JP2924104B2 - Method for producing high-purity isophthalic acid - Google Patents

Method for producing high-purity isophthalic acid

Info

Publication number
JP2924104B2
JP2924104B2 JP2164217A JP16421790A JP2924104B2 JP 2924104 B2 JP2924104 B2 JP 2924104B2 JP 2164217 A JP2164217 A JP 2164217A JP 16421790 A JP16421790 A JP 16421790A JP 2924104 B2 JP2924104 B2 JP 2924104B2
Authority
JP
Japan
Prior art keywords
isophthalic acid
oxidation
acetic acid
acid
cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2164217A
Other languages
Japanese (ja)
Other versions
JPH0454149A (en
Inventor
一夫 田中
輝正 吉田
二三夫 大越
市平 元山
多寿雄 太田
敏章 安倍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2164217A priority Critical patent/JP2924104B2/en
Priority to DE69104280T priority patent/DE69104280T2/en
Priority to EP91305756A priority patent/EP0465100B1/en
Priority to US07/722,555 priority patent/US5132450A/en
Priority to ES91305756T priority patent/ES2064912T3/en
Publication of JPH0454149A publication Critical patent/JPH0454149A/en
Application granted granted Critical
Publication of JP2924104B2 publication Critical patent/JP2924104B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はメタキシレンの液相酸化によるイソフタル酸
の製造法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing isophthalic acid by liquid phase oxidation of meta-xylene.

高純度イソフタル酸は、不飽和ポリエステル樹脂、ア
ルキッド樹脂、改質ポリエステル繊維、耐熱性ポリアミ
ド等のポリマーの中間原料として有用である。
High-purity isophthalic acid is useful as an intermediate material for polymers such as unsaturated polyester resins, alkyd resins, modified polyester fibers, and heat-resistant polyamides.

(従来の技術) 芳香族カルボン酸の製造法として、脂肪族置換基を有
する芳香族炭化水素を酢酸等の脂肪族カルボン酸の溶媒
中で重金属と臭素からなる触媒の存在下に分子状酸素に
より液相酸化する方法が知られており、この方法はイソ
フタル酸の製造にも適用できる。
(Prior Art) As a method for producing an aromatic carboxylic acid, an aromatic hydrocarbon having an aliphatic substituent is prepared by the reaction of an aromatic hydrocarbon having a molecular oxygen in the presence of a heavy metal and bromine catalyst in a solvent of an aliphatic carboxylic acid such as acetic acid. A liquid phase oxidation method is known, and this method can also be applied to the production of isophthalic acid.

特公昭60−48497号にはメタキシレンを酢酸溶媒中コ
バルト、マンガンならびに臭素からなる触媒の存在下で
空気によりメタキシレンを酸化する具体的方法が記載さ
れ、広く工業的に実施されている。かかる方法で得られ
るイソフタル酸中には3−カルボキシベンズアルデヒド
(3CBA)をはじめ多量の不純物が含まれており、これを
そのまま原料としてポリマーにしても色相は優れず、且
つ高機能用途には適さない。特に近年産業技術の進歩と
共に高機能性材料としてのポリエステル製品に対する品
質要求が厳しくなり、ポリエステル原料としては高純度
で、かつ白色度に優れたイソフタル酸が望まれている。
Japanese Patent Publication No. 60-48497 describes a specific method for oxidizing meta-xylene with air in the presence of a catalyst comprising cobalt, manganese and bromine in an acetic acid solvent, and is widely practiced industrially. Isophthalic acid obtained by such a method contains a large amount of impurities such as 3-carboxybenzaldehyde (3CBA), and if it is used as a raw material as a raw material, it does not have excellent hue and is not suitable for high-performance applications. . In particular, in recent years, with the advancement of industrial technology, quality requirements for polyester products as high-performance materials have become strict, and isophthalic acid having high purity and excellent whiteness has been desired as a polyester raw material.

酸化で得られた粗イソフタル酸を高純度化するには、
特公昭51−38698号および特公昭51−32618号に示されて
いるような粗イソフタル酸の水溶液を高温でパラジウム
触媒の存在下に水素添加精製する方法が適用できる。
To purify the crude isophthalic acid obtained by oxidation,
A method of hydrogenating and purifying an aqueous solution of crude isophthalic acid at a high temperature in the presence of a palladium catalyst as shown in JP-B-51-38698 and JP-B-51-32618 can be applied.

一方、テレフタル酸はイソフタル酸と同様の方法によ
ってパラキシレンを酸化して製造されるが、上記の如く
水素添加精製等を行わずに高純度テレフタル酸を直接製
造する方法が行われている。すなわち特公昭45−36732
号には、コバルトに対しマンガンを1〜20重量%とする
コバルトを主成分とするコバルト・マンガン・臭素系触
媒においてパラキシレンを酸化することによる直接重合
用テレフタル酸の製造方法が記載されている。しかしこ
の方法は高価なコバルトを多量に使うことから、酸化条
件や酸化方法を改良して触媒量および酢酸燃焼量を減ら
した高純度テレフタル酸の製造法が数多く提案されてい
る(特公昭57−42053号、特開昭53−9736号、特公昭60
−50775号、特公昭53−30700号、特開昭54−70235号、
特公昭56−14101号、特公昭56−5377号、特開昭47−319
47号)。
On the other hand, terephthalic acid is produced by oxidizing para-xylene by the same method as that for isophthalic acid. As described above, a method for directly producing high-purity terephthalic acid without performing hydrogenation purification or the like is performed. That is, JP-B-45-36732
Describes a method for producing terephthalic acid for direct polymerization by oxidizing para-xylene in a cobalt-manganese-bromine-based catalyst containing manganese in an amount of 1 to 20% by weight based on cobalt. . However, since this method uses a large amount of expensive cobalt, there have been proposed many methods for producing high-purity terephthalic acid by improving the oxidation conditions and the oxidation method to reduce the amount of catalyst and the amount of acetic acid burned (Japanese Patent Publication No. 57-57). 42053, JP-A-53-9736, JP-B-60
No. -50775, JP-B-53-30700, JP-A-54-70235,
JP-B-56-14101, JP-B-56-5377, JP-A-47-319
No. 47).

(発明が解決しようとする問題点) 従来のパラジウム触媒の存在下に水素添加する粗イソ
フタル酸の精製方法は、別個に水添反応装置や晶析装置
等が必要であり、精製装置に多額の投資と労力を要し製
造コストの上昇を招く。
(Problems to be Solved by the Invention) The conventional method for purifying crude isophthalic acid to be hydrogenated in the presence of a palladium catalyst requires a separate hydrogenation reactor and crystallization apparatus, and requires a large amount of purification equipment. It requires investment and labor, and raises manufacturing costs.

発明者らは、前記パラキシレンのの酸化による高純度
テレフタル酸製造法をメタキシレンの酸化によるイソフ
タル酸の製造に適用を試みた結果、次のような問題点が
あり従来のテレフタル酸における方法をそのままイソフ
タル酸の製造に適用できないことが分かった。
The present inventors have attempted to apply the method for producing high-purity terephthalic acid by oxidizing para-xylene to the production of isophthalic acid by oxidizing meta-xylene, and as a result, have the following problems. It turned out that it cannot be directly applied to the production of isophthalic acid.

メタキシレンの酸化でも、すなわち特開昭47−319467
号に記載されているように、主酸化反応の次に後酸化を
行えば中間体のメタトルイル酸と3CBAを殆ど無くすこと
ができるが、3CBAをある量より減らし過ぎると白色度の
優れたイソフタル酸は得られず、かえって着色性不純物
が増加し品質が悪化する。
Oxidation of meta-xylene, that is, JP-A-47-319467
As described in the item, if post-oxidation is performed after the main oxidation reaction, the intermediate metatoluic acid and 3CBA can be almost eliminated, but if 3CBA is reduced below a certain amount, isophthalic acid with excellent whiteness is obtained. Is not obtained, but rather the coloring impurities increase and the quality deteriorates.

反応液の分離母液を蒸発させ酢酸を回収するに際し酢
酸の回収率が悪く、酢酸の損失量が大きくなる。これは
沸点付近における酢酸に対するイソフタル酸の溶解度が
テレフタル酸よりも10倍程高く、結晶を分離して得られ
る母液に溶解するイソフタル酸が多くなり、酢酸の回収
率を高くすると蒸発釜残である高温メルト状高沸物の流
動性が低下して蒸発器の操作性が極端に悪くなるためで
ある。このため特に薄膜蒸発器の如き蒸発器は好適に用
いることができない。
In recovering acetic acid by evaporating the separated mother liquor of the reaction solution, the recovery rate of acetic acid is poor, and the amount of acetic acid loss increases. This is because the solubility of isophthalic acid in acetic acid near the boiling point is about 10 times higher than that of terephthalic acid, and the amount of isophthalic acid dissolved in the mother liquor obtained by separating crystals increases. This is because the fluidity of the high-temperature melt-like high-boiling substance is reduced, and the operability of the evaporator is extremely deteriorated. For this reason, an evaporator such as a thin film evaporator cannot be suitably used.

本発明の目的は、高価な精製工程を設けることなく、
酸化工程と簡単な洗浄のみで白色度に優れた高純度イソ
フタル酸を高収率で得られる、工業的に有利な製造法を
提供するにある。
An object of the present invention is to provide an expensive purification step without providing it.
An object of the present invention is to provide an industrially advantageous production method capable of obtaining high-purity isophthalic acid having excellent whiteness in a high yield only by an oxidation step and simple washing.

(問題点を解決するための手段) 本発明者らは、メタキシレンの酸化の特性に着目し、
高純度テレフタル酸の製造法に関わる前記の方法の適用
を更に鋭意研究を重ねた結果、特定量の含水酢酸溶媒と
触媒を用い主酸化と後酸化に分けて一定限度まで酸化
し、特定の精製処理を行うことにより、白色度に優れ
た高純度イソフタル酸の得られること、結晶を分離し
た母液から効率的に酢酸を回収し循環使用できるように
なること、反応器における酢酸の燃焼量を減らせるこ
とを見出し本発明を完成した。
(Means for Solving the Problems) The present inventors focused on the oxidation characteristics of meta-xylene,
As a result of further intensive studies on the application of the above-mentioned method relating to the production method of high-purity terephthalic acid, a specific amount of acetic acid solvent and catalyst were used to oxidize to a certain limit by dividing into main oxidation and post-oxidation, and then to specific purification. By performing the treatment, high-purity isophthalic acid with excellent whiteness can be obtained, acetic acid can be efficiently recovered from the mother liquor from which crystals have been separated, and it can be recycled, and the amount of acetic acid combustion in the reactor can be reduced. The present invention has been completed and the present invention has been completed.

すなわち本発明は、含水酢酸溶媒中でコバルト・マン
ガン・臭素系触媒の存在下酸素含有ガスによりメタキシ
レンを酸化してイソフタル酸を製造する方法において、 酸化反応器においてメタキシレンに対して溶媒を1〜
15倍、溶媒重量当りコバルトおよびマンガンの合計量が
300〜1500ppm、コバルトに対するマンガンの原子比が0.
5〜5倍、コバルトおよびマンガンの合計量に対する臭
素の原子比が0.5〜1.5倍となるように触媒を供給し、温
度180〜210℃、排ガスの酸素濃度2〜8容量%に維持し
ながら酸化反応を行い、該工程で得られる粗イソフタル
酸の3−カルボキシベンズアルデヒドの濃度が500〜100
00ppmの範囲に、酸化反応により生成したイソフタル酸
とその中間体の合計量が溶媒重量当り10〜35重量%にな
るように酸化反応を行う第1工程、 第1工程で得られた酸化反応生成混合物を更に酸化し
て粗イソフタル酸中の3−カルボキシベンズアルデヒド
濃度を100〜800ppmとし、粗イソフタル酸を分離した
後、母液を蒸発させ蒸留精製して酢酸を回収する第2工
程、および 第2工程で得られたイソフタル酸結晶を精製酢酸と混
合し100℃以上の温度で撹拌処理した後、精製イソフタ
ル酸を分離する第3工程 を有することを特徴とする高純度イソフタル酸の製造方
法である。
That is, the present invention relates to a method for producing isophthalic acid by oxidizing meta-xylene with an oxygen-containing gas in the presence of a cobalt-manganese-bromine-based catalyst in a acetic acid-containing solvent, comprising the steps of: ~
15 times, the total amount of cobalt and manganese per solvent weight
300-1500ppm, atomic ratio of manganese to cobalt is 0.
The catalyst is supplied so that the atomic ratio of bromine to the total amount of cobalt and manganese is 0.5 to 1.5 times, and the oxidation is performed while maintaining the temperature at 180 to 210 ° C and the oxygen concentration of the exhaust gas at 2 to 8% by volume. The reaction is performed, and the concentration of 3-carboxybenzaldehyde of the crude isophthalic acid obtained in the step is 500 to 100.
A first step of carrying out the oxidation reaction so that the total amount of isophthalic acid produced by the oxidation reaction and its intermediate is 10 to 35% by weight based on the weight of the solvent, within the range of 00 ppm, the oxidation reaction product obtained in the first step A second step of further oxidizing the mixture to a concentration of 3-carboxybenzaldehyde in the crude isophthalic acid of 100 to 800 ppm, separating the crude isophthalic acid, evaporating the mother liquor, purifying the mother liquor by distillation and collecting acetic acid, and a second step A method for producing high-purity isophthalic acid, comprising a third step of mixing the isophthalic acid crystal obtained in the above with purified acetic acid, stirring the mixture at a temperature of 100 ° C. or higher, and separating the purified isophthalic acid.

以下、本発明を詳しく説明する。 Hereinafter, the present invention will be described in detail.

本発明の方法においては、まず第1工程でメタキシレ
ンを含水酢酸溶媒中でコバルト化合物、マンガン化合物
および臭素化合物からなる触媒の存在下に酸素含有ガス
により酸化する。
In the method of the present invention, first, in a first step, meta-xylene is oxidized with an oxygen-containing gas in a hydrous acetic acid solvent in the presence of a catalyst comprising a cobalt compound, a manganese compound and a bromine compound.

酸化原料としては通常メタキシレンが使用されるが、
置換基はメチル基に限定されず、エチル、プロピル、i
−プロピル基でも良く、或いはアルデヒド、アセチル基
の如くカルボキシル基に酸化されるものであれば良い。
また置換基の片方がカルボキシ基であっても良い。
Meta-xylene is usually used as an oxidizing material,
The substituent is not limited to a methyl group, but may be ethyl, propyl, i
-A propyl group or any one which can be oxidized to a carboxyl group such as an aldehyde or acetyl group.
One of the substituents may be a carboxy group.

メタキシレンは酸化反応器に連続的に供給される。そ
の供給速度は反応器保有の溶媒容積1リットル当り毎時
0.05〜0.2kgであり、反応時間は10〜120分、好ましくは
20〜90分の範囲である。
Meta-xylene is continuously supplied to the oxidation reactor. The feed rate is hourly per liter of solvent volume in the reactor
0.05-0.2 kg, reaction time is 10-120 minutes, preferably
The range is 20 to 90 minutes.

反応溶媒として含水酢酸を用いる。酸化反応器へ供給
する酢酸中の水分濃度は3〜15重量%、好ましくは5〜
12重量%の範囲である。水分濃度が低すぎるとイソフタ
ル酸のカラー品質が悪化し易くなり、また酢酸の燃焼量
が増加する。水分濃度が高すぎると酸化活性が低下して
反応時間が長くかかるようになり、また品質が低下する
ので好ましくない。
Hydrous acetic acid is used as a reaction solvent. The water concentration in acetic acid supplied to the oxidation reactor is 3 to 15% by weight, preferably 5 to 15% by weight.
It is in the range of 12% by weight. If the water concentration is too low, the color quality of isophthalic acid tends to deteriorate, and the burning amount of acetic acid increases. If the water concentration is too high, the oxidizing activity decreases and the reaction time becomes longer, and the quality deteriorates, which is not preferable.

溶媒の使用量は酸化反応により生成したイソフタル酸
とその中間体(メタトルイル酸及び3CBA)の合計量が溶
媒重量当り10〜35重量%となる量である。通常この場合
の溶媒の供給量はメタキシレンに対し1〜15重量倍、好
ましくは3〜12重量倍である。イソフタル酸とその中間
体の合計量の濃度が10重量%より低い場合には相対的に
溶媒量が多くなるために大型の結晶分離器を必要とし、
また溶媒回収工程で処理する溶媒量が多くなるので経済
的でない。この濃度が35重量%より高い場合には後酸化
反応器から粗イソフタル酸の晶析器に至る配管や晶析器
等において閉塞を生じ易く、運転操作のトラブルの原因
となる。
The amount of the solvent used is such that the total amount of isophthalic acid produced by the oxidation reaction and its intermediates (methtoluic acid and 3CBA) is 10 to 35% by weight based on the weight of the solvent. Usually, the supply amount of the solvent in this case is 1 to 15 times by weight, preferably 3 to 12 times by weight based on meta-xylene. When the concentration of the total amount of isophthalic acid and its intermediates is lower than 10% by weight, a relatively large amount of solvent is required, so that a large crystal separator is required.
In addition, the amount of the solvent to be treated in the solvent recovery step increases, which is not economical. If this concentration is higher than 35% by weight, clogging is likely to occur in pipes, crystallizers, and the like from the post-oxidation reactor to the crystallizer of crude isophthalic acid, causing troubles in operation.

触媒のコバルト化合物、マンガン化合物および臭素化
合物は、液相酸化に使用される周知の化合物、たとえば
コバルトおよびマンガンの炭酸塩、酢酸塩4水和物、臭
化物等が使用される。臭素化合物は溶媒に溶解してすぐ
にイオンに解離する無機化合物が好ましく、特に臭化水
素酸、臭化コバルト、臭化マンガンなどが用いられる。
As the cobalt compound, manganese compound and bromine compound of the catalyst, well-known compounds used for liquid-phase oxidation, for example, carbonate and acetate tetrahydrate, bromide and the like of cobalt and manganese are used. The bromine compound is preferably an inorganic compound which dissociates into ions as soon as it is dissolved in a solvent. In particular, hydrobromic acid, cobalt bromide, manganese bromide and the like are used.

触媒の金属濃度は、コバルトおよびマンガンの合計量
で溶媒重量当り300〜1500ppm、好ましくは400〜1200ppm
の範囲であり、かつコバルトに対してマンガンの比率が
原子比で0.5〜5倍、好ましくは0.8〜4倍であるある。
臭素はコバルトおよびマンガンの合計量に対して原子比
で0.5〜1.5倍、好ましく0.6〜1.2倍の比率になる濃度で
用いられる。各金属成分の濃度を上記範囲とすることに
より、主酸化および後酸化を経て3CBA濃度が適当に保た
れ、且つ色相の優れたイソフタル酸が得られ、さらに酢
酸の燃焼量を極めて低くできる。
The metal concentration of the catalyst is 300 to 1500 ppm, preferably 400 to 1200 ppm by weight of the solvent in the total amount of cobalt and manganese.
And the atomic ratio of manganese to cobalt is 0.5 to 5 times, preferably 0.8 to 4 times.
The bromine is used at a concentration of 0.5 to 1.5 times, preferably 0.6 to 1.2 times, the atomic ratio to the total amount of cobalt and manganese. By setting the concentration of each metal component within the above range, the 3CBA concentration can be appropriately maintained through main oxidation and post-oxidation, and isophthalic acid having an excellent hue can be obtained, and the burning amount of acetic acid can be extremely reduced.

第1工程の反応温度は180〜210℃である。圧力は溶媒
の液相を保持するに十分な圧力であり、通常10〜25kg/c
m2の範囲で反応が行われる。
The reaction temperature of the first step is 180-210 ° C. The pressure is sufficient to maintain the liquid phase of the solvent, usually 10-25 kg / c
The reaction takes place in the range of m 2 .

酸素含有ガスとしては通常空気が用いられる。酸化反
応の排ガス中の酸素濃度が2〜8容量%、好ましくは3
〜6容量%に維持されるように、反応液中に空気を供給
する。
Air is usually used as the oxygen-containing gas. The oxygen concentration in the exhaust gas of the oxidation reaction is 2 to 8% by volume, preferably 3% by volume.
Air is supplied into the reaction solution so as to be maintained at 66% by volume.

第1工程の主酸化反応においては、上に記載した範囲
の条件下で酸化して得られる粗イソフタル酸の3CBAを50
0〜10000ppmの範囲となるように滞留時間、反応温度等
の操作因子を制御する。この段階で3CBAが低すぎると酸
化度が過度になり、結果的に着色性不純物を増すことに
なって後酸化しても効果が上がらず、カラー品質は良く
ならない。また酢酸燃焼量が増えることになるので経済
的に極めて不利になる。また3CBAがこの範囲よりも多く
なると後酸化しても3CBAが十分に酸化されず高純度イソ
フタル酸が得られない。
In the main oxidation reaction of the first step, 3CBA of crude isophthalic acid obtained by oxidation under the conditions in the range described above is added to 50%.
Operating factors such as residence time and reaction temperature are controlled so as to be in the range of 0 to 10000 ppm. If 3CBA is too low at this stage, the degree of oxidation will be excessive, resulting in an increase in coloring impurities, and the post-oxidation will have no effect, and the color quality will not be improved. Further, the amount of acetic acid combustion increases, which is extremely disadvantageous economically. On the other hand, if 3CBA exceeds this range, 3CBA is not sufficiently oxidized even after post-oxidation, and high-purity isophthalic acid cannot be obtained.

なお上記の粗イソフタル酸の3CBAは、第1工程の反応
器異から抜き出した酸化反応混合物を固液分離して得た
粗イソフタル酸結晶につい測定したものである。
The above-mentioned 3CBA of the crude isophthalic acid was measured on the crude isophthalic acid crystal obtained by solid-liquid separation of the oxidation reaction mixture extracted from the reactor in the first step.

第2工程においてはまず第1工程の酸化反応生成混合
物が酸素含有ガスにより後酸化される。通常この後酸化
は、連続式の場合には第1工程の主酸化反応器から晶析
槽に移して行われるが、第1工程の主反応に引続く冷却
過程で行うこともできる。後酸化反応は第1工程の主酸
化反応温度からこの温度より30℃低い温度までの間の温
度で行う。後酸化反応温度を主酸化反応温度より高くす
ることは、加熱を必要とするので工業的に不利であるば
かりでなく、カラー品質の悪化を招き易い。また温度が
低すぎると後酸化が不十分になり、高純度イソフタル酸
が得られない。
In the second step, first, the oxidation reaction product mixture of the first step is post-oxidized by an oxygen-containing gas. Usually, in the case of a continuous type, the post-oxidation is carried out by transferring from the main oxidation reactor of the first step to the crystallization tank, but can also be carried out in a cooling step following the main reaction of the first step. The post-oxidation reaction is performed at a temperature between the main oxidation reaction temperature in the first step and a temperature 30 ° C. lower than this temperature. Making the post-oxidation reaction temperature higher than the main oxidation reaction temperature is not only industrially disadvantageous because it requires heating, but also tends to cause deterioration in color quality. If the temperature is too low, the post-oxidation becomes insufficient, and high-purity isophthalic acid cannot be obtained.

後酸化に用いる酸化含有ガスとしては空気が使用でき
るが、また第1工程の酸化排ガスを使うこともできる。
第2工程における排ガス中の酸素濃度は2〜7容量%を
維持する。
As the oxidation-containing gas used for the post-oxidation, air can be used, but the oxidized exhaust gas of the first step can also be used.
The oxygen concentration in the exhaust gas in the second step is maintained at 2 to 7% by volume.

後酸化の処理時間は実質的に目的の酸化が進行するに
十分な時間を与えれば良く、1〜300分、好ましくは2
〜120分の範囲である。
The post-oxidation treatment time may be sufficient to substantially allow the desired oxidation to proceed, and may be 1 to 300 minutes, preferably 2 to 300 minutes.
The range is ~ 120 minutes.

第2工程において最も重要な点は後酸化において得ら
れる酸化反応液中の3CBAの濃度を100〜800ppmとするこ
とであり、これは次の理由からである。
The most important point in the second step is to make the concentration of 3CBA in the oxidation reaction solution obtained in the post-oxidation 100 to 800 ppm, for the following reasons.

(1)酸化処理した反応混合物は冷却してイソフタル酸
を晶出させ、結晶のイソフタル酸を固液分離し、イソフ
タル酸は次の第3工程で精製されるが、酸化反応液中の
3CBAの濃度を上記範囲とすることにより第3工程におい
て高純度で且つ白色度の優れたイソフタル酸を得ること
ができる。
(1) The oxidized reaction mixture is cooled to crystallize isophthalic acid, and the solid isophthalic acid is separated into solid and liquid. The isophthalic acid is purified in the following third step.
By setting the concentration of 3CBA within the above range, isophthalic acid having high purity and excellent whiteness can be obtained in the third step.

なお後酸化において得られる酸化反応液中の3CBAの濃
度が800ppmより高い場合には第3工程において精製して
も高純度のイソフタル酸が得られない。また3CBAの濃度
を100ppmより低くした場合には白色度の優れた精製イソ
フタル酸が得られない。
If the concentration of 3CBA in the oxidation reaction solution obtained in the post-oxidation is higher than 800 ppm, high-purity isophthalic acid cannot be obtained even in the third step. If the concentration of 3CBA is lower than 100 ppm, purified isophthalic acid having excellent whiteness cannot be obtained.

(2)イソフタル酸を固液分離した際に得られる母液に
は酢酸、水、触媒組成物、安息香酸、メタトルイル酸、
3CBA、イソフタル酸、フタル酸、トリメリット酸などの
他に着色性物質等の高沸物が含まれる。発明者等の詳細
検討の結果、分離母液の蒸発釜残の高温における流動性
はイソフタル酸に対する酢酸、水、触媒組成物、安息香
酸、3CBA、メタトルイル酸、トリメリット酸などの含量
に大きく依存することが分った。
(2) Acetic acid, water, a catalyst composition, benzoic acid, metatoluic acid,
In addition to 3CBA, isophthalic acid, phthalic acid, trimellitic acid, etc., high-boiling substances such as coloring substances are included. As a result of detailed studies by the inventors, the fluidity of the separated mother liquor at the high temperature of the evaporator residue largely depends on the contents of acetic acid, water, a catalyst composition, benzoic acid, 3CBA, metatoluic acid, trimellitic acid, etc. with respect to isophthalic acid. I understood that.

すなわち後酸化における3CBAを上記範囲よりも低くす
ると、分離母液の蒸発釜残の組成の変化から高温での流
動性が著しく低下するため、酢酸を効率的に蒸発させる
ことができなくなる。従って3CBAの濃度を上記範囲とす
ることにより、酢酸が効率的に回収できる。
That is, if the 3CBA in the post-oxidation is lower than the above range, the fluidity at a high temperature is remarkably reduced due to a change in the composition of the residue of the separated mother liquor, so that acetic acid cannot be efficiently evaporated. Therefore, acetic acid can be efficiently recovered by setting the concentration of 3CBA within the above range.

後酸化により得られる酸化反応液は、通常晶析器に移
して最終的に110〜80℃に冷却してイソフタル酸結晶を
析出させる。次に濾過操作により結晶は分離し第3工程
に送られる。濾過母液は蒸発してメルト状の高沸物を分
離し、回収蒸気の凝縮液を蒸留精製して酢酸を回収す
る。この蒸発操作では薄膜蒸発器が好適に用いられる。
なお母液は第1工程の酸化反応器に循環させることもで
き、この場合にはその母液の残部を上記の如く蒸発させ
蒸留精製して酢酸を回収する。
The oxidation reaction solution obtained by post-oxidation is usually transferred to a crystallizer and finally cooled to 110 to 80 ° C. to precipitate isophthalic acid crystals. Next, the crystals are separated by a filtration operation and sent to the third step. The filtered mother liquor is evaporated to separate a high boiling substance in a melt state, and the condensate of the recovered vapor is purified by distillation to recover acetic acid. In this evaporation operation, a thin film evaporator is preferably used.
The mother liquor can be circulated to the oxidation reactor in the first step. In this case, the remainder of the mother liquor is evaporated and purified by distillation as described above to recover acetic acid.

薄膜蒸発器を用いる場合には、その負荷を下げるため
に母液の一部を予め蒸留し、その塔底液を薄膜蒸発器で
精製することが好ましい。本発明において用いられる薄
膜蒸発器としては例えばLuwa社製の形式のものが好適で
あり、濃縮液が130〜230℃となるように温度を調整す
る。また母液の蒸留塔から分離される酢酸水溶液や薄膜
蒸発器からの酢酸は更に精留することが好ましく、この
精留により生成水が分離される。回収された酢酸は第1
工程の溶媒や第3工程の洗浄用に用いられる。
When a thin film evaporator is used, it is preferable to distill a part of the mother liquor in advance in order to reduce the load, and to purify the bottom liquid in the thin film evaporator. As the thin film evaporator used in the present invention, for example, a type manufactured by Luwa is suitable, and the temperature is adjusted so that the concentration of the concentrated liquid is 130 to 230 ° C. The acetic acid aqueous solution separated from the mother liquor distillation column and the acetic acid from the thin film evaporator are preferably further rectified, and the rectification separates generated water. The recovered acetic acid is the first
It is used for the solvent in the step and the washing in the third step.

第3工程において、第2工程の反応混合物から分離さ
れたイソフタル酸結晶を精製酢酸を用いて懸濁液とし、
100℃以上の温度で撹拌処理した後イソフタル酸結晶を
分離する。
In the third step, isophthalic acid crystals separated from the reaction mixture of the second step are made into a suspension using purified acetic acid,
After stirring at a temperature of 100 ° C. or more, isophthalic acid crystals are separated.

このイソフタル酸結晶の洗浄に用いられる酢酸は精製
酢酸であり、第2工程で回収された酢酸を用いることが
でき、また新たに工業用酢酸を用いることもできる。こ
の酢酸は含水酢酸でも良く、精製酢酸の使用量はイソフ
タル酸に対し1〜5重量倍である。
The acetic acid used for washing the isophthalic acid crystals is purified acetic acid, and the acetic acid recovered in the second step can be used, and industrial acetic acid can be newly used. This acetic acid may be hydrous acetic acid, and the amount of purified acetic acid used is 1 to 5 times by weight of isophthalic acid.

撹拌処理の保持温度は100℃以上あれば十分であり、
必ずしもイソフタル酸が完全に溶解する温度にまで高め
る必要はない。また保持時間は10〜60分の範囲である。
このような洗浄処理後、乾燥することにより白色度の極
めて優れた精製イソフタル酸が得られる。
A holding temperature of 100 ° C. or higher is sufficient for the stirring process,
It is not necessary to raise the temperature to the point where isophthalic acid is completely dissolved. The retention time is in the range of 10 to 60 minutes.
By drying after such a washing treatment, purified isophthalic acid having extremely excellent whiteness can be obtained.

第3工程においてイソフタル酸結晶を分離した後の母
液は、第1工程および第2工程の液相酸化の溶媒に使用
でき、これにより母液中に溶解したイソフタル酸が酸化
工程で回収される。
The mother liquor from which the isophthalic acid crystals have been separated in the third step can be used as a solvent for the liquid phase oxidation in the first and second steps, whereby the isophthalic acid dissolved in the mother liquor is recovered in the oxidation step.

(実施例) 次に実施例によって本発明をさらに詳細に説明する。
但し本発明はこれらの実施例により制限されるものでは
ない。
(Example) Next, the present invention will be described in more detail by way of examples.
However, the present invention is not limited by these examples.

実施例1 〔第1工程〕撹拌装置、還流冷却装置、加熱装置を装備
し、原料導入口、空気導入口、排ガス排出口、還流液還
流口を有する耐圧チタン製の第1反応器、同様に撹拌装
置、還流冷却装置、加熱装置を装備し、空気導入口、排
ガス排出口、還流液還流口および反応生成物の送入口と
抜き出し口を有する耐圧チタン製の第2反応器および晶
析器を用いメタキシレンの連続酸化反応を行った。
Example 1 [First step] A first pressure-resistant titanium reactor equipped with a stirrer, a reflux cooling device, and a heating device and having a raw material inlet, an air inlet, an exhaust gas outlet, and a reflux liquid reflux port, was also used. Equipped with a stirrer, a reflux cooling device, and a heating device, a pressure-resistant titanium second reactor and crystallizer having an air inlet, an exhaust gas outlet, a reflux liquid reflux, and a reaction product inlet and outlet are provided. A continuous oxidation reaction of meta-xylene was performed.

第1反応器にメタキシレン100重量部、これにに対し
酢酸コバルト水塩0.561部、酢酸マンガン4水塩1.656
部、臭化水素酸(47%)1.117部及び酢酸(水分10%)8
96.7部の割合からなる原料液として連続的に送入し(触
媒濃度は溶媒重量当りコバルト147ppm、マンガン412pp
m、臭素576ppm)、空気を吹き込みながら酸化した。温
度200℃、圧力16.5kg/cm2 Gの条件に保ち、酸化排ガス
の酸素濃度は5容量%に保つように空気供給量を調節し
た。この時のメタキシレン供給速度は反応器保有の溶媒
容積1リットル当り毎時0.17kgで、平均滞留時間は約30
分であり、酸化反応器中のイソフタル酸とその中間体の
合計量の濃度は15.6%であった。
100 parts by weight of meta-xylene was added to the first reactor, and 0.561 parts of aqueous cobalt acetate and 1.656 manganese acetate tetrahydrate were added thereto.
Parts, hydrobromic acid (47%) 1.117 parts and acetic acid (water 10%) 8
Feed continuously as a raw material liquid with a ratio of 96.7 parts (catalyst concentration is 147 ppm cobalt and 412 manganese manganese per solvent weight)
m, bromine 576 ppm) and oxidized while blowing air. The temperature was kept at 200 ° C. and the pressure was 16.5 kg / cm 2 G, and the air supply was adjusted so that the oxygen concentration of the oxidizing exhaust gas was kept at 5% by volume. At this time, the feed rate of meta-xylene was 0.17 kg / h per liter of the solvent volume in the reactor, and the average residence time was about 30
And the total concentration of isophthalic acid and its intermediates in the oxidation reactor was 15.6%.

〔第2工程〕第1反応器で得られた酸化反応混合物は第
2反応器に移送し、温度195℃、圧力12kg/cm2 G、平均
滞留時間50分の条件下で空気により後酸化を行った。こ
の時の排ガスの酸素濃度は3容量%に保持した。なお酢
酸燃焼の指標になる酸化工程に於ける排ガス中の(CO2
+CO)生成量は、原料メタキシレン1モル当り0.41モル
であった。
[Second step] The oxidation reaction mixture obtained in the first reactor is transferred to the second reactor, and subjected to post-oxidation with air at a temperature of 195 ° C, a pressure of 12 kg / cm 2 G, and an average residence time of 50 minutes. went. At this time, the oxygen concentration of the exhaust gas was maintained at 3% by volume. (CO 2 in the exhaust gas in the oxidation process, which is an indicator of acetic acid combustion,
+ CO) The production amount was 0.41 mol per 1 mol of the starting meta-xylene.

第2反応器で後酸化処理された酸化反応混合物を100
℃の晶析器に移しイソフタル酸結晶を析出させた。得ら
れたスラリーからイソフタル酸を酢酸で洗浄しながら濾
過分離した。分離した母液は蒸留により濃縮し、その蒸
留塔底液を240℃に保持した熱媒が循環された薄膜蒸発
器に濃縮液が230℃となるように熱媒流量を調節しなが
ら6時間連続的に供給してさらに酢酸回収を行ったとこ
ろ、釜残の高沸物を良好に分離することができる(釜残
中の全酢酸分4.3%)。母液蒸留塔および薄膜蒸発器か
ら回収された酢酸は精留塔で精製し、次工程の洗浄液に
供した。
The oxidation reaction mixture post-oxidized in the second
The crystal was transferred to a crystallizer at ℃ to precipitate isophthalic acid crystals. Isophthalic acid was separated by filtration from the obtained slurry while washing with isoacetic acid. The separated mother liquor is concentrated by distillation, and the distillation column bottom liquid is continuously fed for 6 hours to a thin film evaporator in which a heating medium held at 240 ° C. is circulated while controlling the flow rate of the heating medium so that the concentration of the concentrated liquid becomes 230 ° C. When acetic acid was further recovered by feeding to the reactor, high-boiling substances in the bottom could be separated well (total acetic acid content in the bottom was 4.3%). The acetic acid recovered from the mother liquor distillation column and the thin film evaporator was purified in a rectification column and used as a washing solution in the next step.

〔第3工程〕濾過分離したイソフタル酸結晶に1.5重量
倍の精製酢酸(水分10%)を加えてなる懸濁液を洗浄槽
に移し、撹拌下で温度150℃に30分間保持した。洗浄処
理した懸濁液を100℃まで冷却し、再び濾過分離した後
乾燥し、精製イソフタル酸146重量部を得た。この結
果、原料のメタキシレンに対するイソフタル酸の収率は
93.0モル%であり、高純度でかつ白色度の優れた精製イ
ソフタル酸が得られた。
[Third Step] A suspension obtained by adding 1.5 weight times of purified acetic acid (water content: 10%) to the isophthalic acid crystals separated by filtration was transferred to a washing tank, and kept at 150 ° C. for 30 minutes with stirring. The suspension subjected to the washing treatment was cooled to 100 ° C., filtered again, and then dried to obtain 146 parts by weight of purified isophthalic acid. As a result, the yield of isophthalic acid with respect to the raw material meta-xylene is
93.0 mol%, and purified isophthalic acid having high purity and excellent whiteness was obtained.

実施例2 実施例1において第1工程の触媒濃度を1.5倍とし、
温度190℃で酸化反応を行った。実施例1と同様に後酸
化処理を行い、晶析・洗浄処理を行った結果、高純度で
かつ白色度の優れた精製イソフタル酸が得られた。濾過
母液は、実施例1と同様に薄膜蒸発器により処理し、順
調に酢酸を回収することができた(釜残中の全酢酸分5.
5%)。
Example 2 In Example 1, the catalyst concentration in the first step was increased to 1.5 times,
The oxidation reaction was performed at a temperature of 190 ° C. Post-oxidation treatment was performed in the same manner as in Example 1, and crystallization and washing treatment were performed. As a result, purified isophthalic acid having high purity and excellent whiteness was obtained. The filtered mother liquor was treated with a thin-film evaporator in the same manner as in Example 1, and acetic acid could be recovered smoothly (total acetic acid content in the bottom of the kettle was 5.5%).
Five%).

比較例1 実施例2において第1工程の温度215℃で酸化反応を
行った。この結果、第2工程の後酸化による粗イソフタ
ル酸結晶における3CBAの濃度が低くなった。濾過母液は
実施例1と同様に薄膜蒸発器により酢酸回収したとこ
ろ、釜残の流動性が悪く、薄膜蒸発器が操作不能となっ
た。
Comparative Example 1 In Example 2, an oxidation reaction was performed at a temperature of 215 ° C. in the first step. As a result, the concentration of 3CBA in the crude isophthalic acid crystal due to the post-oxidation in the second step was reduced. Acetic acid was recovered from the filtered mother liquor by a thin film evaporator in the same manner as in Example 1. As a result, the fluidity of the bottom remained poor, and the thin film evaporator became inoperable.

実施例3 第1反応器にメタキシレン60重量部、これに対し酢酸
コバルト4水塩0.561部、酢酸マンガン4水塩1.656部、
臭化水素酸(47%)1.551部および酢酸(水分10%)49
6.2部の割合からなる原料液として連続的に送入し(触
媒濃度は溶媒重量当りコバルト276ppm、マンガン773pp
m、臭素1500ppm)、空気を吹き込みながら酸化した。こ
の酸化においては温度190℃、圧力16.5kg/cm2 Gの条件
に保ち、酸化排ガスの酸素濃度は5容量%に保つよう空
気供給量を調節した。メタキシレン供給速度は反応器保
有の酢酸溶媒容積1リットル当り毎時0.09kgで、平均滞
留時間は約55分とした。得られた酸化反応器中のイソフ
タル酸とその中間体の合計量の濃度は19.0%であった。
Example 3 60 parts by weight of meta-xylene was added to a first reactor, and 0.561 part of cobalt acetate tetrahydrate and 1.656 parts of manganese acetate tetrahydrate were added thereto.
1.551 parts of hydrobromic acid (47%) and acetic acid (water 10%) 49
Feed continuously as a raw material solution consisting of 6.2 parts (catalyst concentration is 276 ppm cobalt and 773 manganese manganese per solvent weight)
m, bromine 1500 ppm) and oxidized while blowing air. In this oxidation, the temperature was maintained at 190 ° C. and the pressure was 16.5 kg / cm 2 G, and the air supply amount was adjusted so that the oxygen concentration of the oxidation exhaust gas was maintained at 5% by volume. The feed rate of meta-xylene was 0.09 kg / h / liter of acetic acid solvent held in the reactor, and the average residence time was about 55 minutes. The concentration of the total amount of isophthalic acid and its intermediate in the obtained oxidation reactor was 19.0%.

第1反応器で得られた酸化反応混合物は第2反応器に
移送し、温度185℃、圧力12kg/cm2 G、平均滞留時間50
分の条件下で空気により後酸化を行った。排ガスの酸化
濃度は3容量%に保った。
The oxidation reaction mixture obtained in the first reactor was transferred to the second reactor, where the temperature was 185 ° C., the pressure was 12 kg / cm 2 G, and the average residence time was 50.
The post-oxidation was performed with air under the conditions of minutes. The oxidation concentration of the exhaust gas was kept at 3% by volume.

以下実施例1と同様の操作を行った結果、高純度でか
つ白色度の優れた精製イソフタル酸が得られた。濾過母
液は、実施例1と同様に薄膜蒸発器により処理し、順調
に酢酸を回収することができた(釜残中の全酢酸分5.0
%)。
Thereafter, the same operation as in Example 1 was performed, and as a result, purified isophthalic acid having high purity and excellent whiteness was obtained. The filtered mother liquor was treated with a thin film evaporator in the same manner as in Example 1, and acetic acid was successfully recovered (total acetic acid content in the bottom of the kettle was 5.0%).
%).

比較例2 実施例3において酢酸コバルト1.795部、酢酸マンガ
ン4水塩を0.442部(コバルトに対するマンガンの比率
0.25)とした以外は同様とした。
Comparative Example 2 In Example 3, 1.795 parts of cobalt acetate and 0.442 parts of manganese acetate tetrahydrate (the ratio of manganese to cobalt)
0.25), except for the above.

この結果、第2工程の後酸化イソフタル酸結晶におけ
る3CBAの濃度が低くなった。濾過母液は実施例1と同様
に薄膜蒸発器により酢酸回収したところ、釜残の流動性
が悪く、薄膜蒸発器が操作不能となった。
As a result, the concentration of 3CBA in the oxidized isophthalic acid crystals after the second step was reduced. Acetic acid was recovered from the filtered mother liquor by a thin film evaporator in the same manner as in Example 1. As a result, the fluidity of the bottom remained poor, and the thin film evaporator became inoperable.

比較例3 第1工程を実施例1と同様とし第2工程の後酢酸を16
5℃、圧力7kg/cm2 Gで行った。この結果、濾過母液は薄
膜蒸発器により処理し順調に酢酸を回収することができ
たが(釜残中の全酢酸分4.8%)、精製イソフタル酸は3
CBAが高濃度であり、着色していた。
Comparative Example 3 The first step was the same as in Example 1, and after the second step
The test was performed at 5 ° C. and a pressure of 7 kg / cm 2 G. As a result, although the filtered mother liquor was treated by a thin film evaporator and acetic acid could be collected smoothly (total acetic acid content in the bottom 4.8%), purified isophthalic acid was 3%.
CBA was highly concentrated and colored.

比較例4 第1工程及び第2工程を実施例1と同様とし、第3工
程における洗浄温度を90℃とした。この結果、精製イソ
フタル酸に着色が見られた。
Comparative Example 4 The first step and the second step were the same as in Example 1, and the cleaning temperature in the third step was 90 ° C. As a result, coloring was observed in the purified isophthalic acid.

各実施例および比較例の主要操作条件と、粗イソフタ
ル酸および精製イソフタル酸の結晶の分析結果を第1表
に示す。
Table 1 shows the main operating conditions of each Example and Comparative Example, and the analysis results of the crystals of crude isophthalic acid and purified isophthalic acid.

なお第1表における粗イソフタル酸は第1反応器およ
び第2反応器から直接耐圧試料容器に酸化反応混合物を
とり100℃で酢酸洗浄しながら固液分離して得られたも
のである。
The crude isophthalic acid in Table 1 was obtained by directly taking the oxidation reaction mixture from the first reactor and the second reactor into a pressure-resistant sample vessel, and performing solid-liquid separation while washing with acetic acid at 100 ° C.

また3CBAおよび樹脂色の測定方法は次の通りである。 The method for measuring 3CBA and resin color is as follows.

3CBA:ポーラログラフィーによる定量値、なお高純度
イソフタル酸としては3CBAを50ppm以下である必要があ
る。
3CBA: Quantitative value by polarography, high purity isophthalic acid requires 3CBA to be 50 ppm or less.

樹脂色: イソフタル酸:フマル酸:ネオペンチグリコール:プ
ロピレングリコール=57:43:50:53の割合(モル比)で
重合させ、得られた樹脂のスチレン溶液(樹脂60重量
%)について樹脂色をハーゼン色数で示す。樹脂色はハ
ーゼン色数が小さいほど良好であり、高純度イソフタル
酸としては少なくとも30以下である必要がある。
Resin color: Isophthalic acid: fumaric acid: neopentyglycol: propylene glycol = polymerized at a ratio of 57: 43: 50: 53 (molar ratio), and the resin color was obtained for a styrene solution (resin 60% by weight) of the obtained resin. Indicated by Hazen color number. The smaller the number of Hazen colors, the better the resin color, and the high purity isophthalic acid must be at least 30 or less.

(発明の効果) 本発明によれば、高機能化用途の不飽和ポリエステル
樹脂、アルキッド樹脂、耐熱性ポリアミド等のポリマー
原料として極めてカラー品質の優れた高純度イソフタル
酸が工業的に極めて容易に得られる。また本発明の方法
では高価な精製工程が不要であるので建設費が小さく、
酢酸の使用量が少なくて済み、高純度イソフタル酸が高
収率で得られる。
(Effects of the Invention) According to the present invention, high-purity isophthalic acid having extremely excellent color quality can be industrially very easily obtained as a polymer material for unsaturated polyester resins, alkyd resins, heat-resistant polyamides and the like for high-performance applications. Can be In addition, the method of the present invention does not require an expensive purification step, so construction costs are small,
A small amount of acetic acid can be used, and high-purity isophthalic acid can be obtained in high yield.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI // C07B 61/00 300 C07B 61/00 300 (72)発明者 太田 多寿雄 東京都千代田区丸の内2丁目5番2号 三菱瓦斯化学株式会社内 (72)発明者 安倍 敏章 神奈川県横浜市磯子区陽光台6―38―3 審査官 伊藤 幸司 (58)調査した分野(Int.Cl.6,DB名) C07C 63/24 C07C 51/265 ────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code FI // C07B 61/00 300 C07B 61/00 300 (72) Inventor Tao Ohta 2-5-2-2 Marunouchi, Chiyoda-ku, Tokyo Mitsubishi Gas Chemical Co., Ltd. (72) Inventor Toshiaki Abe 6-38-3 Yokodai, Isogo-ku, Yokohama-shi, Kanagawa Examiner Koji Ito (58) Field surveyed (Int.Cl. 6 , DB name) C07C 63/24 C07C 51/265

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】含水酢酸溶媒中でコバルト・マンガン・臭
素系触媒の存在下酸素含有ガスによりメタキシレンを酸
化してイソフタル酸を製造する方法において、 酸化反応器においてメタキシレンに対して溶媒を1〜
15倍、溶媒重量当りコバルトおよびマンガンの合計量が
300〜1500ppm、コバルトに対するマンガンの原子比が0.
5〜5倍、コバルトおよびマンガンの合計量に対する臭
素の原子比が0.5〜1.5倍となるように触媒を供給し、温
度180〜210℃、排ガスの酸素濃度2〜8容量%に維持し
ながら酸化反応を行い、該工程で得られる粗イソフタル
酸の3−カルボキシベンズアルデヒドの濃度が500〜100
00ppmの範囲に、酸化反応により生成したイソフタル酸
とその中間体の合計量が溶媒重量当り10〜35重量%にな
るように酸化反応を行う第1工程、 第1工程で得られた酸化反応生成混合物を更に酸化し
て粗イソフタル酸中の3−カルボキシベンズアルデヒド
濃度を100〜800ppmとし、粗イソフタル酸を分離した
後、母液を蒸発させ蒸留精製して酢酸を回収する第2工
程、および 第2工程で得られたイソフタル酸結晶を精製酢酸と混
合し100℃以上の温度で撹拌処理した後、精製イソフタ
ル酸を分離する第3工程 を有することを特徴とする高純度イソフタル酸の製造方
法。
1. A method for producing isophthalic acid by oxidizing meta-xylene with an oxygen-containing gas in a hydrous acetic acid solvent in the presence of a cobalt-manganese-bromine catalyst, comprising the steps of: ~
15 times, the total amount of cobalt and manganese per solvent weight
300-1500ppm, atomic ratio of manganese to cobalt is 0.
The catalyst is supplied so that the atomic ratio of bromine to the total amount of cobalt and manganese is 0.5 to 1.5 times, and the oxidation is performed while maintaining the temperature at 180 to 210 ° C and the oxygen concentration of the exhaust gas at 2 to 8% by volume. The reaction is performed, and the concentration of 3-carboxybenzaldehyde of the crude isophthalic acid obtained in the step is 500 to 100.
A first step of carrying out the oxidation reaction so that the total amount of isophthalic acid produced by the oxidation reaction and its intermediate is 10 to 35% by weight based on the weight of the solvent, within the range of 00 ppm, the oxidation reaction product obtained in the first step A second step of further oxidizing the mixture to a concentration of 3-carboxybenzaldehyde in the crude isophthalic acid of 100 to 800 ppm, separating the crude isophthalic acid, evaporating the mother liquor, purifying the mother liquor by distillation and collecting acetic acid, and a second step A method for producing high-purity isophthalic acid, comprising the step of mixing the isophthalic acid crystal obtained in the above with purified acetic acid, stirring the mixture at a temperature of 100 ° C. or higher, and separating the purified isophthalic acid.
JP2164217A 1990-06-25 1990-06-25 Method for producing high-purity isophthalic acid Expired - Fee Related JP2924104B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2164217A JP2924104B2 (en) 1990-06-25 1990-06-25 Method for producing high-purity isophthalic acid
DE69104280T DE69104280T2 (en) 1990-06-25 1991-06-25 Process for the production of high-purity isophthalic acid.
EP91305756A EP0465100B1 (en) 1990-06-25 1991-06-25 Process for producing high purity isophthalic acid
US07/722,555 US5132450A (en) 1990-06-25 1991-06-25 Process for producing high purity isophthalic acid
ES91305756T ES2064912T3 (en) 1990-06-25 1991-06-25 PROCEDURE TO PRODUCE ISOPHTHALIC ACID OF HIGH PURITY.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2164217A JP2924104B2 (en) 1990-06-25 1990-06-25 Method for producing high-purity isophthalic acid

Publications (2)

Publication Number Publication Date
JPH0454149A JPH0454149A (en) 1992-02-21
JP2924104B2 true JP2924104B2 (en) 1999-07-26

Family

ID=15788896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2164217A Expired - Fee Related JP2924104B2 (en) 1990-06-25 1990-06-25 Method for producing high-purity isophthalic acid

Country Status (1)

Country Link
JP (1) JP2924104B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5345266B2 (en) * 2000-08-18 2013-11-20 株式会社ダイセル Method for producing carboxylic acid
US7410632B2 (en) * 2003-06-05 2008-08-12 Eastman Chemical Company Extraction process for removal of impurities from mother liquor in the synthesis of carboxylic acid
US7381386B2 (en) * 2003-06-05 2008-06-03 Eastman Chemical Company Extraction process for removal of impurities from mother liquor in the synthesis of carboxylic acid
CN113318471A (en) * 2021-07-08 2021-08-31 山东友道化学有限公司 Method and system for treating xylene oxidation reaction liquid

Also Published As

Publication number Publication date
JPH0454149A (en) 1992-02-21

Similar Documents

Publication Publication Date Title
US5132450A (en) Process for producing high purity isophthalic acid
JP3009223B2 (en) Method for producing high-purity benzenedicarboxylic acid isomer
US5292934A (en) Method for preparing aromatic carboxylic acids
JPH0558948A (en) Preparation of terephthalic acid
JPH0451539B2 (en)
JPH0532381B2 (en)
JPS639498B2 (en)
EP1003699B1 (en) Purification of difluoromethane by extractive distillation
US6150553A (en) Method for recovering methyl acetate and residual acetic acid in the production acid of pure terephthalic acid
CA2329258C (en) Improved process for producing pure carboxylic acids
US4675438A (en) Direct continuous flow integration of production and purification of high purity iso- or terephthalic acid
JP2924104B2 (en) Method for producing high-purity isophthalic acid
EP1104396B1 (en) Method for recovering methyl acetate and residual acetic acid in the production of pure terephthalic acid
EP0877012B1 (en) Process for the production of high-purity dimethyl 2,6-naphthalenedicarboxylate and naphthalenedicarboxylic acid
JPH0257528B2 (en)
JP2001226323A (en) Method for recovering benzyl benzoate
JP4032186B2 (en) Method for producing high purity dimethyl 2,6-naphthalenedicarboxylate
JPH1053557A (en) Production of 2,6-naphthalenedicarboxylic acid having high purity
JPH07238051A (en) Production of naphthalene-dicarboxylic acid of high purity
JPS62212340A (en) Simultaneous production of 2,6-naphthalene-dicarboxylic acid and trimellitic acid
JPH09104654A (en) Purification of naphthalenedicarboxylic acid
JPH07173100A (en) Production of high-purity 2,6-naphthalene-dicarboxylic acid
JPH1180074A (en) Production of highly pure 2,6-naphthalene dicarboxylic acid
JPH0717901A (en) Production of high-purity isophthalic acid
JP2504545B2 (en) Manufacturing method of terephthalic acid

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080507

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090507

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090507

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100507

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees