JPH0257528B2 - - Google Patents

Info

Publication number
JPH0257528B2
JPH0257528B2 JP56071565A JP7156581A JPH0257528B2 JP H0257528 B2 JPH0257528 B2 JP H0257528B2 JP 56071565 A JP56071565 A JP 56071565A JP 7156581 A JP7156581 A JP 7156581A JP H0257528 B2 JPH0257528 B2 JP H0257528B2
Authority
JP
Japan
Prior art keywords
reactor
terephthalic acid
mixture
temperature
molecular oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56071565A
Other languages
Japanese (ja)
Other versions
JPS57188543A (en
Inventor
Hiroshi Hashizume
Yoshiaki Izumisawa
Haruo Habu
Yasuo Saruwatari
Shigeki Harada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP56071565A priority Critical patent/JPS57188543A/en
Publication of JPS57188543A publication Critical patent/JPS57188543A/en
Publication of JPH0257528B2 publication Critical patent/JPH0257528B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はテレフタル酸の製造法に関するもので
あり、詳しくは直接、グリコール成分と反応させ
てポリエステルを製造することのできる高純度テ
レフタル酸の製造法に関するものである。 テレフタル酸はポリエステルの原料として有用
であり、通常、パラキシレンを酢酸溶媒中、重金
属及び臭素を含有する触媒の存在下、分子状酸素
と反応させる所謂、SD法により製造されている。
しかしながら、通常、SD法により製造されるテ
レフタル酸中には1000〜3000ppmの4−カルボキ
シベンズアルデヒド(以下、4CBAと略称する)
が不純物として含有されているため、そのまま、
例えば、繊維用、フイルム用などのポリエステル
原料として使用することはできない。 そのため、従来、テレフタル酸をメタノールと
反応させてジメチルテレフタレートとし精製した
のち、グリコール成分と反応させるか、又は、テ
レフタル酸を高温、高圧下にて溶媒中に溶解し、
例えば、パラジウムなどの貴金属触媒と接触させ
て精製したのち、ポリエステル原料とする方法が
採られてきた。 しかしながら、これらの方法はいずれも、SD
法による粗テレフタル酸の製造プラントの他に、
精製用の別のプラントを必要とするという問題が
あつた。そこで、近年、パラキシレンの酸化を行
なうに際し、特定の触媒、酸化条件又は酸化方式
を採用することにより、1つのプラントで直接、
高純度テレフタル酸を製造する方法が知られてい
る。 本出願人は先に、1つのプラントで直接、
4CBA含有量が500ppm以下の高純度テレフタル
酸を工業的有利に製造するための方法として、パ
ラキシレンを酸化して得たテレフタル酸を含有す
る混合物を、引続き、酸化反応温度よりも低温で
追酸化したのち、230℃以上の高温で再度追酸化
する方法を提案した。(特開昭55−55138号)この
方法は1つのプラントで高純度テレフタル酸が得
られるのは勿論のこと、テレフタル酸の製造中に
起る酢酸溶媒の燃焼損失が少ないため、工業的に
有利な方法である。しかしながら、この方法では
230℃以上の高温で追酸化を行なう工程において、
酢酸溶媒の燃焼が起り易いので、更に、酢酸溶媒
の燃焼損失量を低下させるための改良の余地があ
つた。 本発明者等は上記実情に鑑み、上述のパラキシ
レンの酸化−低温追酸化−高温再度追酸化の組合
せによりテレフタル酸を製造する際に、酢酸溶媒
の燃焼損失量をより低くする方法につき種々検討
した結果、ある特定の方法を採用することによ
り、酢酸溶媒の燃焼損失量を低下させることがで
きることを見い出し本発明を完成した。 すなわち、本発明の要旨は、パラキシレンを酢
酸溶媒中、重金属及び臭素を含有する触媒の存在
下、分子状酸素と反応させて連続的に高純度テレ
フタル酸を製造する方法において、 180〜230℃に保持した槽型の第1反応器にパ
ラキシレンと分子状酸素を供給しパラキシレン
の少なくとも95重量%をテレフタル酸に酸化す
ること、 第1反応器で得た酸化混合物を第1反応器の
温度よりも0〜50℃低い温度に保持した槽型の
第2反応器に供給し、分子状酸素を供給し第1
の追酸化を行なうこと、 第2反応器で得た混合物を昇圧したのち、チ
ユーブ型の加熱器を通して235℃以上の温度に
昇温し、しかも、昇圧後から昇温途中の混合物
に、混合物中のテレフタル酸に対して0.003〜
0.3モル倍の分子状酸素を供給し該加熱器中で
第2の追酸化を行なうこと、 該加熱器を通過した混合物を次いで、235℃
以上の温度に保持した槽型の第3反応器に供給
し、パラキシレンを供給することなく、混合物
中のテレフタル酸に対して0.003〜0.3モル倍の
分子状酸素を供給し第3の追酸化を行なうこ
と、 第3反応器からの混合物を晶析し、過する
ことによりテレフタル酸を回収すること を特徴とするテレフタル酸の製造法に存する。 以下、本発明を詳細に説明する。 本発明で対象となるテレフタル酸の製造法とし
ては、パラキシレンを酢酸溶媒中、重金属を含有
する触媒の存在下、分子状酸素と反応させる方法
が挙げられる。 本発明では、先ず、槽型の第1反応器でパラキ
シレンの95重量%以上、好ましくは98重量%以上
をテレフタル酸に酸化するが、通常その反応温度
は180〜230℃、好ましくは190〜210℃であり、圧
力は数Kg/cm2〜100Kg/cm2、好ましくは10〜30
Kg/cm2である。反応温度があまり低いとパラキシ
レンを十分に酸化することができず、逆に、あま
り多すぎると高純度のテレフタル酸が得られない
ばかりか酢酸溶媒の燃焼損失が増大するので好ま
しくない。また、第1反応器での反応時間はパラ
キシレンの95重量%以上がテレフタル酸に酸化で
きる時間が必要であり、通常、30〜200分、好ま
しくは40〜150分程度である。 本発明で使用する触媒は通常、コバルト−マン
ガン−臭素の三元素を含むものであり、例えば、
溶媒に対してコバルト金属として120〜600ppm、
好ましくは200〜400ppmのコバルト化合物、コバ
ルトに対してマンガン金属として0.5〜1.5倍のマ
ンガン化合物及び溶媒に対して臭素として500〜
2000ppm、好ましくは600〜1500ppmの臭素化合
物が使用される。これらの化合物の具体例として
は、酢酸コバルト、ナフテン酸コバルトなどのコ
バルト化合物、酢酸マンガン、ナフテン酸マンガ
ンなどのマンガン化合物及び臭化水素、臭化ナト
リウム、臭化コバルト、臭化マンガンなどの臭素
化合物が挙げられる。なお、臭化マンガン、臭化
コバルトを使用した場合には、二種の触媒成分を
兼ねることもできる。 第1反応器に供給するパラキシレンと溶媒との
割合は通常、パラキシレンに対して2〜6重量倍
であり、溶媒があまり少ない場合には、反応器内
の撹拌が良好に行なわれず、更に、後述する高温
の追酸化が良好に行なわれないので好ましくな
い。また、酢酸溶媒中には例えば、20重量%以下
の水を含有していてもよい。第1反応器の液相中
に供給する分子状酸素は通常空気でよく、パラキ
シレンに対し分子状酸素として3〜100モル倍の
割合で供給される。 上述の第1の酸化反応では反応器からの凝縮性
ガスを冷却して得た凝縮液の一部を反応器に還流
することなく系外に抜き出すことによつて、反応
器内の水分濃度を例えば、5〜15重量%と低濃度
に調節してもよい。 また、第1反応器内の反応母液中の4CBA濃度
を反応温度、圧力、時間及び触媒などを調節する
ことにより、例えば、2000ppm以下に保持するこ
とにより後述の処理が良好に行なわれるので好ま
しい。 次に、第1反応器で得られたテレフタル酸を含
有するスラリーを抜き出し、別の槽型の第2反応
器に供給し、第1反応器の反応温度よりも0〜50
℃、好ましくは2〜30℃低い温度で第1の追酸化
処理が行なわれる。この温度があまり低い場合に
は、反応スラリー中に含有される酸化中間体を十
分に酸化することができず、一方、第1反応器の
反応温度よりも高温の場合には、製品テレフタル
酸の着色成分となる不純物が生成するので好まし
くない。また、この第1の追酸化処理の時間は通
常、20〜90分、好ましくは30〜60分である。 この追酸化で使用する分子状酸素は被酸化物が
少量であるので、その供給量は第1反応器の供給
量の1/10〜1/1000程度であり、通常、酸化排ガス
中のO2濃度が1〜6vol%となる量が好ましい。
分子状酸素としては通常、空気又は不活性ガスで
希釈した空気を用いればよい。 また、上述の第1反応器及び第2反応器、更
に、後述の第3反応器はいずれも槽型反応器であ
り、通常、上部に還流冷却器を有する撹拌槽タイ
プのものが使用される。なお、この第1の追酸化
工程は、第1反応器からのスラリーと分子状酸素
だけで反応を行うのが好ましいが、所望ならばこ
れに少量のパラキシレンを供給してもよい。 すなわち、この第1の追酸化工程は、第1反応
器でパラキシレンの95重量%以上をテレフタル酸
に酸化したスラリーを追酸化するのが目的なの
で、ここに新たに大量のパラキシレンを供給する
ことは第1反応器での反応率の低いスラリーを追
酸化するのに等しく、この工程の効果を発揮でき
なくなる。 第2反応器からの混合物は次いで、昇圧したの
ち、加熱器を通すことにより235℃以上、好まし
くは240〜290℃の温度に加熱される。混合物の昇
圧は通常、第2反応器からの混合物をポンプを通
して高圧部に圧入することにより行なわれる。昇
圧後の圧力は混合物を前記温度に加熱した際に、
十分に混合物が液相を保持できる圧力であり、通
常、工業的には30〜100Kg/cm2である。この圧力
を保持するためには、例えば、N2ガスなどの不
活性ガスを用いて加圧する方法が採用される。ま
た、加熱処理により混合物中のテレフタル酸の結
晶の少なくとも一部が溶解されるが、加熱温度が
前記範囲より低い場合には、テレフタル酸を溶媒
中に良好に溶解することができず、逆に、あまり
高い場合には、経済的でないばかりか、着色不純
物が生成する恐れがある。加熱器としては、通
常、モノチユーブあるいはマルチチユーブのチユ
ーブ型熱交換器が使用される。 本発明では第2反応器からの混合物に対し、昇
圧後から昇温途中の間の流路において分子状酸素
を供給し、加熱器中で第2の追酸化を行なうこと
を必須要件とするものである。分子状酸素の供給
量は混合物中のテレフタル酸に対して0.003〜0.3
モル倍、好ましくは0.01〜0.1モル倍である。分
子状酸素の使用量があまり少ない場合には、後述
する第3の追酸化にて多量の分子状酸素を供給し
ないと高純度の製品が得られないため、結果的に
酢酸溶媒の燃焼損失量が低くならず、一方、分子
状酸素の使用量があまり多いと第2の追酸化での
酢酸溶媒の燃焼損失量が多くなるので好ましくな
い。この第2の追酸化及び後述する第3の追酸化
で使用する分子状酸素は通常、空気である。 加熱器を通り加熱され、第2の追酸化が行なわ
れた混合物は、次いで、第3反応器に供給され、
235℃以上、好ましくは240〜290℃に加熱された
温度で第3の追酸化が行なわれる。この加熱帯域
の圧力は上述したように、通常、30〜100Kg/cm2
である。第3反応器は第1及び第2反応器と同じ
く槽型のものであり、通常、第3反応器での滞留
時間は5〜120分、好ましくは10〜60分である。
第3の追酸化で使用する分子状酸素の量は混合物
中のテレフタル酸に対して0.003〜0.3モル倍、好
ましくは0.01〜0.1モル倍である。本発明では上
述のように加熱器中にて第2の追酸化を行なつて
いるため、この第3の追酸化での分子状酸素の供
給量を少なくしても、高純度のテレフタル酸が得
られるので、結果として総合的な酢酸溶媒の燃焼
損失量は減少される。また、分子状酸素としては
通常、空気であり、酸化排ガス中のO2濃度は実
質的にゼロである。 第3反応器からの混合物は常法に従つて晶析さ
れる。晶析処理は通常、多段で行ない徐々に温
度、圧力を下げて行くのが好ましい。次に、例え
ば、遠心分離などの固液分離を行ない、テレフタ
ル酸の結晶を回収することができる。テレフタル
酸の結晶は必要に応じて、例えば、水又は酢酸な
どにて洗浄したのち乾燥処理され製品となる。一
方、反応母液は通常、蒸留塔に送られ生成水、触
媒、副生物を除去し酢酸を回収する。また、本発
明では反応母液中の副生物、特に、酸化反応を妨
害する不純物が極めて少ないので、反応母液の10
〜80重量%をそのまま第1反応器へリサイクルす
ることもできる。 以上、本発明によれば、4CBA含有量が
500ppm以下の高純度テレフタル酸を1つのプラ
ントにおいて製造する際の酢酸溶媒の燃焼損失量
が少ないので、工業的且つ経済的に極めて有利な
ものである。 次に、本発明を実施例により更に詳細に説明す
るが、本発明はその要旨を越えない限り以下の実
施例に限定されるものではない。 なお、実施例中、「部」とあるのは「重量部」
を表わす。 実施例 還流冷却装置、撹拌装置、原料及び溶媒送入
口、空気導入口及び反応スラリー抜出口を備えた
耐圧チタン製の第1反応器1にパイプ8よりパラ
キシレン1部、水5%を含む酢酸4.5部と酢酸コ
バルト(4水和物)0.0025部、酢酸マンガン(4
水和物)0.0027部及び臭化水素酸(47%水溶液)
0.0039部からなる混合物を供給し、滞留時間90
分、温度200℃、圧力18Kg/cm2Gの条件下、酸化
ガスとして空気を用い、酸化反応の排ガス中の
O2濃度が4vol%となるように、パイプ9より供
給し、パイプ10より還流液1.5部を抜き出し反
応器1中の水分濃度を約10%にコントロールし、
パラキシレンの液相酸化反応を行なつた。 第1反応器1からの混合物はパイプ14を通り
第1反応器と同様の装備を持つ第2反応器2に連
続的に供給した。第2反応器2では温度185℃、
圧力11Kg/cm2G、滞留時間30分の条件下、酸化反
応の排ガス中のO2濃度が4vol%となるようにパ
イプ11から空気を供給し第1の追酸化を行なつ
た。 第2反応器2からの混合物はパイプ15を通
り、次いで、ポンプ3により圧力65Kg/cm2G昇圧
したのち、パイプ16の途中でパイプ12から空
気0.02部を加えたのち、モノチユーブ型加熱器4
に供給し、加熱器中で第2の追酸化を行なうとと
もに、混合物の温度を275℃まで昇温した。 更に、加熱器4を出た混合物はパイプ17を通
つて、第1反応器と同じ装備を持つ第3反応器5
に供給した。第3反応器5では温度275℃、圧力
65Kg/cm2G、滞留時間30分の条件下で、空気0.05
部をパイプ13より供給し第3の追酸化を行なつ
た。 このように順次、追酸化を行なつたのち、混合
物を晶析器6にて冷却晶析し、次いで、遠心分離
器7で混合物を過してテレフタル酸の結晶を回
収した。 上述のようにして得たテレフタル酸につき、
4CBA含有量、透過率(T340)を測定し、また、
第2及び第3の追酸化による酢酸溶媒の燃焼損失
量を測定し第1表に示す結果を得た。 比較例 1 実施例の方法において、パイプ12からの空気
を供給を止め第2の追酸化を行なわなかつた以外
は実施例の方法と全く同じ方法で反応を行なつ
た。 比較例 2及び3 実施例の方法において、パイプ12からの空気
の供給を止め第2の追酸化を行なわず、代りに、
第3反応器5へパイプ13より供給する空気の量
を0.07部に増加した場合(比較例2)、また、そ
の3倍の0.21部とした場合(比較例3)について
同様に反応を行なつた。
The present invention relates to a method for producing terephthalic acid, and more particularly, to a method for producing high-purity terephthalic acid that can produce polyester by directly reacting with a glycol component. Terephthalic acid is useful as a raw material for polyester, and is usually produced by the so-called SD method in which paraxylene is reacted with molecular oxygen in an acetic acid solvent in the presence of a catalyst containing heavy metals and bromine.
However, terephthalic acid produced by the SD method usually contains 1000 to 3000 ppm of 4-carboxybenzaldehyde (hereinafter abbreviated as 4CBA).
is contained as an impurity, so
For example, it cannot be used as a polyester raw material for fibers, films, etc. Therefore, conventionally, terephthalic acid is reacted with methanol to purify dimethyl terephthalate and then reacted with a glycol component, or terephthalic acid is dissolved in a solvent under high temperature and high pressure.
For example, a method has been adopted in which the material is purified by contacting with a noble metal catalyst such as palladium, and then used as a raw material for polyester. However, all of these methods
In addition to the crude terephthalic acid production plant by
There was a problem with the need for a separate plant for purification. Therefore, in recent years, when oxidizing para-xylene, by adopting specific catalysts, oxidation conditions, or oxidation methods, it is possible to directly oxidize para-xylene in one plant.
Methods for producing high purity terephthalic acid are known. The applicant previously proposed that directly in one plant,
As an industrially advantageous method for producing high-purity terephthalic acid with a 4CBA content of 500 ppm or less, a mixture containing terephthalic acid obtained by oxidizing paraxylene is subsequently additionally oxidized at a temperature lower than the oxidation reaction temperature. After that, we proposed a method of additional oxidation at a high temperature of 230°C or higher. (Japanese Patent Application Laid-Open No. 55-55138) This method is industrially advantageous because not only can high-purity terephthalic acid be obtained in one plant, but the combustion loss of acetic acid solvent that occurs during the production of terephthalic acid is small. This is a great method. However, this method
In the process of performing additional oxidation at a high temperature of 230℃ or higher,
Since combustion of the acetic acid solvent is likely to occur, there is still room for improvement to further reduce the amount of combustion loss of the acetic acid solvent. In view of the above-mentioned circumstances, the present inventors have investigated various methods for lowering the amount of combustion loss of acetic acid solvent when producing terephthalic acid by the combination of oxidation of paraxylene, low-temperature additional oxidation, and high-temperature re-oxidation. As a result, they discovered that by employing a certain method, the amount of combustion loss of acetic acid solvent could be reduced, and the present invention was completed. That is, the gist of the present invention is a method for continuously producing high-purity terephthalic acid by reacting paraxylene with molecular oxygen in an acetic acid solvent in the presence of a catalyst containing heavy metals and bromine. oxidizing at least 95% by weight of the paraxylene to terephthalic acid by supplying paraxylene and molecular oxygen to a tank-type first reactor maintained at It is supplied to a tank-type second reactor maintained at a temperature 0 to 50°C lower than the first reactor, and molecular oxygen is supplied to the first reactor.
After increasing the pressure of the mixture obtained in the second reactor, the mixture is heated to a temperature of 235°C or higher through a tube heater, and after the pressure is increased, the mixture is heated during the temperature increase. 0.003 to terephthalic acid
carrying out a second additional oxidation in the heater by supplying 0.3 moles of molecular oxygen; the mixture passing through the heater is then heated to 235°C;
The third additional oxidation is carried out by supplying molecular oxygen in an amount of 0.003 to 0.3 times the mole of terephthalic acid in the mixture without supplying paraxylene. A method for producing terephthalic acid, comprising: recovering the terephthalic acid by crystallizing and filtering the mixture from the third reactor. The present invention will be explained in detail below. Examples of the method for producing terephthalic acid, which is the object of the present invention, include a method in which paraxylene is reacted with molecular oxygen in an acetic acid solvent in the presence of a catalyst containing a heavy metal. In the present invention, first, 95% by weight or more, preferably 98% by weight or more of paraxylene is oxidized to terephthalic acid in a tank-type first reactor, and the reaction temperature is usually 180-230°C, preferably 190-230°C. 210°C, and the pressure is several Kg/cm 2 to 100 Kg/cm 2 , preferably 10 to 30
Kg/ cm2 . If the reaction temperature is too low, paraxylene cannot be sufficiently oxidized, and conversely, if the reaction temperature is too high, not only will high purity terephthalic acid not be obtained, but also the combustion loss of the acetic acid solvent will increase, which is not preferable. Further, the reaction time in the first reactor is required to allow 95% by weight or more of paraxylene to be oxidized to terephthalic acid, and is usually about 30 to 200 minutes, preferably about 40 to 150 minutes. The catalyst used in the present invention usually contains three elements: cobalt, manganese, and bromine, for example,
120-600ppm as cobalt metal relative to solvent,
Preferably 200 to 400 ppm of cobalt compound, 0.5 to 1.5 times of manganese compound as manganese metal to cobalt, and 500 to 500 ppm of bromine to solvent.
2000 ppm, preferably 600 to 1500 ppm of bromine compounds are used. Specific examples of these compounds include cobalt compounds such as cobalt acetate and cobalt naphthenate, manganese compounds such as manganese acetate and manganese naphthenate, and bromine compounds such as hydrogen bromide, sodium bromide, cobalt bromide, and manganese bromide. can be mentioned. Note that when manganese bromide and cobalt bromide are used, they can also serve as two types of catalyst components. The ratio of paraxylene and solvent supplied to the first reactor is usually 2 to 6 times the weight of paraxylene, and if the solvent is too small, stirring in the reactor will not be carried out well, and This is not preferable because the high-temperature additional oxidation described later cannot be carried out well. Further, the acetic acid solvent may contain, for example, 20% by weight or less of water. The molecular oxygen supplied to the liquid phase of the first reactor may normally be air, and is supplied at a ratio of 3 to 100 times the mole of molecular oxygen to para-xylene. In the first oxidation reaction described above, the water concentration in the reactor is reduced by cooling the condensable gas from the reactor and extracting a part of the condensate from the system without refluxing it into the reactor. For example, the concentration may be adjusted to as low as 5 to 15% by weight. Further, it is preferable to maintain the 4CBA concentration in the reaction mother liquor in the first reactor at 2000 ppm or less by adjusting the reaction temperature, pressure, time, catalyst, etc., since the treatment described below can be performed satisfactorily. Next, the slurry containing terephthalic acid obtained in the first reactor is extracted and supplied to another tank-type second reactor, and the slurry is 0 to 50% higher than the reaction temperature of the first reactor.
The first additional oxidation treatment is carried out at a lower temperature, preferably 2-30°C. If this temperature is too low, the oxidized intermediate contained in the reaction slurry cannot be sufficiently oxidized, while if it is higher than the reaction temperature of the first reactor, the product terephthalic acid This is not preferable because impurities that become coloring components are generated. Further, the time for this first additional oxidation treatment is usually 20 to 90 minutes, preferably 30 to 60 minutes. The amount of molecular oxygen used in this additional oxidation is about 1/10 to 1/1000 of the amount supplied to the first reactor, since the amount of oxidized material is small . The amount is preferably such that the concentration is 1 to 6 vol%.
Generally, air or air diluted with an inert gas may be used as molecular oxygen. Furthermore, the above-mentioned first reactor and second reactor, as well as the third reactor described later, are all tank-type reactors, and usually a stirred tank type having a reflux condenser at the top is used. . In this first additional oxidation step, it is preferable to carry out the reaction using only the slurry from the first reactor and molecular oxygen, but if desired, a small amount of paraxylene may be supplied thereto. In other words, the purpose of this first additional oxidation step is to additionally oxidize the slurry in which more than 95% by weight of paraxylene has been oxidized to terephthalic acid in the first reactor, so a large amount of paraxylene is newly supplied here. This is equivalent to additionally oxidizing the slurry with a low reaction rate in the first reactor, and the effect of this process cannot be exhibited. The mixture from the second reactor is then pressurized and then heated to a temperature above 235°C, preferably from 240 to 290°C, by passing through a heater. Pressurization of the mixture is usually carried out by forcing the mixture from the second reactor into the high pressure section through a pump. The pressure after increasing the pressure is when the mixture is heated to the above temperature,
The pressure is such that the mixture can sufficiently maintain a liquid phase, and is usually 30 to 100 kg/cm 2 in industrial terms. In order to maintain this pressure, for example, a method of pressurizing using an inert gas such as N 2 gas is adopted. In addition, at least a portion of the terephthalic acid crystals in the mixture are dissolved by the heat treatment, but if the heating temperature is lower than the above range, the terephthalic acid cannot be well dissolved in the solvent, and vice versa. , if it is too high, it is not only uneconomical, but also there is a risk that colored impurities will be produced. As the heater, a monotube or multitube tube heat exchanger is usually used. In the present invention, it is an essential requirement to supply molecular oxygen to the mixture from the second reactor in the flow path after the pressure rise and during the temperature rise, and to perform the second additional oxidation in the heater. It is. The amount of molecular oxygen supplied is 0.003 to 0.3 per terephthalic acid in the mixture.
It is twice the molar amount, preferably 0.01 to 0.1 times the molar amount. If the amount of molecular oxygen used is too small, a high purity product cannot be obtained unless a large amount of molecular oxygen is supplied in the third additional oxidation process, which will be described later.As a result, the amount of combustion loss of the acetic acid solvent will decrease. On the other hand, if the amount of molecular oxygen used is too large, the amount of combustion loss of the acetic acid solvent in the second additional oxidation will increase, which is not preferable. The molecular oxygen used in this second additional oxidation and the third additional oxidation described later is usually air. The mixture heated through the heater and subjected to the second additional oxidation is then supplied to a third reactor,
A third additional oxidation is carried out at a heated temperature above 235°C, preferably between 240 and 290°C. As mentioned above, the pressure in this heating zone is usually 30 to 100 kg/cm 2
It is. The third reactor is of the tank type like the first and second reactors, and the residence time in the third reactor is usually 5 to 120 minutes, preferably 10 to 60 minutes.
The amount of molecular oxygen used in the third additional oxidation is 0.003 to 0.3 times, preferably 0.01 to 0.1 times by mole, the amount of terephthalic acid in the mixture. In the present invention, as mentioned above, the second additional oxidation is performed in the heater, so even if the amount of molecular oxygen supplied in the third additional oxidation is reduced, high purity terephthalic acid can be produced. As a result, the overall amount of acetic acid solvent combustion loss is reduced. Furthermore, molecular oxygen is usually air, and the O 2 concentration in the oxidizing exhaust gas is substantially zero. The mixture from the third reactor is crystallized according to conventional methods. It is usually preferable to carry out the crystallization treatment in multiple stages and gradually lower the temperature and pressure. Next, for example, solid-liquid separation such as centrifugation can be performed to recover crystals of terephthalic acid. If necessary, the terephthalic acid crystals are washed with water or acetic acid, and then dried to become a product. On the other hand, the reaction mother liquor is usually sent to a distillation column to remove produced water, catalyst, and byproducts, and recover acetic acid. In addition, in the present invention, there are very few by-products in the reaction mother liquor, especially impurities that interfere with the oxidation reaction, so 10% of the reaction mother liquor is
~80% by weight can also be recycled directly to the first reactor. As described above, according to the present invention, the 4CBA content is
Since the combustion loss of acetic acid solvent when producing high purity terephthalic acid of 500 ppm or less in one plant is small, it is extremely advantageous industrially and economically. Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to the following Examples unless the gist thereof is exceeded. In addition, in the examples, "part" means "part by weight"
represents. Example: Acetic acid containing 1 part of paraxylene and 5% water is supplied from pipe 8 to the first reactor 1 made of pressure-resistant titanium, which is equipped with a reflux cooling device, a stirring device, a raw material and solvent inlet, an air inlet, and a reaction slurry outlet. 4.5 parts, cobalt acetate (tetrahydrate) 0.0025 parts, manganese acetate (4
hydrate) 0.0027 parts and hydrobromic acid (47% aqueous solution)
Feed a mixture consisting of 0.0039 parts, residence time 90
minutes, temperature 200℃, pressure 18Kg/ cm2G , air was used as the oxidizing gas, and the exhaust gas from the oxidation reaction was
Supply from pipe 9 so that the O 2 concentration is 4 vol%, and extract 1.5 parts of reflux liquid from pipe 10 to control the water concentration in the reactor 1 to about 10%.
A liquid phase oxidation reaction of paraxylene was carried out. The mixture from the first reactor 1 was continuously fed through a pipe 14 to a second reactor 2 equipped similarly to the first reactor. In the second reactor 2, the temperature is 185℃,
Under conditions of a pressure of 11 Kg/cm 2 G and a residence time of 30 minutes, air was supplied from the pipe 11 to perform the first additional oxidation so that the O 2 concentration in the exhaust gas from the oxidation reaction was 4 vol %. The mixture from the second reactor 2 passes through the pipe 15, and then the pressure is increased to 65 kg/cm 2 G by the pump 3. After 0.02 part of air is added from the pipe 12 in the middle of the pipe 16, the mixture is passed through the monotube heater 4.
A second additional oxidation was carried out in a heater, and the temperature of the mixture was raised to 275°C. Furthermore, the mixture leaving the heater 4 passes through a pipe 17 to a third reactor 5 equipped with the same equipment as the first reactor.
supplied. In the third reactor 5, the temperature is 275℃ and the pressure is
65Kg/ cm2G , residence time 30 minutes, air 0.05
A third additional oxidation was carried out by supplying the same amount through pipe 13. After performing additional oxidation in this manner, the mixture was cooled and crystallized in a crystallizer 6, and then passed through a centrifugal separator 7 to recover crystals of terephthalic acid. For the terephthalic acid obtained as described above,
Measure the 4CBA content, transmittance (T 340 ), and also
The amount of combustion loss of the acetic acid solvent due to the second and third additional oxidation was measured, and the results shown in Table 1 were obtained. Comparative Example 1 A reaction was carried out in exactly the same manner as in the example except that the air supply from pipe 12 was stopped and the second additional oxidation was not performed. Comparative Examples 2 and 3 In the method of the example, the air supply from the pipe 12 was stopped and the second additional oxidation was not performed, but instead:
The reaction was carried out in the same way when the amount of air supplied from the pipe 13 to the third reactor 5 was increased to 0.07 part (Comparative Example 2), and when it was increased to 0.21 part, which is three times that amount (Comparative Example 3). Ta.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例で使用した反応装置を
示すフローシートであり、1は第1反応器、2は
反応器、3はポンプ、4は加熱器、5は第3反応
器を示す。
FIG. 1 is a flow sheet showing the reactor used in the examples of the present invention, where 1 is the first reactor, 2 is the reactor, 3 is the pump, 4 is the heater, and 5 is the third reactor. .

Claims (1)

【特許請求の範囲】 1 パラキシレンを酢酸溶媒中、重金属及び臭素
を含有する触媒の存在下、分子状酸素と反応させ
て連続的に高純度テレフタル酸を製造する方法に
おいて、 180〜230℃に保持した槽型の第1反応器にパ
ラキシレンと分子状酸素を供給しパラキシレン
の少なくとも95重量%をテレフタル酸に酸化す
ること、 第1反応器で得た酸化混合物を第1反応器の
温度よりも0〜50℃低い温度に保持した槽型の
第2反応器に供給し、分子状酸素を供給し第1
の追酸化を行なうこと、 第2反応器で得た混合物を昇圧したのち、チ
ユーブ型の加熱器を通して235℃以上の温度に
昇温し、しかも、昇圧後から昇温途中の混合物
に、混合物中のテレフタル酸に対して0.003〜
0.3モル倍の分子状酸素を供給し該加熱器中で
第2の追酸化を行なうこと、 該加熱器を通過した混合物を次いで、235℃
以上の温度に保持した槽型の第3反応器に供給
し、パラキシレンを供給することなく、混合物
中のテレフタル酸に対して0.003〜0.3モル倍の
分子状酸素を供給し第3の追酸化を行なうこ
と、 第3反応器からの混合物を晶析し、過する
ことによりテレフタル酸を回収すること を特徴とするテレフタル酸の製造法。
[Claims] 1. A method for continuously producing high-purity terephthalic acid by reacting paraxylene with molecular oxygen in an acetic acid solvent in the presence of a catalyst containing heavy metals and bromine, at a temperature of 180 to 230°C. oxidizing at least 95% by weight of the paraxylene to terephthalic acid by supplying paraxylene and molecular oxygen to a tank-type first reactor maintained at a temperature of the first reactor; The second tank-type reactor is maintained at a temperature 0 to 50°C lower than the first reactor, and molecular oxygen is supplied to the second reactor.
After increasing the pressure of the mixture obtained in the second reactor, the mixture is heated to a temperature of 235°C or higher through a tube heater, and after the pressure is increased, the mixture is heated during the temperature increase. 0.003 to terephthalic acid
carrying out a second additional oxidation in the heater by supplying 0.3 moles of molecular oxygen; the mixture passing through the heater is then heated to 235°C;
The third additional oxidation is carried out by supplying molecular oxygen in an amount of 0.003 to 0.3 times the mole of terephthalic acid in the mixture without supplying paraxylene. A method for producing terephthalic acid, comprising: recovering the terephthalic acid by crystallizing and filtering the mixture from the third reactor.
JP56071565A 1981-05-13 1981-05-13 Preparation of terephthalic acid Granted JPS57188543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56071565A JPS57188543A (en) 1981-05-13 1981-05-13 Preparation of terephthalic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56071565A JPS57188543A (en) 1981-05-13 1981-05-13 Preparation of terephthalic acid

Publications (2)

Publication Number Publication Date
JPS57188543A JPS57188543A (en) 1982-11-19
JPH0257528B2 true JPH0257528B2 (en) 1990-12-05

Family

ID=13464357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56071565A Granted JPS57188543A (en) 1981-05-13 1981-05-13 Preparation of terephthalic acid

Country Status (1)

Country Link
JP (1) JPS57188543A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59106435A (en) * 1982-12-10 1984-06-20 Mitsubishi Chem Ind Ltd Production of high-purity terephthalic acid
JPS6038841U (en) * 1983-08-26 1985-03-18 ナイルス部品株式会社 Turn signal restoration device
JP2504545B2 (en) * 1988-11-15 1996-06-05 三菱化学株式会社 Manufacturing method of terephthalic acid
US7501537B2 (en) 2006-03-01 2009-03-10 Eastman Chemical Company Polycarboxylic acid production system employing oxidative digestion with reduced or eliminated upstream liquor exchange
US7326807B2 (en) 2006-03-01 2008-02-05 Eastman Chemical Company Polycarboxylic acid production system with enhanced heating for oxidative digestion
US7816556B2 (en) * 2006-03-01 2010-10-19 Eastman Chemical Company Polycarboxylic acid production system employing enhanced multistage oxidative digestion
US7326808B2 (en) 2006-03-01 2008-02-05 Eastman Chemical Company Polycarboxylic acid production system employing cooled mother liquor from oxidative digestion as feed to impurity purge system
US7393973B2 (en) 2006-03-01 2008-07-01 Eastman Chemical Company Polycarboxylic acid production system with enhanced residence time distribution for oxidative digestion
US20070208194A1 (en) 2006-03-01 2007-09-06 Woodruff Thomas E Oxidation system with sidedraw secondary reactor
US7420082B2 (en) 2006-03-01 2008-09-02 Eastman Chemical Company Polycarboxylic acid production system employing hot liquor removal downstream of oxidative digestion

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5555138A (en) * 1978-10-19 1980-04-22 Mitsubishi Chem Ind Ltd Preparation of highly pure terephthalic acid

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5555138A (en) * 1978-10-19 1980-04-22 Mitsubishi Chem Ind Ltd Preparation of highly pure terephthalic acid

Also Published As

Publication number Publication date
JPS57188543A (en) 1982-11-19

Similar Documents

Publication Publication Date Title
JPH0451539B2 (en)
US4334086A (en) Production of terephthalic acid
EP0135341B1 (en) Process for preparing terephthalic acid from para-xylene
JPS6247864B2 (en)
JP2504461B2 (en) Manufacturing method of high quality terephthalic acid
JP4184948B2 (en) Process for producing purified terephthalic acid
EP2981528B1 (en) Process for the preparation of 2,5-furan-dicarboxylic acid
JPH0240653B2 (en)
WO1995009143A1 (en) Production method of high purity isomers of benzenedicarboxylic acids
EP1003699B1 (en) Purification of difluoromethane by extractive distillation
JP2001288139A (en) Method for producing high-purity terephthalic acid
JPH0257528B2 (en)
EP1062196B1 (en) Improved process for producing pure carboxylic acids
EP1971566B1 (en) A process for preparing high purity terephthalic acid
JPH0257529B2 (en)
JPH0328409B2 (en)
JP2924104B2 (en) Method for producing high-purity isophthalic acid
JPH0357887B2 (en)
JP2504545B2 (en) Manufacturing method of terephthalic acid
JPS6323983B2 (en)
JPS6323982B2 (en)
JPS62212340A (en) Simultaneous production of 2,6-naphthalene-dicarboxylic acid and trimellitic acid
JPH0662495B2 (en) Manufacturing method of high-purity terephthalic acid
JPH03181444A (en) Production of high-purity terephthalic acid
JPH0328410B2 (en)