed study by the inventors, the fluidity of high-boiling substances is higher than that of benzoic acid than that of isophthalic acid.
It was found that the acetic acid solution and other components could be separated using a thin film evaporator by setting 3 CBA within the above range, depending largely on the composition ratio of CBA, metatoluic acid, and trimellitic acid. Therefore, by setting the concentration of 3CBA within the above range, acetic acid can be recovered.

なお後酸化において得られる酸化反応液中の3CBAの
濃度が800ppmよ、り高い場合には第3工程におい
て精製しても高純度のイソフタル酸が得られない。また
後酸化で3 CBAの濃度を1100ppより低くする
場合には精製イソフタル酸が着色し易く、更にメタトル
イル酸等も同時に著しく減少するため母液の蒸留により
得られる高沸物の流動性が著しく低下し、薄膜蒸発器に
よる酢酸の分離ができなくなる。
Note that if the concentration of 3CBA in the oxidation reaction solution obtained in the post-oxidation is higher than 800 ppm, highly pure isophthalic acid cannot be obtained even if purified in the third step. Furthermore, when the concentration of 3CBA is lowered to less than 1100 pp by post-oxidation, purified isophthalic acid is likely to be colored, and metatoluic acid etc. are also significantly reduced at the same time, resulting in a marked decrease in the fluidity of high-boiling substances obtained by distillation of the mother liquor. , separation of acetic acid using a thin film evaporator becomes impossible.

後酸化により得られる酸化反応液は、通常晶析器に移し
て最終的に110〜80°Cに冷却してイソフタル酸結
晶を析出させる。次に濾過操作により結晶は分離して第
3工程に送られる。母液の大部分は第1工程の酸化反応
器に戻されるが、一部は薄膜蒸発器で精製してメルト状
の高沸物と酢酸とに分離し、酢酸が回収される。なお薄
膜蒸発器の負荷を下げるために母液の一部を予め蒸留し
、その塔底液を薄膜蒸発器で精製することが好ましい。
The oxidation reaction solution obtained by post-oxidation is usually transferred to a crystallizer and finally cooled to 110 to 80°C to precipitate isophthalic acid crystals. Next, the crystals are separated by a filtration operation and sent to the third step. Most of the mother liquor is returned to the oxidation reactor in the first step, but a portion is purified in a thin film evaporator and separated into melt-like high-boiling substances and acetic acid, and acetic acid is recovered. In order to reduce the load on the thin film evaporator, it is preferable to distill a portion of the mother liquor in advance and purify the bottom liquid using the thin film evaporator.

上記の如くこの液には酢酸、イソフタル酸、安息香酸、
メタトルイル酸、3CBAおよび高沸物が適度に含まれ
いるので薄膜蒸発器を使用して酢酸を分離することがで
きる。なお本発明において用いられる薄膜蒸発器として
は例えばLuwa社製の形式のものが好適であり、濃縮
液が130〜230°Cとなるように熱媒流量を調整す
る。また母液の蒸留塔から分離される酢酸水溶液や薄膜
蒸発器からの酢酸は更に精留することが好ましく、この
精留により生成水が分離される。回収された酢酸は第1
工程の溶媒や第3工程の洗浄用に用いられる。
As mentioned above, this liquid contains acetic acid, isophthalic acid, benzoic acid,
Due to the moderate content of metatoluic acid, 3CBA and high boilers, acetic acid can be separated using a thin film evaporator. As the thin film evaporator used in the present invention, for example, a type manufactured by Luwa is suitable, and the flow rate of the heat medium is adjusted so that the temperature of the concentrated liquid is 130 to 230°C. Further, it is preferable that the aqueous acetic acid solution separated from the mother liquor distillation column and the acetic acid from the thin film evaporator be further rectified, and the produced water is separated by this rectification. The recovered acetic acid is
It is used as a solvent in the process and for cleaning in the third process.

第3工程においては、第2工程の反応混合物から分離さ
れたイソフタル酸結晶を新しい酢酸を用いて懸濁液とし
、100°C以上の温度で撹拌処理した後イソフタル酸
結晶を分離する。
In the third step, the isophthalic acid crystals separated from the reaction mixture of the second step are made into a suspension using fresh acetic acid, stirred at a temperature of 100° C. or higher, and then the isophthalic acid crystals are separated.

このイソフタル酸結晶の洗浄に用いられる酢酸には、前
工程において粗イソフタル酸の結晶から分離された母液
ではない新しい酢酸を用いる。この酢酸は含水酢酸でも
良く、その量はイソフタル酸に対し1〜5重量倍である
。撹拌処理の保持温度は100°C以上あれば十分であ
り、必ずしもイソフタル酸が完全に溶解する温度にまで
高める必要はない。また保持時間は10〜60分の範囲
である。
The acetic acid used for washing the isophthalic acid crystals is fresh acetic acid, which is not the mother liquor separated from the crude isophthalic acid crystals in the previous step. This acetic acid may be hydrous acetic acid, and the amount thereof is 1 to 5 times the weight of isophthalic acid. It is sufficient for the holding temperature in the stirring treatment to be 100°C or higher, and it is not necessarily necessary to raise the temperature to a temperature at which isophthalic acid is completely dissolved. Further, the holding time is in the range of 10 to 60 minutes.

このような洗浄処理後、乾燥することにより白色度の極
めて優れた精製イソフタル酸が得られる。
After such washing treatment, purified isophthalic acid with extremely high whiteness can be obtained by drying.

第3工程においてイソフタル酸結晶を分離した後の母液
は、第1工程および第2工程の液相酸化の溶媒に使用で
き、これにより母液中に溶解したイソフタル酸が酸化工
程で回収される。
The mother liquor after isophthalic acid crystals are separated in the third step can be used as a solvent for liquid phase oxidation in the first and second steps, whereby the isophthalic acid dissolved in the mother liquor is recovered in the oxidation step.

[実施例コ 次に実施例によって本発明をさらに詳細に説明する。但
し本発明はこれらの実施例により制限されるものではな
い。
[Example] Next, the present invention will be explained in more detail with reference to Examples. However, the present invention is not limited to these Examples.

実施例1 (第1工程)攪拌装置、還流冷却装置、加熱装置を装備
し、原料導入口、空気導入口、排ガス排出口、還流液還
流口を有する耐圧チタン類の第1反応器、同様に攪拌装
置、還流冷却装置、加熱装置を装備し、空気導入口、排
ガス排出口、還流液還流口および反応生成物の送入口と
抜き出し口を有する耐圧チタン類の第2反応器および晶
析器を用いメタキシレンの連続酸化反応を行った。
Example 1 (First step) A first reactor made of pressure-resistant titanium, which is equipped with a stirring device, a reflux cooling device, and a heating device, and has a raw material inlet, an air inlet, an exhaust gas outlet, and a reflux liquid reflux port. A second pressure-resistant titanium reactor and a crystallizer are equipped with a stirring device, a reflux cooling device, and a heating device, and have an air inlet, an exhaust gas outlet, a reflux liquid reflux port, and a reaction product inlet and outlet. A continuous oxidation reaction of meta-xylene was carried out.

第1反応器にメタキシレン100重量部、これにに対し
酢酸コバルト4水塩0.561部、酢酸マンガン4水塩
1.656  部、臭化水素酸(47χ) 1.117
部及び酢酸(水分10χ) 896.7部の割合からな
る原料液として連続的に送入しく触媒濃度は溶媒重量当
りコバルト147 ppm、マンガン412 ppm−
臭素576 ppm) 、空気を吹き込みながら酸化し
た。
In the first reactor, 100 parts by weight of meta-xylene, to which 0.561 parts of cobalt acetate tetrahydrate, 1.656 parts of manganese acetate tetrahydrate, and 1.117 parts of hydrobromic acid (47χ)
The catalyst concentration was 147 ppm of cobalt and 412 ppm of manganese per solvent weight.
Bromine (576 ppm) was oxidized while blowing air.

温度200°C1圧力16.5kg/cm2Gの条件に
保ち、酸化排ガスの酸素濃度は5zに保つよう空気供給
量を調節した。この場合のメタキシレン供給速度は反応
器保有の溶媒容積1i当り毎時0.17kgで、平均滞
留時間は約30分であり、酸化反応器中のイソフタル酸
とその中間体の合計量の濃度は15.6χであった。
The air supply amount was adjusted so that the temperature was maintained at 200° C. and the pressure was 16.5 kg/cm 2 G, and the oxygen concentration of the oxidized exhaust gas was maintained at 5z. The metaxylene feed rate in this case is 0.17 kg/hour per 1i of solvent volume held in the reactor, the average residence time is about 30 minutes, and the total concentration of isophthalic acid and its intermediates in the oxidation reactor is 15 It was .6χ.

(第2工程)第1反応器で得られた酸化反応混合物は第
2反応器に移送し、温度195°C1圧力12kg/c
m2G、平均滞留時間50分の条件下で空気により後酸
化を行った。この時の排ガスの酸素濃度は3χに保持し
た。なお酢酸燃焼の指標になる酸化工程に於ける排ガス
中の(cO□+Co)生成量は、原料メタキシレン1モ
ル当り0.41モルであった。
(Second step) The oxidation reaction mixture obtained in the first reactor is transferred to the second reactor, where the temperature is 195°C and the pressure is 12kg/c.
Post-oxidation was carried out with air under conditions of m2G and average residence time of 50 minutes. The oxygen concentration of the exhaust gas at this time was maintained at 3χ. The amount of (cO□+Co) produced in the exhaust gas in the oxidation step, which is an indicator of acetic acid combustion, was 0.41 mol per mol of raw material meta-xylene.

第2反応器で後酸化処理された酸化反応混合物を100
″Cの晶析器に移しイソフタル酸結晶を析出させた。得
られたスラリーからイソフタル酸を酢酸で洗浄しながら
濾過分離した。分離された母液を蒸留により濃縮し、そ
の蒸留塔底液を260°Cに保持した熱媒が循環された
薄膜蒸発器に濃縮液が200°Cとなるように熱媒流量
を調節しながら6時間連続的に供給したところ高沸物が
良好に分離することができた。
The oxidation reaction mixture that was post-oxidized in the second reactor was
"Isophthalic acid crystals were precipitated in a crystallizer of "C". Isophthalic acid was separated from the obtained slurry by filtration while washing with acetic acid. The separated mother liquor was concentrated by distillation, and the distillation column bottom liquid was When the concentrated liquid was continuously supplied to a thin film evaporator in which a heating medium kept at °C was circulated for 6 hours while adjusting the flow rate of the heating medium so that the temperature reached 200°C, high boiling substances were successfully separated. did it.

(第3工程)濾過分離したイソフタル酸結晶に1.5重
量倍の新しい酢酸(水分10χ)を加えてなる懸濁液を
洗浄槽に移し、攪拌下で温度150°Cに30分間保持
した。洗浄処理したP!濁液を100°Cまで冷却し、
再び濾過分離した後乾燥し、精製イソフタル酸155重
量部を得た。この結果、原料のメタキシレンに対するイ
ソフタル酸の収率は93.0モルχであり、高純度でか
つ白色度の優れた精製イソフタル酸が得られた。
(Third step) A suspension obtained by adding 1.5 times the weight of fresh acetic acid (moisture 10χ) to the isophthalic acid crystals separated by filtration was transferred to a washing tank and maintained at a temperature of 150°C for 30 minutes with stirring. Washed P! Cool the suspension to 100°C,
The mixture was filtered and separated again, and then dried to obtain 155 parts by weight of purified isophthalic acid. As a result, the yield of isophthalic acid based on meta-xylene as a raw material was 93.0 mol χ, and purified isophthalic acid with high purity and excellent whiteness was obtained.

実施例2 実施例1において第1工程の触媒濃度を1,5倍とし、
温度200″Cで酸化反応を行った。この結果、高純度
でかつ白色度の優れた精製イソフタル酸が得られ、また
第2工程で薄膜蒸発器における高沸物の分離も良好であ
った。
Example 2 In Example 1, the catalyst concentration in the first step was increased to 1.5 times,
The oxidation reaction was carried out at a temperature of 200''C. As a result, purified isophthalic acid with high purity and excellent whiteness was obtained, and the separation of high boiling substances in the thin film evaporator in the second step was also good.

ル較炎上 実施例2において第1工程の温度215°Cで酸化反応
を行った。この結果、第2工程の後酸化による粗イソフ
タル酸結晶における3 CBAの濃度が低いため高沸物
の流動性が悪く、薄膜蒸発器が操作不能であった。
In Example 2, the oxidation reaction was carried out at a temperature of 215°C in the first step. As a result, the low concentration of 3 CBA in the crude isophthalic acid crystals resulting from post-oxidation in the second step resulted in poor fluidity of high-boiling substances, making the thin film evaporator inoperable.

失旌炎主 第1反応器にメタキシレン60重量部、これに対し酢酸
コバルト4水塩0.561部、酢酸マンガン4水塩1.
656部、臭化水素酸(47χN、551部および酢酸
(水分10χ) 496.2部の割合からなる原料液と
して連続的に送入しく触媒濃度は溶媒重量当りコバルト
276 pprrl、マンガン773 ppm、臭素1
500pI)m)、空気を吹き込みながら酸化した。こ
の酸化においては温度190°C1圧力16.5kg/
cm2Gの条件に保ち、酸化排ガスの酸素濃度は5χに
保つよう空気供給量を調節した。メタキシレン供給速度
は反応器保有の酢酸溶媒容積1!当り毎時0.09kg
で、平均滞留時間は約55分であり、酸化反応器中のイ
ソフタル酸とその中間体の合計量の濃度は19.0χで
あった。
60 parts by weight of meta-xylene was added to the first main reactor, 0.561 parts of cobalt acetate tetrahydrate, and 1.0 parts of manganese acetate tetrahydrate.
656 parts of hydrobromic acid (47 χN, 551 parts) and 496.2 parts of acetic acid (moisture 10 χ) were fed continuously as a raw material solution.The catalyst concentration was 276 pprrl of cobalt, 773 ppm of manganese, and bromine per weight of solvent. 1
500 pI) m) and oxidized while blowing air. In this oxidation, the temperature was 190°C, the pressure was 16.5 kg/
The air supply amount was adjusted to maintain the condition of cm2G and the oxygen concentration of the oxidizing exhaust gas to 5χ. Meta-xylene supply rate is 1 volume of acetic acid solvent possessed by the reactor! 0.09kg per hour
The average residence time was about 55 minutes, and the total concentration of isophthalic acid and its intermediates in the oxidation reactor was 19.0x.

第1反応器で得られた酸化反応混合物は第2反応器に移
送し、温度185°C1圧力12kg/cm2G、平均
滞留時間50分の条件下で空気により後酸化を行った。
The oxidation reaction mixture obtained in the first reactor was transferred to the second reactor and post-oxidized with air under the conditions of temperature 185° C., pressure 12 kg/cm 2 G, and average residence time 50 minutes.

排ガスの酸素濃度は3χに保った。The oxygen concentration of the exhaust gas was maintained at 3χ.

以下実施例1と同様の操作を行った結果、高純度でかつ
白色度の優れた精製イソフタル酸が得られ、また第2工
程で薄膜蒸発器における高沸物の分離も良好であった。
As a result of carrying out the same operations as in Example 1, purified isophthalic acid with high purity and excellent whiteness was obtained, and the separation of high boiling substances in the thin film evaporator in the second step was also good.

比較例2 実施例3において酢酸コバル) 1.795部、酢酸マ
ンガン4水塩を0.442部(コバルトに対するマンガ
ンの比率0.25)とした以外は同様とした。
Comparative Example 2 The same procedure was used as in Example 3 except that 1.795 parts of cobal acetate and 0.442 parts of manganese acetate tetrahydrate were used (ratio of manganese to cobalt: 0.25).

この結果、第2工程の後酸化イソフタル酸結晶における
3CBAの濃度が低いため高沸物の流動性が悪く、薄膜
蒸発器が操作不能であった。
As a result, since the concentration of 3CBA in the post-oxidized isophthalic acid crystals in the second step was low, the fluidity of high-boiling substances was poor, and the thin film evaporator was inoperable.

比較例3 第1工程を実施例1と同様とし、第2工程の後酸化を1
65°C1圧力フkg/cm2Gで行った。この結果、
薄膜蒸発器の処理は良好であったが、精製イソフタル酸
は3CBAが高濃度であり、着色していた。
Comparative Example 3 The first step was the same as in Example 1, and the post-oxidation in the second step was 1
The test was carried out at 65°C and a pressure of kg/cm2G. As a result,
Although the thin film evaporator performed well, the purified isophthalic acid had a high concentration of 3CBA and was colored.

此1■」± 第1工程及び第2工程を実施例1と同様とし、第3工程
における洗浄温度を90°Cとした。この結果、精製イ
ソフタル酸に着色が見られた。
This 1■''± The first step and the second step were the same as in Example 1, and the cleaning temperature in the third step was 90°C. As a result, coloring was observed in the purified isophthalic acid.

各実施例および比較例の主要操作条件と、粗イソフタル
酸および精製イソフタル酸の結晶の分析結果を第1表に
示す。
Table 1 shows the main operating conditions of each Example and Comparative Example and the analysis results of crude isophthalic acid and purified isophthalic acid crystals.

なお第1表における粗イソフタル酸は第1反応器および
第2反応器から直接耐圧試料容器に酸化反応混合物をと
り100°Cで酢酸洗浄しなから固液分離して得られた
ものである。
The crude isophthalic acid in Table 1 was obtained by taking the oxidation reaction mixture directly from the first reactor and the second reactor into a pressure-resistant sample container, washing it with acetic acid at 100°C, and then subjecting it to solid-liquid separation.

また3CBAおよび樹脂色の測定方法は次の通りである
The methods for measuring 3CBA and resin color are as follows.

(1)3CBA:ポーラログラフイーによる定量値、な
お高純度イソフタル酸としては3CBAを50ppm以
下である必要がある。
(1) 3CBA: Quantitative value determined by polarography; 3CBA must be 50 ppm or less for high purity isophthalic acid.

(2)樹脂色: イソフタル酸:フマル酸:ネオペンチルグリコール:プ
ロピレングリコール=57:43:50:53の割合(
モル比)で重合させ、得られた樹脂のスチレン溶液(樹
脂60訂χ)について樹脂色をハーゼン色数で示す。樹
脂色はハーゼン色数が小さいほど良好であり、高純度イ
ソフタル酸としては少6なくとも30以下である必要が
ある。
(2) Resin color: Ratio of isophthalic acid: fumaric acid: neopentyl glycol: propylene glycol = 57:43:50:53 (
The resin color of the resulting styrene solution (resin 60 edition x) is shown in Hazen color number. The smaller the Hazen color number is, the better the resin color is, and as high purity isophthalic acid, it needs to be at least 30 or less.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、高機能化用途の不飽和ポリエステル樹
脂、アルキッド樹脂、耐熱性ポリアミド等のポリマー原
料として極めてカラー品質の優れた高純度イソフタル酸
が工業的に極めて容易に得られる。また本発明の方法で
は高価な精製工程が不要であるので建設費が小さく、酢
酸の使用量が少なくて済み、高純度イソフタル酸が高収
率で得られる。
According to the present invention, high-purity isophthalic acid with extremely excellent color quality can be obtained industrially and very easily as a raw material for polymers such as unsaturated polyester resins, alkyd resins, and heat-resistant polyamides for highly functional applications. Furthermore, the method of the present invention does not require an expensive purification process, so the construction cost is low, the amount of acetic acid used is small, and high purity isophthalic acid can be obtained in high yield.

特許出願人 三菱瓦斯化学株式会社 代理人 弁理士 小 堀 貞 文Patent applicant: Mitsubishi Gas Chemical Co., Ltd. Agent: Patent Attorney Sadafumi Kohori

Claims (1)

【特許請求の範囲】 含水酢酸溶媒中でコバルト・マンガン・臭素系触媒の存
在下酸素含有ガスによりメタキシレンを酸化してイソフ
タル酸を製造する方法において、 (a)酸化反応器において溶媒重量当りイソフタル酸と
その中間体の合計量が10〜35重量%、コバルトおよ
びマンガンの合計量が300〜1500ppm、コバル
トに対するマンガンの原子比が0.5〜5倍、コバルト
およびマンガンの合計量に対する臭素の原子比が0.5
〜1.5倍となるように溶媒および触媒を供給し、温度
180〜210℃、排ガスの酸素濃度を2〜8容量%に
維持しながら酸化反応を行い、且つ該工程で得られる粗
イソフタル酸の3−カルボキンベンズアルデヒドの濃度
が500〜10000ppmの範囲になるように酸化反
応を行う第1工程、 (b)第1工程で得られた酸化反応生成混合物を更に酸
化して粗イソフタル酸中の3−ベンズアルデヒド濃度を
100〜800ppmとし、粗イソフタル酸を分離した
後、母液を薄膜蒸発装置を用いて精製して酢酸を回収す
る第2工程、および (c)第2工程で得られたイソフタル酸結晶を新しい酢
酸と混合し100℃以上の温度で撹拌処理した後、精製
イソフタル酸を分離する第3工程 を有することを特徴とする高純度イソフタル酸の製造方
法。
[Claims] A method for producing isophthalic acid by oxidizing meta-xylene with an oxygen-containing gas in the presence of a cobalt-manganese-bromine catalyst in a hydrous acetic acid solvent, comprising: (a) isophthalic acid per weight of solvent in an oxidation reactor; The total amount of acids and their intermediates is 10 to 35% by weight, the total amount of cobalt and manganese is 300 to 1500 ppm, the atomic ratio of manganese to cobalt is 0.5 to 5 times, the bromine atoms to the total amount of cobalt and manganese. The ratio is 0.5
The oxidation reaction is carried out by supplying a solvent and a catalyst so as to increase the amount by ~1.5 times, maintaining a temperature of 180 to 210°C, and an oxygen concentration of exhaust gas of 2 to 8% by volume, and crude isophthalic acid obtained in this step. (b) The oxidation reaction product mixture obtained in the first step is further oxidized to reduce the concentration of 3-carboxybenzaldehyde in the crude isophthalic acid. A second step of adjusting the 3-benzaldehyde concentration to 100 to 800 ppm and separating crude isophthalic acid, and then purifying the mother liquor using a thin film evaporator to recover acetic acid, and (c) isophthalic acid obtained in the second step. A method for producing high-purity isophthalic acid, comprising a third step of mixing crystals with fresh acetic acid and stirring at a temperature of 100° C. or higher, and then separating purified isophthalic acid.
JP2164217A 1990-06-25 1990-06-25 Method for producing high-purity isophthalic acid Expired - Fee Related JP2924104B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2164217A JP2924104B2 (en) 1990-06-25 1990-06-25 Method for producing high-purity isophthalic acid
EP91305756A EP0465100B1 (en) 1990-06-25 1991-06-25 Process for producing high purity isophthalic acid
ES91305756T ES2064912T3 (en) 1990-06-25 1991-06-25 PROCEDURE TO PRODUCE ISOPHTHALIC ACID OF HIGH PURITY.
US07/722,555 US5132450A (en) 1990-06-25 1991-06-25 Process for producing high purity isophthalic acid
DE69104280T DE69104280T2 (en) 1990-06-25 1991-06-25 Process for the production of high-purity isophthalic acid.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2164217A JP2924104B2 (en) 1990-06-25 1990-06-25 Method for producing high-purity isophthalic acid

Publications (2)

Publication Number Publication Date
JPH0454149A true JPH0454149A (en) 1992-02-21
JP2924104B2 JP2924104B2 (en) 1999-07-26

Family

ID=15788896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2164217A Expired - Fee Related JP2924104B2 (en) 1990-06-25 1990-06-25 Method for producing high-purity isophthalic acid

Country Status (1)

Country Link
JP (1) JP2924104B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002128726A (en) * 2000-08-18 2002-05-09 Daicel Chem Ind Ltd Method for producing carboxylic acid
JP2004358466A (en) * 2003-06-05 2004-12-24 Eastman Chem Co Extraction method for removing impurity from carboxylic acid-synthesized mother liquor
JP2004358465A (en) * 2003-06-05 2004-12-24 Eastman Chem Co Extraction method for removing impurity from carboxylic acid-synthesized mother liquor
CN113318471A (en) * 2021-07-08 2021-08-31 山东友道化学有限公司 Method and system for treating xylene oxidation reaction liquid

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002128726A (en) * 2000-08-18 2002-05-09 Daicel Chem Ind Ltd Method for producing carboxylic acid
JP2004358466A (en) * 2003-06-05 2004-12-24 Eastman Chem Co Extraction method for removing impurity from carboxylic acid-synthesized mother liquor
JP2004358465A (en) * 2003-06-05 2004-12-24 Eastman Chem Co Extraction method for removing impurity from carboxylic acid-synthesized mother liquor
CN113318471A (en) * 2021-07-08 2021-08-31 山东友道化学有限公司 Method and system for treating xylene oxidation reaction liquid
CN113318471B (en) * 2021-07-08 2024-05-31 山东友道化学有限公司 Treatment method and system for dimethylbenzene oxidation reaction liquid

Also Published As

Publication number Publication date
JP2924104B2 (en) 1999-07-26

Similar Documents

Publication Publication Date Title
US5132450A (en) Process for producing high purity isophthalic acid
US5359133A (en) Process for producing highly purified benzenedicarboxylic acid isomers
KR100363923B1 (en) A process for preparing aromatic carboxylic acids
JPH0451539B2 (en)
JPH0240653B2 (en)
EP1003699B1 (en) Purification of difluoromethane by extractive distillation
US8686186B2 (en) Methods, processes, and systems for treating and purifying crude terephthalic acid and associated process streams
JP2001247511A (en) Method of producing aromatic carboxylic acid
CA2329258C (en) Improved process for producing pure carboxylic acids
JPH0257528B2 (en)
JPH0454149A (en) Production of high-purity isophthalic acid
JPS62212340A (en) Simultaneous production of 2,6-naphthalene-dicarboxylic acid and trimellitic acid
JPH1053557A (en) Production of 2,6-naphthalenedicarboxylic acid having high purity
JP3201436B2 (en) Production method of high purity isophthalic acid
RU2047594C1 (en) Process for preparing benzenedicarboxylic acid isomers having high purification degree
JP2002069031A (en) Method for manufacturing high-purity pyromellitic acid and high-purity pyromellitic anhydride
JPH09104653A (en) Purification of monocyclic aromatic carboxylic acid
JPH0662495B2 (en) Manufacturing method of high-purity terephthalic acid
JPH03123755A (en) Production of aromatic carboxylic acid
JPS5824421B2 (en) Production method of isophthalic acid
JP2002069073A (en) Method for producing highly pure pyromellitic anhydride
HU214097B (en) Process for producing high purity isomers of benzenbicarboxylic acids
JPS5993029A (en) Production of high-purity terephthalic acid
JPH0648982A (en) Production of high-purity terephthalic acid
JPS5842858B2 (en) Production method of high purity terephthalic acid

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080507

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090507

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090507

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100507

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees