JP4032186B2 - Method for producing high purity dimethyl 2,6-naphthalenedicarboxylate - Google Patents

Method for producing high purity dimethyl 2,6-naphthalenedicarboxylate Download PDF

Info

Publication number
JP4032186B2
JP4032186B2 JP11816397A JP11816397A JP4032186B2 JP 4032186 B2 JP4032186 B2 JP 4032186B2 JP 11816397 A JP11816397 A JP 11816397A JP 11816397 A JP11816397 A JP 11816397A JP 4032186 B2 JP4032186 B2 JP 4032186B2
Authority
JP
Japan
Prior art keywords
naphthalenedicarboxylate
dimethyl
solvent
oxidation
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11816397A
Other languages
Japanese (ja)
Other versions
JPH10306059A (en
Inventor
博 町田
文哉 在間
憲次 中屋
一夫 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP11816397A priority Critical patent/JP4032186B2/en
Priority to US09/069,815 priority patent/US6013831A/en
Priority to TW087106895A priority patent/TW421642B/en
Priority to DE69813361T priority patent/DE69813361T2/en
Priority to EP98303601A priority patent/EP0877012B1/en
Priority to ES98303601T priority patent/ES2196489T3/en
Priority to KR1019980016554A priority patent/KR100562436B1/en
Publication of JPH10306059A publication Critical patent/JPH10306059A/en
Application granted granted Critical
Publication of JP4032186B2 publication Critical patent/JP4032186B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【0001】
【発明の属する技術分野】
本発明は、2,6-ナフタレンジカルボン酸ジメチルエステルを製造する方法に関するものであり、詳しくは2,6-ジアルキルナフタレンの液相酸化により得られる2,6-ナフタレンジカルボン酸(以下、2,6-NDCAと記す)を、メタノールでエステル化した後、精製して高純度の2,6-ナフタレンジカルボン酸ジメチルエステル(以下、2,6-NDCMと記す)を得る方法に関する。
【0002】
【従来の技術】
2,6-NDCA及び2,6-NDCMは、高機能性ポリエステルの原料として有用な物質である。
2,6-NDCAは、2,6-ジアルキルナフタレンを、低級脂肪族カルボン酸を含む溶媒中でコバルト、マンガン及び臭素を含む触媒を用いて酸化することにより得られる(特公昭34−2666号、特公昭56−3337号)。
【0003】
上記方法で得られる2,6-NDCAは、トリメリット酸、6-ホルミル-2- ナフトエ酸等の有機不純物及び酸化触媒のコバルト、マンガン等の重金属を含んでおり、これらを除去し精製しなければ、高機能性ポリマーの原料としての利用に適さない。しかしながら、2,6-NDCAは溶媒に対する溶解度が低く、さらに融点において分解するため、2,6-NDCAのままで精製を行うことが困難である。
そこで、2,6-NDCAをメタノールでエステル化し2,6-NDCMとした後、蒸留及び/または再結晶により精製する方法が多数提示されている。特に高品質の2,6-NDCMを得るには、蒸留と再結晶を組み合わせて精製する方法が有効である(特開昭50−116461号、米国特許第5262560号)。
【0004】
また前述の2,6-NDCAに含まれる酸化触媒のコバルト、マンガン等の重金属は高価であり、これを回収し酸化反応で再使用することが工業的に望ましい。
2,6-NDCAに含まれる酸化触媒金属を回収する方法は、2,6-NDCA結晶を鉱酸水溶液、酸成分含有アルコール等の溶媒で洗浄し金属分を溶出させ回収する方法(特開昭62−212345号および特開平5−253496号等)と、2,6-NDCAをエステル化反応しその反応生成物から回収する方法(特開平3−223233号および特開平4−364152号等)に大別される。
【0005】
【発明が解決しようとする課題】
前記の2,6-NDCAの結晶を溶媒で洗浄して触媒金属を溶出させる方法では、洗浄液と2,6-NDCA結晶を分離する装置を必要とする。また洗浄液から金属分を回収するために炭酸化合物を添加して不溶性の炭酸塩を生成させる方法があるが、この沈澱を分離する固液分離装置も必要であり装置が複雑になる。しかも洗浄による金属分除去率はそれほど高くないため、洗浄後の2,6-NDCAの結晶はまだ多量の金属を含んでおり、さらに別の精製方法により金属分の除去を行なう必要がある。
【0006】
一方、2,6-NDCAをエステル化反応して得られる粗エステルから触媒金属を回収する手段を用いる特開平3−223233号は、エステル化反応で硫酸等の鉱酸を触媒として使用することで酸化触媒金属を溶媒に溶解させ、エステル化生成物を分離した母液に炭酸イオンを生ずる化合物を添加し、触媒金属を不溶性の炭酸塩として回収する方法である。この方法では硫酸等の鉱酸の腐食性による反応器材質の制限及び廃酸の中和処理等の問題があり、大型の工業プラントでの実施には適さない。
【0007】
特開平4−364152号に示される方法は、溶融状態のエステル化反応生成物またはそのメタノール溶液から不溶性の酸化触媒金属を濾過または沈降により分離する方法である。
しかしながら、エステル化反応生成物を溶融状態に維持するには2,6-NDCMの融点(約190℃)以上の温度に加熱する必要があり、工業的な規模でこの溶融液から不溶性触媒金属を濾過、沈降により分離、回収することは技術的には極めて困難である。
またメタノール溶液の場合には、後述の実施例に示されるようにメタノールの沸点温度では2,6-NDCMの溶解度が小さく、工業的に実用性のある溶媒使用量にて2,6-NDCMを主成分とするエステル化反応生成物を溶解するためには、加圧状態下でメタノールの沸点以上に加熱しなければならず、しかもこの加圧状態下で触媒金属の分離を実施する必要があり、これに要する設備費が高くなる。
さらに本発明者らの検討によると、メタノール溶液から再結晶して得られる2,6-NDCMの結晶は鱗片状で嵩比重が小さく、濾過や遠心沈降等の方法による固液分離の際にケーキに多量の母液を同伴するために充分な不純物除去効果が得られないことが明らかになった。
【0008】
本発明の目的は、ジアルキルナフタレンの液相酸化により得られる2,6-NDCAをメタノールでエステル化した反応生成物に含まれている不純物を簡単な操作で効率良く除去して高純度の2,6-NDCMを得、かつ酸化触媒金属を回収することにより、工業的に有利に2,6-NDCMを製造する方法を提供することにある。
【0009】
【課題を解決するための手段】
本発明者らは、2,6-NDCAをメタノールでエステル化して精製する方法を鋭意検討した結果、芳香族炭化水素を溶媒に用いて2,6-NDCMの再結晶精製を行うことにより優れた品質の2,6-NDCMが得られ、また2,6-NDCAのエステル化反応生成物に含まれる不溶性の酸化触媒金属分を分離回収する際に、芳香族炭化水素を溶媒に用いてエステル化反応生成物ないしはこれを蒸留して得られる高沸分を溶解し、その溶液を濾過または遠心沈降等で処理すれば、高い収率で容易に酸化触媒金属塩を回収することができることを見出し、本発明に到達した。
【0010】
即ち本発明は、2,6-ジアルキルナフタレンの分子状酸素による液相酸化で得られる2,6-ナフタレンジカルボン酸をメタノールでエステル化した後、精製して高純度の2,6-ナフタレンジカルボン酸ジメチルを製造するに際し、芳香族炭化水素を溶媒に用いてエステル化反応で生成した粗エステルを精製することを特徴とする高純度2,6-ナフタレンジカルボン酸ジメチルの製造法である。
【0011】
【発明の実施の形態】
本発明は詳しくは、2,6-ジアルキルナフタレンを、低級脂肪族カルボン酸を含む溶媒中で重金属化合物及び臭素化合物からなる触媒の存在下に分子状酸素を含むガスを用いて酸化して2,6-NDCAを製造し、この2,6-NDCAをメタノールとエステル化反応させて得られる粗エステルを再結晶及び蒸留により精製し、高純度2,6-NDCMを製造するに際して、粗エステル中の不溶性物質の分離及び再結晶で芳香族炭化水素を溶媒として用いるものである。
本発明の高純度2,6-NDCMの製造法は、▲1▼2,6-ジアルキルナフタレンの酸化反応工程、▲2▼酸化反応により得られた2,6-NDCAのエステル化反応工程、▲3▼粗エステルの溶解工程、▲4▼不溶性物質の分離工程、▲5▼再結晶工程および▲6▼蒸留工程に分けられる。
以下に、各工程について詳しく説明する。
【0012】
(酸化反応工程)
本発明で酸化反応の原料として用いられる2,6-ジアルキルナフタレンとしては、2,6-ジメチルナフタレン、2,6-ジエチルナフタレン、2,6-ジイソプロピルナフタレン等が挙げられる。
酸化反応の溶媒としては蟻酸、酢酸、プロピオン酸、酪酸等の低級脂肪族カルボン酸が良いが、酢酸が最も好ましい。溶媒には水が含有されていても良いが、その含有量は30重量%以下が好ましい。また溶媒の使用量は酸化原料の2,6-ジアルキルナフタレンに対して 1〜20重量倍、好ましくは 3〜10重量倍である。
【0013】
酸化触媒としては、コバルト化合物、マンガン化合物及び臭素化合物が用いられるが、必要に応じてこれに鉄、セリウム、ニッケル、パラジウム等の重金属化合物を添加しても良い。これらのコバルト、マンガン及びその他の重金属化合物として、有機酸塩、水酸化物、ハロゲン化物、炭酸塩等が例示し得るが、特に酢酸塩及び臭化物が好ましい。また、臭素化合物は、反応系で溶解し臭素イオンを発生するものであれば如何なるものでも良いが、特に臭化水素、臭化コバルト、臭化マンガンが好ましい。
触媒の使用量は、コバルト及びマンガンを含む重金属成分については、その合計量が酸化原料の2,6-ジアルキルナフタレンに対する原子比で0.03〜0.3 、好ましくは0.04〜0.2 となるように添加される。また臭素については、酸化原料に対する原子比で 0.015〜0.15、好ましくは0.02〜0.1 となるように添加される。
【0014】
酸化反応に使用される分子状酸素含有ガスとしては、酸素ガスまたは酸素を窒素、アルゴン等の不活性ガスと混合したガスが挙げられるが、空気が最も一般的である。
酸化反応の温度は 170〜250 ℃、好ましくは 180〜240 ℃である。また圧力は 5〜40 kg/cm2 G 、好ましくは10〜30 kg/cm2 G である。
酸化反応の方式は、回分方式、半回分方式または連続方式のいずれでも良い。酸化反応で生成した2,6-NDCA結晶は、遠心沈降、遠心濾過、真空濾過等の方法により母液と分離した後乾燥してエステル化反応に供する。
【0015】
(エステル化反応工程)
本発明において、2,6-NDCAとメタノールのエステル化反応は、既に公知の如何なる方法でも実施できるが、溶融状態の2,6-NDCMを溶媒として使用しこれに2,6-NDCAの結晶を分散させたスラリーに、メタノール蒸気を供給する方法が好適である。
エステル化反応は、半連続方式または連続方式で行うことが好ましい。
半連続反応では、2,6-NDCAと2,6-NDCMを反応器に仕込み所定温度に加熱した液相にメタノール蒸気を連続的に供給し、一定圧力を維持する様に反応器の気相部から反応で生成する水と共に過剰のメタノール蒸気を連続的に抜き出すことにより反応が行なわれる。
また連続方式では、2,6-NDCAを溶融状態の2,6-NDCMに分散させたスラリーを連続的に供給し反応生成物を連続的に抜き出す方法で行なわれる。メタノールは半連続方式の場合と同様に液相に供給し反応生成水と共に過剰分を気相部から抜き出す。高い反応収率で2,6-NDCMを得るためには、2個以上の槽型反応器を使用して2,6-NDCAとメタノールを向流で接触させるかあるいは棚段塔や泡鐘塔の様な内部を多段に仕切り液とガスとを向流で接触させる形式の反応器が好適に用いられる。
【0016】
エステル化の反応温度は 190〜320 ℃、好ましくは 230℃〜300 ℃であり、反応圧力は 2〜40 kg/cm2 G 、好ましくは10〜30 kg/cm2 G である。
触媒としては、三酸化モリブデン等のモリブデン化合物を用いるのが好ましいが、温度 240℃以上の高温で反応を実施する場合には無触媒での反応も可能である。硫酸等の鉱酸を触媒として使用することは酸化触媒金属を可溶性に変えるため好ましくない。
エステル化の溶媒には2,6-NDCMが用いられ、当該反応で得られる粗エステルの一部が循環される。循環量は2,6-NDCAに対して2〜6重量倍が適当である。
【0017】
メタノールの使用量は、2,6-NDCMの収率を高める為に量論量より過剰に使用するのが好ましく、供給した2,6-NDCAに対するモル比で5〜40倍、好ましくは10〜25倍とする。
反応生成物は、半連続方式では反応器の圧力を常圧に下げることで、連続方式では常圧条件に保持した槽に反応生成物を抜き出すことで、含有する過剰のメタノールを蒸発させて除去し、溶融状態の粗エステルを得ることができる。
以上の反応方法によれば、比較的低い反応圧力と少ないメタノール使用量にて高い収率で2,6-NDCMを得られる。また反応生成物中のメタノールを容易に除去出来るので、以後の精製工程で使用するに適した粗エステルが得られる。
【0018】
(粗エステルの溶解工程および不溶性物質の分離工程)
本発明の特徴は芳香族炭化水素を溶媒に用いてエステル化反応で生成した粗エステルを溶解し、不溶性物質を分離するものである。
この不溶性物質の分離法としては、(A)エステル化反応で生成した粗エステルを、芳香族炭化水素と混合し加熱して粗エステル中の2,6-NDCMを全量溶解させた後、粗エステル中に含まれる不溶性物質を濾過または遠心沈降により分離する方法と、(B)エステル化反応で生成した粗エステルを減圧下で蒸留し、2,6-NDCM純度を高められた留分と、触媒金属、2,6-ナフタレンジカルボン酸モノメチルエステル及び高沸点の有機不純物が濃縮された高沸分とに分離した後、この高沸分を前記の芳香族炭化水素溶媒に溶解して触媒金属を含む不溶性成分を前述と同様の方法で分離回収する方法がある。
後者の(B)の方法によれば、金属分が濃縮されることで溶媒の使用量が低減され、より小さな分離装置で触媒金属の回収ができる。一方、蒸留の留分は、芳香族炭化水素溶媒に溶解して後述の再結晶工程に用いられる。
【0019】
溶媒に用いる芳香族炭化水素としては、沸点範囲が 100〜170 ℃のものが好適であり、トルエン、キシレン類、トリメチルベンゼン類等が例示される。特にトルエン及びキシレン類が好ましい。溶媒は、粗エステル中の2,6-NDCMが全量溶解し且つ後段の再結晶工程で充分な精製効果が得られる量を用いることが必要であるが、過剰に使用することは装置が過大になるので、粗エステルに対して 2〜15重量倍、好ましくは 3〜10重量倍を使用する。
芳香族炭化水素を溶媒に用いれば、溶媒の沸点以下の温度にて粗エステルの溶解と不溶性物質の分離を実施でき、加圧条件下にて溶解及び分離を実施する必要があるメタノール溶媒に比べて、より簡単な装置で溶解及び分離の操作を実施できる。
【0020】
以上の方法により回収される不溶性物質は、エステル化反応の原料の2,6-NDCAに含まれていた酸化触媒金属のほとんどを含有している。また、この不溶性物質の組成は、後述の実施例で示される様に酸化及びエステル化の触媒金属以外の大部分は2,6-NDCAであり、酸化反応で反応阻害物質になるトリメリット酸をほとんど含んでいない。従って、この不溶性物質は酸化反応の触媒源として好適に使用できる。
この不溶性物質を酸化反応の触媒源として用いる方法としては、不溶性物質を酸化反応器に固体のまま直接供給する方法、または不溶性物質を水または水分含有低級脂肪族カルボン酸(好ましくは 1重量% 以上の水分を含有する酢酸) と混合して酸化触媒金属を溶出させたのち固液分離して結晶を除いた母液を酸化反応に用いる方法などが挙げられる。
【0021】
(再結晶工程)
再結晶による精製は、上記の(A)の方法では、不溶性の触媒金属分を除去した粗エステルの芳香族炭化水素溶液を冷却し2,6-NDCMの結晶を晶出させ、濾過または遠心沈降により結晶と母液に分離することで行なう。
また(B)の方法では、エステル化反応で生成した粗エステルを減圧下で蒸留して高沸分を除去し、留出した2,6-ナフタレンジカルボン酸ジメチルを芳香族炭化水素溶媒による再結晶で精製する操作と、蒸留で分離された高沸分を芳香族炭化水素溶媒と混合して加熱溶解し、高沸分の芳香族炭化水素溶液を濾過または沈降により不溶性物質を除去し、該溶液を冷却して結晶を晶出させる結晶回収操作が行われる。
【0022】
結晶の晶出温度は、20〜70℃の範囲が好ましい。結晶の晶出は、回分方式でも連続方式でも実施でき、回分方式の場合には液の冷却速度を20℃/min以下とするのが好ましく、連続方式の場合には2槽以上の晶出槽により段階的に結晶を晶出させるのが好ましい。
分離した結晶は、必要に応じて再度溶媒に溶解した後、再結晶して2,6-NDCM純度のより高い結晶を得ることも出来る。この際、2段目の再結晶で得られる分離母液を、前述のエステル反応生成物を溶解する工程の溶媒として使用すれば、溶媒使用量を増やさずに2段階の再結晶による精製を実施できる。
なお(B)の方法において再結晶工程で分離された母液を蒸留の高沸分の溶解工程の溶媒に用いることができ、結晶回収工程で得られた結晶はエステル化反応に循環することができる。
【0023】
(蒸留工程)
蒸留精製に用いる蒸留塔の形式としては、充填塔、棚段塔、多孔板塔などが挙げられるが、できるだけ塔頂部と塔底部の差圧が少ない形式の蒸留塔を用いるのが好ましい。
蒸留は 1〜50mmHgの減圧下、温度 210〜280 ℃の範囲で行うことが好ましい。 210℃より低い温度では、2,6-NDCMの蒸気圧が低いため蒸留が困難であり、 280℃より高い温度では2,6-NDCMの分解が起きるので好ましくない。
なお(A)の方法において蒸留で分離された高沸分にはエステル化の反応中間体の2,6-ナフタレンジカルボン酸モノメチルエステルおよび未反応の2,6-NDCAが含まれており、該高沸分をエステル反応に循環することでプロセスの収率を高められる。また(B)の方法において蒸留で分離された高沸分にはエステル化反応の触媒成分が含まれており、該高沸分の一部をエステル化反応に循環することができる。
【0024】
以上の如く本発明の高純度2,6-NDCMの製造法は、(A)不溶性の触媒金属を除去した粗エステルを再結晶で精製した後、蒸留による精製を行なう方法と、(B)粗エステルを蒸留した後、再結晶で精製を行なう方法がある。
(A)の方法では、▲1▼2,6-ジアルキルナフタレンの酸化反応工程、▲2▼得られた2,6-NDCAをメタノールでエステル化するエステル化反応工程、▲3▼エステル化反応で生成した粗エステルを芳香族炭化水素溶媒と混合して加熱し粗エステル中の2,6-NDCMを溶解する溶解工程、▲3▼粗エステルの芳香族炭化水素溶媒を濾過または沈降により処理して粗エステル中に存在する不溶性物質を分離除去する不溶性物質の分離工程、▲4▼不溶性物質を除去した分離液を冷却して2,6-NDCMの結晶を晶出させた後、固液分離して2,6-NDCMを得る再結晶工程、▲5▼再結晶した2,6-NDCMを減圧下で蒸留して高沸分を分離除去し高純度2,6-NDCMを得る蒸留工程からなる。
【0025】
また(B)の方法では、▲1▼2,6-ジアルキルナフタレンの酸化反応工程、▲2▼得られた2,6-NDCAをメタノールでエステル化するエステル化反応工程、▲3▼エステル化反応で生成した粗エステルを減圧下で蒸留して高沸分を除去する蒸留工程、▲4▼留出した2,6-NDCMを芳香族炭化水素溶媒による再結晶で精製して高純度2,6-NDCMを得る再結晶工程、▲5▼蒸留で分離された高沸分を芳香族炭化水素溶媒と混合して加熱溶解する溶解工程、▲6▼高沸分の芳香族炭化水素溶液を濾過または沈降により処理して不溶性物質を分離除去する不溶性物質の分離工程、▲7▼不溶性物質を除去した分離液を冷却して結晶を晶出させ固液分離し結晶を得る結晶回収工程からなる。
いずれの方法でも、有機不純物量及び酸価が低く色価が良好な優れた品質の2,6-NDCMを得ることができ、また酸化触媒の有効成分を効率良く回収することができる。
【0026】
図1は(A)の方法により、不溶性の触媒金属を除去した粗エステルを再結晶で精製した後、蒸留による精製を行なう場合のフロー図の一例である。図1において原料の2,6-ジアルキルナフタレンは流路11より、酸化反応溶媒および触媒は流路12より酸化反応器1 に導入される。該酸化反応器において酸素含有ガス (空気) が流路13より導入されて2,6-ジアルキルナフタレンの酸化反応が行われ、流路15よりオフガスが排出される。酸化反応で生成した2,6-NDCAは固液分離機2 により分離され乾燥機3 で乾燥され、エステル化反応器4 に導入される。
該エステル化反応器において流路19からのメタノールによるエステル化反応が行われ、未反応メタノールと生成水は流路20から排出される。エステル化反応器からの粗エステルは流路21からエステル溶解槽5 に導入され、流路22からの芳香族炭化水素溶媒に溶解される。得られた粗エステル溶液は固液分離機6 に導入され、触媒成分を含む不溶性物質は流路25を経て酸化反応器に循環される。また固液分離機6 からの分離液は流路24より晶析槽7 を経て固液分離機8 に送られ、流路26からの再結晶分離ケーキと流路27からの分離液に分けられる。再結晶分離ケーキは乾燥機9 で乾燥された後、蒸留塔10に導入され、製品の高純度2,6-NDCMが流路28より得られる。蒸留塔で分離された高沸点物は流路29を経てエステル化反応器に循環される。
【0027】
図2は(B)の方法により、粗エステルを蒸留した後、再結晶で精製を行なう場合のフロー図の一例である。図2において原料の2,6-ジアルキルナフタレンは流路11より、酸化反応溶媒および触媒は流路12より酸化反応器1 に導入される。該酸化反応器において酸素含有ガス (空気) が流路13より導入されて2,6-ジアルキルナフタレンの酸化反応が行われ、流路15よりオフガスが排出される。酸化反応で生成した2,6-NDCAは固液分離機2 により分離され乾燥機3 で乾燥され、エステル化反応器4 に導入される。
該エステル化反応器において流路19からのメタノールによるエステル化反応が行われ、未反応メタノールと生成水は流路20から排出される。エステル化反応器からの粗エステルは流路21からエステル蒸留塔10に導入される。エステル蒸留塔からの留出はエステル溶解槽5 に導入され、流路22からの芳香族炭化水素溶媒に溶解され、流路23より晶析槽7 を経て固液分離機8 に送られ、流路26からの再結晶分離ケーキと流路27からの分離液に分けられる。再結晶分離ケーキは乾燥機9 で乾燥され、製品の高純度2,6-NDCMが流路28より得られる。
エステル蒸留塔の高沸分 (釜残) は流路29を経てエステル溶解槽31に送られ、流路35からの芳香族炭化水素溶媒 (流路27からの分離液) に溶解され、流路36を経て固液分離機6 に送られる。固液分離機6 において触媒成分を含む不溶性物質は流路25を経て酸化反応器に循環される。固液分離機6 からの分離液は流路37を経て晶析槽32に送られ、固液分離機33において回収結晶が流路38を経てエステル化反応器4 に循環される。
【0028】
【実施例】
次に実施例によって本発明を具体的に説明する。なお本発明は、これらの実施例により制限されるものではない。
【0029】
参考例1
2,6-NDCMの各種溶媒への溶解度の測定値を表1に示す。芳香族炭化水素溶媒に比較して、メタノールの沸点における2,6-NDCMの溶解度は極めて小さいことが示される。
【表1】
溶媒 正常沸点 沸点における 2,6- NDCMの溶解度
メタノール 65℃ 0. 67g/溶媒100g
トルエン 111℃ 17. 5 g/溶媒100g
メタキシレン 139℃ 40 g/溶媒100g
オルソキシレン 144℃ 52 g/溶媒100g
【0030】
実施例2〔(A)の方法による場合〕
(1)酸化反応
氷酢酸250kgに、酢酸コバルト・4水塩、酢酸マンガン・4水塩、47重量%臭化水素水溶液及び水を混合し溶解させ、コバルト濃度0.1重量%、マンガン濃度0.6重量%、臭素濃度0.5重量%、水分濃度3重量%の触媒液を調合した。
撹拌機、還流冷却器を備えた内容積約60Lのチタン製反応器に、前記の触媒液32kgをポンプで仕込んだ。また触媒液とは別の槽に純度99.7重量%の2,6-ジメチルナフタレンを仕込み、120℃以上の温度に加熱して溶融させた。
窒素で反応器内の圧力を20 kg/cm2 G に調整し、撹拌しながら温度210℃に加熱した。温度、圧力が安定した後、2,6-ジメチルナフタレンを反応器に6kg/hr の流量で供給し同時に圧縮空気を約17Nm3 /hr で反応器に供給して酸化反応を開始した。2,6-ジメチルナフタレンを8kg供給した時点(反応開始後80分)で、前記の触媒液の供給を24kg/hr の流量で開始し、続いて反応器内の液面が一定になるように反応生成物を常圧下にある受槽へ抜き出した。
約8時間反応を継続した後、2,6-ジメチルナフタレン、触媒液、空気の供給を停止し反応を終了した。反応器内の生成物も受槽に抜き出し、295kgの反応生成物を得た。
【0031】
次にこの反応生成物を、デカンター型遠心分離機でケーキと母液に分離した。分離ケーキは乾燥して粗2,6-NDCA結晶74. 8kgを得た。乾燥減量より計算される分離ケーキの含液率は39重量%(湿時基準)であった。得られた粗2,6-NDCAの組成を表2に示す。
供給した2,6-ジメチルナフタレン基準の2,6-NDCA収率は92.3モル%であった。また反応に使用した触媒金属(コバルトとマンガンの合計)の48重量%が生成した粗2,6-NDCAの結晶中に残留していた。
【表2】

Figure 0004032186
【0032】
(2)エステル化反応
撹拌機付きの6Lステンレス製オートクレーブに、酸化反応で得られた粗2,6-NDCA 1.2kg、予め前記粗2,6-NDCAをエステル化反応して得た粗エステル3. 6kg及び三酸化モリブデン1. 2gを仕込み、窒素置換後、撹拌しながら温度270℃に加熱した。
反応器底部のノズルよりメタノールを1. 06kg/hr の流量で供給し、エステル化反応を開始した。圧力が15 kg/cm2 G に達したところで反応器上部に設けられたガス抜きラインより過剰のメタノールと反応生成水を抜き出し、一定圧力になるように調整しながら、約3時間反応を実施した。
反応終了後、粗エステルを取り出した。また、メタノールに同伴して反応器外に抜き出されたエステル分は、溶媒を蒸発させて結晶として回収した。このメタノールからの回収結晶と溶融粗エステルの重量の合計は4. 93kgであった。得られた粗エステルの組成を表3に示す。2,6-NDCMの反応収率は92. 8モル%であった。
【0033】
【表3】
Figure 0004032186
【0034】
(3)粗エステルの溶解、不溶性物質の分離
撹拌機付きオートクレーブの液抜き配管に、700meshの金属製フィルターをセットした濾過器を接続し、加圧濾過装置とした。このオートクレーブに、前記のエステル化反応で得られた粗エステル800gとオルソキシレン4000gを仕込んだ。オートクレーブを撹拌しながら約120℃に加熱し約30分間保持した後、窒素で反応器内を約1 kg/cm2 G に加圧した。
液抜き配管のバルブを開けて、エステル溶液をフィルターで濾過した。濾過終了後、フィルターで捕集された不溶性物質を約120℃に加熱したオルソキシレン 400gで洗浄した。洗浄液は、濾過したエステル溶液と混合した。
フィルターで捕集した不溶性物質を乾燥して41. 8gの結晶を得た。得られた不溶性物質の組成を表4に示す。この不溶性物質中には、エステル化反応原料の粗2,6-NDCA中に含有されていたコバルト及びマンガンの98重量%以上が含まれている。
【0035】
【表4】
Figure 0004032186
【0036】
(4)再結晶
前項で不溶性物質を濾過分離した粗エステル溶液を撹拌下で40℃に冷却して結晶を析出させた。析出した結晶は、ガラスフィルターで吸引濾過により母液と分離した。得られたケーキは、約800gのオルソキシレンにて洗浄した後、乾燥した。乾燥後の結晶重量は697gで、乾燥減量から計算されるケーキの含液率は湿時基準で11重量%であった。
【0037】
(5)蒸留
再結晶で得られたエステル結晶を回分式蒸留で精製した。段数10段の蒸留塔を用い塔頂圧力16mmHgの条件で蒸留を実施し、仕込量に対して89重量%の留出率で精製2,6-NDCMを得た。得られた精製2,6-NDCMの品質は、有機不純物含有量が0. 028重量%で、酸価は0. 004mg-KOH/gであった。
【0038】
実施例3
実施例2のエステル化反応で得られた粗エステルを用いて、溶解工程の溶媒及び再結晶工程の分離ケーキの洗浄液としてオルソキシレンの代わりにトルエンを用いた以外は実施例2と同様の方法で粗エステルの溶解と不溶分の分離、再結晶、蒸留を行い、精製2,6-NDCMを得た。
再結晶で得られたケーキの含液率、蒸留後の精製2,6-NDCMの品質を表5に示す。
【0039】
比較例1
実施例2のエステル化反応で得られた粗エステルを用いて、溶解工程の溶媒及び再結晶工程の分離ケーキの洗浄液としてオルソキシレンの代わりにメタノールを用いた以外は実施例1と同様の方法で粗エステルの溶解と不溶分の分離、再結晶、蒸留を行い、精製2,6-NDCMを得た。なお、粗エステルの溶解工程において、2,6-NDCMを全量溶解する為に加熱温度は130℃を要し、その際の圧力は約7 kg/cm2 G であった。
再結晶で得られたケーキの含液率、蒸留後の精製2,6-NDCMの品質を表5に示す。特徴的な不純物として、再結晶で除去されなかったトリメリット酸トリメチルが蒸留の際に分解して生成したと考えられる無水トリメリット酸モノメチルエステルが認められた。
【0040】
実施例4〔(B)の方法による場合〕
実施例2のエステル化反応で得られた粗エステル800gを、実施例2で使用した蒸留塔を用いて16mmHgの減圧下で回分蒸留を行ない、664gの留分を得た。この留分をメタキシレン4000gに溶解した後、実施例2と同様の方法で再結晶を行なって、精製2,6-NDCMを得た。再結晶時のケーキ含液率および精製2,6-NDCMの品質を表5に示す。
また、前記の蒸留に於ける釜残は、蒸留塔内に残留したエステル分と共に、蒸留留分の再結晶精製で得られた分離母液2000gに加熱溶解させ、蒸留塔から取り出した。この釜残溶液を実施例2で使用した加圧濾過装置に仕込み、実施例2と同様の操作で不溶分の分離をおこなった。得られた不溶分の乾燥重量は、43. 3gで、その組成は表6に示すようなものであった。この方法によっても、エステル化反応原料の粗2,6-NDCA中に含有されていたコバルト及びマンガンの98重量%以上が、不溶性物質中に回収されている。
【0041】
【表5】
Figure 0004032186
【0042】
【表6】
Figure 0004032186
【0043】
比較例2
氷酢酸287gに、酢酸コバルト・4水塩、酢酸マンガン・4水塩、47重量%臭化水素水溶液及び水を混合し溶解させ、コバルト濃度0. 05重量%、マンガン濃度0. 3重量%、臭素濃度0. 25重量%、水分濃度3重量%の触媒液約300gを調合した。
撹拌機、還流冷却器及び原料送液ポンプを備えた500mlチタン製オートクレーブに、前記の触媒液112gを仕込んだ。残りの触媒液188gは、2,6-ジメチルナフタレン37. 5gと混合し原料供給槽に仕込み、加熱してジメチルナフタレンを溶解させ、原料液を調製した。
窒素で反応系内の圧力を18 kg/cm2 G に調整し、撹拌しながら温度200℃に加熱した。温度、圧力が安定した後、2,6-ジメチルナフタレン、触媒液及び圧縮空気を反応器に供給し酸化反応を開始した。排ガス中の酸素濃度が2容量%になるように供給空気流量を調節しながら、原料液を1時間かけて連続的に供給した。原料液の供給終了後、排ガス中の酸素濃度が10容量%になるまで空気の供給を継続した。
反応終了後、オートクレーブを室温まで冷却して反応生成物を取り出し、ガラスフィルターで吸引濾過し結晶を分離した。分離ケーキは重量測定後、乾燥器で乾燥し、粗2,6-NDCA結晶50. 7gを得た。粗2,6-NDCAの組成及び供給した2,6-ジメチルナフタレン基準の2,6-NDCA収率を表7に示す。
【0044】
実施例5 (酸化触媒金属を回収し、循環使用した場合)
実施例2で粗エステルのオルソキシレン溶液より分離回収された酸化触媒金属を含有する不溶性物質を、触媒液の調合におけるコバルト及びマンガン源の一部として用いた以外は、比較例2と同じ条件及び操作で、2,6-ジメチルナフタレンの酸化反応を行なった。なお、触媒液の調合に使用した不溶性物質の量は3. 0gで、触媒金属の不足分は酢酸コバルト・4水塩及び酢酸マンガン・4水塩を用いて所定の触媒濃度に調製した。
得られた粗2,6-NDCAの乾燥結晶の重量は53. 2gであった。粗2,6-NDCAの組成及び供給した2,6-ジメチルナフタレン基準の2,6-NDCA収率を表7に示す。なお、収率を求めるに際して、不溶性物質中の2,6-NDCA含有量を反応生成物中の2,6-NDCAから差し引いて計算をおこなった。
【0045】
実施例6
実施例2で粗エステルのオルソキシレン溶液より分離回収された酸化触媒金属を含有する不溶性物質3gを水分を30重量%含有する酢酸60gと混合し、80℃で20分間撹拌した後、ガラスフィルターで結晶と濾液に分別した。濾液中への金属分の移行率は、コバルトが98.1%、マンガンが95.4%、モリブデンが11.5%であった。
次に金属分を抽出した母液を加熱し、溶媒を蒸発させて濃縮した。この濃縮液を触媒液の調合におけるコバルト及びマンガン源の一部として用いた以外は、比較例2と同じ条件及び操作で、2,6-ジメチルナフタレンの酸化反応を行なった。なお、触媒金属の不足分は酢酸コバルト・4水塩及び酢酸マンガン・4水塩を用いて所定の触媒濃度に調製した。
得られた粗2,6-NDCAの乾燥結晶の重量は50. 8gであった。粗2,6-NDCAの組成及び供給した2,6-ジメチルナフタレン基準の2,6-NDCA収率を表7に示す。
【0046】
【表7】
Figure 0004032186
【0047】
【発明の効果】
実施例からも明らかなように、本発明の方法によれば、2,6-ナフタレンジカルボン酸をメタノールでエステル化した粗エステルより、極めて高品質の2,6-ナフタレンジカルボン酸ジメチルが得られ、しかも酸化触媒金属を容易に高収率で回収し、酸化反応で循環使用することが出来る。
従って本発明により工業的に極めて有利に2,6-ナフタレンジカルボン酸ジメチルを製造でき、本発明の工業的意義は大きい。
【図面の簡単な説明】
【図1】本発明において(A)の方法により不溶性の触媒金属を除去した粗エステルを再結晶で精製した後、蒸留による精製を行なう場合のフロー図の一例である。
【図2】本発明において(B)の方法により、粗エステルを蒸留した後、再結晶で精製を行なう場合のフロー図の一例である。
【符号の説明】
1 : 酸化反応器
2,6,8,33 : 固液分離機
3,9 : 乾燥機
4 : エステル化反応器
5,31 : エステル溶解槽
7,32 : 晶析槽
10 : 蒸留塔
11 : 2,6-ジアルキルナフタレン
12 : 酢酸及び酸化反応触媒
13 : 空気
14 : 酸化反応生成物
15 : オフガス
16 : 分離ケーキ
18 : 粗2,6-NDCA
19 : メタノール
20 : メタノール及び反応生成水
21 : 粗エステル
22,35 : 芳香族炭化水素溶媒
23 : 粗エステル溶液
24,37 : 分離液
25 : 溶媒不溶性物質
26 : 再結晶分離ケーキ
27,39 : 再結晶分離母液
28 : 高純度2,6-NDCM
29 : 高沸分(蒸留釜残)
34 : 蒸留留出
36 : 高沸分溶液
38 : 回収結晶[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a process for producing 2,6-naphthalenedicarboxylic acid dimethyl ester, and more specifically, 2,6-naphthalenedicarboxylic acid (hereinafter referred to as 2,6) obtained by liquid phase oxidation of 2,6-dialkylnaphthalene. -NDCA) is esterified with methanol and then purified to obtain a highly pure 2,6-naphthalenedicarboxylic acid dimethyl ester (hereinafter referred to as 2,6-NDCM).
[0002]
[Prior art]
2,6-NDCA and 2,6-NDCM are materials useful as raw materials for highly functional polyesters.
2,6-NDCA is obtained by oxidizing 2,6-dialkylnaphthalene using a catalyst containing cobalt, manganese and bromine in a solvent containing a lower aliphatic carboxylic acid (Japanese Patent Publication No. 34-2666, Japanese Patent Publication No. 56-3337).
[0003]
2,6-NDCA obtained by the above method contains organic impurities such as trimellitic acid and 6-formyl-2-naphthoic acid and heavy metals such as cobalt and manganese as oxidation catalysts, and these must be removed and purified. For example, it is not suitable for use as a raw material for highly functional polymers. However, since 2,6-NDCA has low solubility in a solvent and further decomposes at the melting point, it is difficult to carry out purification with 2,6-NDCA as it is.
Thus, many methods have been proposed in which 2,6-NDCA is esterified with methanol to give 2,6-NDCM and then purified by distillation and / or recrystallization. In particular, in order to obtain high quality 2,6-NDCM, a method of purification by combining distillation and recrystallization is effective (Japanese Patent Laid-Open No. 50-116461, US Pat. No. 5,262,560).
[0004]
Further, heavy metals such as cobalt and manganese, which are oxidation catalysts contained in the aforementioned 2,6-NDCA, are expensive, and it is industrially desirable to recover them and reuse them in oxidation reactions.
The method for recovering the oxidation catalyst metal contained in 2,6-NDCA is a method in which the 2,6-NDCA crystals are washed with a solvent such as an aqueous mineral acid solution or an acid component-containing alcohol to elute and recover the metal component (Japanese Patent Laid-Open No. Sho) No. 62-212345 and JP-A-5-253396) and a method of esterifying 2,6-NDCA and recovering the reaction product (JP-A-3-223233 and JP-A-4-364152). Broadly divided.
[0005]
[Problems to be solved by the invention]
The above-described method for washing the 2,6-NDCA crystals with a solvent to elute the catalytic metal requires an apparatus for separating the washing liquid from the 2,6-NDCA crystals. In addition, there is a method in which a carbonate compound is added to generate an insoluble carbonate in order to recover a metal component from the cleaning solution, but a solid-liquid separation device for separating this precipitate is also required, which complicates the device. Moreover, since the metal removal rate by washing is not so high, the 2,6-NDCA crystals after washing still contain a large amount of metal, and it is necessary to remove the metal by another purification method.
[0006]
On the other hand, JP-A-3-223233, which uses a means for recovering catalytic metal from a crude ester obtained by esterifying 2,6-NDCA, uses a mineral acid such as sulfuric acid as a catalyst in the esterification reaction. In this method, an oxidation catalyst metal is dissolved in a solvent, a compound that generates carbonate ions is added to the mother liquor from which the esterification product has been separated, and the catalyst metal is recovered as an insoluble carbonate. This method has problems such as restriction of the reactor material due to the corrosiveness of mineral acids such as sulfuric acid and neutralization treatment of waste acid, and is not suitable for implementation in a large industrial plant.
[0007]
The method disclosed in JP-A-4-364152 is a method for separating an insoluble oxidation catalyst metal from a molten esterification reaction product or a methanol solution thereof by filtration or sedimentation.
However, in order to maintain the esterification reaction product in a molten state, it is necessary to heat it to a temperature higher than the melting point of 2,6-NDCM (about 190 ° C.). It is technically difficult to separate and collect by filtration and sedimentation.
In the case of a methanol solution, the solubility of 2,6-NDCM is small at the boiling point of methanol, as shown in the examples described later, and 2,6-NDCM can be added at an industrially practical solvent use amount. In order to dissolve the esterification reaction product as the main component, it must be heated to a temperature higher than the boiling point of methanol under pressure, and the catalyst metal must be separated under pressure. This increases the equipment cost required.
Further, according to the study by the present inventors, 2,6-NDCM crystals obtained by recrystallization from a methanol solution have a scaly shape and a small bulk specific gravity, and the cake is separated during solid-liquid separation by a method such as filtration or centrifugal sedimentation. It was revealed that a sufficient amount of impurity removal effect could not be obtained due to entrainment of a large amount of mother liquor.
[0008]
An object of the present invention is to efficiently remove impurities contained in a reaction product obtained by esterifying 2,6-NDCA obtained by liquid phase oxidation of a dialkylnaphthalene with methanol with a simple operation and to obtain high purity 2, An object of the present invention is to provide a method for producing 2,6-NDCM in an industrially advantageous manner by obtaining 6-NDCM and recovering an oxidation catalyst metal.
[0009]
[Means for Solving the Problems]
As a result of intensive studies on a method for purifying 2,6-NDCA by esterification with methanol, the present inventors have achieved excellent results by performing recrystallization purification of 2,6-NDCM using an aromatic hydrocarbon as a solvent. Quality 2,6-NDCM is obtained, and when insoluble oxidation catalyst metal contained in the esterification reaction product of 2,6-NDCA is separated and recovered, esterification is performed using aromatic hydrocarbon as a solvent. It is found that the reaction product or the high-boiling fraction obtained by distillation thereof is dissolved, and the solution is treated by filtration or centrifugal sedimentation, whereby the oxidation catalyst metal salt can be easily recovered with a high yield. The present invention has been reached.
[0010]
That is, the present invention is a method of esterifying 2,6-naphthalenedicarboxylic acid obtained by liquid phase oxidation of 2,6-dialkylnaphthalene with molecular oxygen with methanol, and then purifying it to purify 2,6-naphthalenedicarboxylic acid with high purity. In the production of dimethyl, a high purity dimethyl 2,6-naphthalenedicarboxylate is produced by purifying a crude ester produced by an esterification reaction using an aromatic hydrocarbon as a solvent.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Specifically, the present invention specifically oxidizes 2,6-dialkylnaphthalene using a gas containing molecular oxygen in the presence of a catalyst composed of a heavy metal compound and a bromine compound in a solvent containing a lower aliphatic carboxylic acid. 6-NDCA was produced, and the crude ester obtained by esterifying this 2,6-NDCA with methanol was purified by recrystallization and distillation to produce high-purity 2,6-NDCM. Aromatic hydrocarbons are used as a solvent for separation and recrystallization of insoluble substances.
The method for producing high purity 2,6-NDCM of the present invention includes (1) an oxidation reaction step of 2,6-dialkylnaphthalene, (2) an esterification reaction step of 2,6-NDCA obtained by the oxidation reaction, (3) The crude ester dissolution step, (4) the insoluble substance separation step, (5) the recrystallization step, and (6) the distillation step.
Below, each process is demonstrated in detail.
[0012]
(Oxidation reaction process)
Examples of 2,6-dialkylnaphthalene used as a raw material for the oxidation reaction in the present invention include 2,6-dimethylnaphthalene, 2,6-diethylnaphthalene, 2,6-diisopropylnaphthalene and the like.
As the solvent for the oxidation reaction, lower aliphatic carboxylic acids such as formic acid, acetic acid, propionic acid and butyric acid are preferred, but acetic acid is most preferred. The solvent may contain water, but its content is preferably 30% by weight or less. The amount of the solvent used is 1 to 20 times by weight, preferably 3 to 10 times by weight, relative to 2,6-dialkylnaphthalene as an oxidation raw material.
[0013]
As the oxidation catalyst, a cobalt compound, a manganese compound, and a bromine compound are used. If necessary, a heavy metal compound such as iron, cerium, nickel, or palladium may be added thereto. Examples of these cobalt, manganese and other heavy metal compounds include organic acid salts, hydroxides, halides, carbonates and the like, and acetates and bromides are particularly preferable. The bromine compound may be any compound as long as it dissolves in the reaction system and generates bromine ions, but hydrogen bromide, cobalt bromide, and manganese bromide are particularly preferable.
The amount of the catalyst used is such that the total amount of heavy metal components including cobalt and manganese is 0.03 to 0.3, preferably 0.04 to 0.2, in terms of the atomic ratio with respect to 2,6-dialkylnaphthalene as the oxidation raw material. Bromine is added so that the atomic ratio relative to the oxidation raw material is 0.015 to 0.15, preferably 0.02 to 0.1.
[0014]
Examples of the molecular oxygen-containing gas used for the oxidation reaction include oxygen gas or a gas obtained by mixing oxygen with an inert gas such as nitrogen or argon, but air is the most common.
The temperature of the oxidation reaction is 170 to 250 ° C, preferably 180 to 240 ° C. The pressure is 5-40 kg / cm2G, preferably 10-30 kg / cm2G.
The oxidation reaction method may be a batch method, a semi-batch method, or a continuous method. The 2,6-NDCA crystals produced by the oxidation reaction are separated from the mother liquor by a method such as centrifugal sedimentation, centrifugal filtration, vacuum filtration, etc., and then dried and subjected to an esterification reaction.
[0015]
(Esterification reaction process)
In the present invention, the esterification reaction of 2,6-NDCA and methanol can be carried out by any known method, but 2,6-NDCA in a molten state is used as a solvent, and crystals of 2,6-NDCA are added thereto. A method of supplying methanol vapor to the dispersed slurry is suitable.
The esterification reaction is preferably performed in a semi-continuous method or a continuous method.
In the semi-continuous reaction, methanol vapor is continuously supplied to the liquid phase charged with 2,6-NDCA and 2,6-NDCM and heated to a predetermined temperature, and the gas phase of the reactor is maintained to maintain a constant pressure. The reaction is carried out by continuously extracting excess methanol vapor together with water produced by the reaction from the part.
In the continuous method, a slurry in which 2,6-NDCA is dispersed in 2,6-NDCM in a molten state is continuously supplied and the reaction product is continuously extracted. Methanol is supplied to the liquid phase in the same manner as in the semi-continuous system, and excess together with the reaction product water is extracted from the gas phase. In order to obtain 2,6-NDCM with a high reaction yield, two or more tank reactors are used to contact 2,6-NDCA and methanol countercurrently, or a plate tower or bubble bell tower. A reactor of the type in which the interior is divided into multiple stages and the liquid and gas are brought into contact in countercurrent is preferably used.
[0016]
The esterification reaction temperature is 190-320 ° C, preferably 230-300 ° C, and the reaction pressure is 2-40 kg / cm.2G, preferably 10-30 kg / cm2G.
As the catalyst, a molybdenum compound such as molybdenum trioxide is preferably used. However, when the reaction is carried out at a high temperature of 240 ° C. or higher, a non-catalytic reaction is also possible. Use of a mineral acid such as sulfuric acid as a catalyst is not preferable because it changes the oxidation catalyst metal to be soluble.
2,6-NDCM is used as a solvent for esterification, and a part of the crude ester obtained by the reaction is circulated. The amount of circulation is 2 to 6 times the weight of 2,6-NDCA.
[0017]
The amount of methanol used is preferably used in excess of the stoichiometric amount in order to increase the yield of 2,6-NDCM, and it is 5 to 40 times, preferably 10 to 10 in molar ratio to the supplied 2,6-NDCA. 25 times.
In the semi-continuous system, the reaction product is removed by reducing the reactor pressure to normal pressure, and in the continuous system, the reaction product is withdrawn into a tank maintained at normal pressure to evaporate excess methanol. In this way, a molten crude ester can be obtained.
According to the above reaction method, 2,6-NDCM can be obtained in a high yield with a relatively low reaction pressure and a small amount of methanol used. Further, since methanol in the reaction product can be easily removed, a crude ester suitable for use in the subsequent purification step can be obtained.
[0018]
(Crude ester dissolution step and insoluble substance separation step)
A feature of the present invention is that an insoluble substance is separated by dissolving a crude ester produced by an esterification reaction using an aromatic hydrocarbon as a solvent.
As a method for separating this insoluble substance, (A) the crude ester produced by the esterification reaction is mixed with an aromatic hydrocarbon and heated to dissolve all 2,6-NDCM in the crude ester, A method of separating insoluble substances contained therein by filtration or centrifugal sedimentation, and (B) a fraction obtained by distilling the crude ester produced by the esterification reaction under reduced pressure to increase the purity of 2,6-NDCM, and a catalyst. After separation into metal, 2,6-naphthalenedicarboxylic acid monomethyl ester and high-boiling components enriched in high-boiling organic impurities, the high-boiling components are dissolved in the above aromatic hydrocarbon solvent to contain the catalyst metal There is a method of separating and recovering insoluble components by the same method as described above.
According to the latter method (B), the amount of the solvent is reduced by concentrating the metal component, and the catalytic metal can be recovered with a smaller separation device. On the other hand, the distillation fraction is dissolved in an aromatic hydrocarbon solvent and used in the recrystallization step described later.
[0019]
As the aromatic hydrocarbon used for the solvent, those having a boiling point range of 100 to 170 ° C. are suitable, and examples thereof include toluene, xylenes, trimethylbenzenes and the like. In particular, toluene and xylenes are preferable. The solvent should be used in such an amount that the entire amount of 2,6-NDCM in the crude ester can be dissolved and a sufficient purification effect can be obtained in the subsequent recrystallization step. Therefore, 2 to 15 times by weight, preferably 3 to 10 times by weight, of the crude ester is used.
If aromatic hydrocarbons are used as a solvent, dissolution of crude esters and separation of insoluble substances can be performed at temperatures below the boiling point of the solvent, compared to methanol solvents that need to be dissolved and separated under pressurized conditions. Thus, the dissolution and separation operations can be performed with a simpler apparatus.
[0020]
The insoluble material recovered by the above method contains most of the oxidation catalyst metal contained in 2,6-NDCA, which is the raw material for the esterification reaction. The composition of this insoluble substance is mostly 2,6-NDCA except for the catalytic metal for oxidation and esterification, as shown in the examples described later. Contains little. Therefore, this insoluble substance can be suitably used as a catalyst source for the oxidation reaction.
As a method of using this insoluble substance as a catalyst source for the oxidation reaction, the insoluble substance is directly supplied to the oxidation reactor as a solid, or the insoluble substance is water or a lower aliphatic carboxylic acid containing water (preferably 1% by weight or more). For example, a method of using a mother liquor from which crystals are removed by solid-liquid separation after elution of the oxidation catalyst metal by mixing with acetic acid containing water).
[0021]
(Recrystallization process)
For purification by recrystallization, in the above method (A), the aromatic hydrocarbon solution of the crude ester from which insoluble catalytic metal has been removed is cooled to crystallize 2,6-NDCM crystals, which are filtered or centrifuged. By separating the crystals into a mother liquor.
In the method (B), the crude ester produced by the esterification reaction is distilled under reduced pressure to remove the high boiling point, and the distilled dimethyl 2,6-naphthalenedicarboxylate is recrystallized with an aromatic hydrocarbon solvent. The high-boiling fraction separated by distillation is mixed with an aromatic hydrocarbon solvent and dissolved by heating. The high-boiling aromatic hydrocarbon solution is filtered or settled to remove insoluble substances, and the solution The crystal is recovered by cooling the crystal to crystallize the crystal.
[0022]
The crystallization temperature of the crystal is preferably in the range of 20 to 70 ° C. Crystal crystallization can be carried out either batchwise or continuously. In the batch mode, the cooling rate of the liquid is preferably 20 ° C./min or less. In the continuous mode, two or more crystallization tanks are used. It is preferable to crystallize in a stepwise manner.
The separated crystals can be dissolved again in a solvent as necessary, and then recrystallized to obtain crystals with higher 2,6-NDCM purity. At this time, if the separated mother liquor obtained by the second stage recrystallization is used as a solvent in the step of dissolving the ester reaction product, purification by two-stage recrystallization can be carried out without increasing the amount of solvent used. .
In the method (B), the mother liquor separated in the recrystallization step can be used as a solvent for the high boiling point dissolution step of distillation, and the crystals obtained in the crystal recovery step can be recycled to the esterification reaction. .
[0023]
(Distillation process)
Examples of the distillation tower used for distillation purification include packed towers, plate towers, and perforated plate towers, but it is preferable to use a distillation tower having a pressure difference between the top of the tower and the bottom of the tower as small as possible.
The distillation is preferably performed at a temperature of 210 to 280 ° C. under a reduced pressure of 1 to 50 mmHg. Distillation is difficult at temperatures lower than 210 ° C. due to the low vapor pressure of 2,6-NDCM, and decomposition of 2,6-NDCM is not desirable at temperatures higher than 280 ° C.
The high-boiling fraction separated by distillation in the method (A) includes 2,6-naphthalenedicarboxylic acid monomethyl ester as an intermediate for esterification and unreacted 2,6-NDCA. By recycling the boiling content to the ester reaction, the yield of the process can be increased. Further, the high-boiling fraction separated by distillation in the method (B) contains a catalyst component for the esterification reaction, and a part of the high-boiling content can be circulated to the esterification reaction.
[0024]
As described above, the method for producing high-purity 2,6-NDCM of the present invention includes (A) a method in which a crude ester from which insoluble catalyst metal has been removed is purified by recrystallization, and then a purification method by distillation; There is a method in which the ester is distilled and then purified by recrystallization.
In the method (A), (1) an oxidation reaction step of 2,6-dialkylnaphthalene, (2) an esterification reaction step of esterifying the obtained 2,6-NDCA with methanol, and (3) an esterification reaction The resulting crude ester is mixed with an aromatic hydrocarbon solvent and heated to dissolve 2,6-NDCM in the crude ester, and (3) the crude ester aromatic hydrocarbon solvent is treated by filtration or precipitation. Insoluble substance separation step for separating and removing insoluble substances present in the crude ester. (4) After cooling the separated liquid from which insoluble substances have been removed to crystallize 2,6-NDCM crystals, solid-liquid separation is performed. Recrystallization step to obtain 2,6-NDCM, and (5) distillation step of distilling the recrystallized 2,6-NDCM under reduced pressure to separate and remove the high boiling point to obtain high purity 2,6-NDCM. .
[0025]
In the method (B), (1) an oxidation reaction step of 2,6-dialkylnaphthalene, (2) an esterification reaction step of esterifying the obtained 2,6-NDCA with methanol, and (3) an esterification reaction (4) Distilled 2,6-NDCM was purified by recrystallization with an aromatic hydrocarbon solvent to obtain high purity 2,6 A recrystallization step to obtain -NDCM, (5) a dissolution step in which a high-boiling fraction separated by distillation is mixed with an aromatic hydrocarbon solvent and dissolved by heating, and (6) a high-boiling aromatic hydrocarbon solution is filtered or It consists of an insoluble substance separation step for separating and removing insoluble substances by treatment by sedimentation, and (7) a crystal recovery step for cooling the separated liquid from which insoluble substances have been removed to crystallize crystals to obtain solid crystals.
In any method, it is possible to obtain an excellent quality 2,6-NDCM having a low organic impurity amount and a low acid value and a good color value, and the active component of the oxidation catalyst can be efficiently recovered.
[0026]
FIG. 1 is an example of a flow diagram in the case where the crude ester from which the insoluble catalyst metal has been removed is purified by recrystallization by the method (A) and then purified by distillation. In FIG. 1, the raw material 2,6-dialkylnaphthalene is introduced into the oxidation reactor 1 from the flow path 11, and the oxidation reaction solvent and catalyst are introduced from the flow path 12. In the oxidation reactor, an oxygen-containing gas (air) is introduced from the flow path 13, an oxidation reaction of 2,6-dialkylnaphthalene is performed, and off-gas is discharged from the flow path 15. 2,6-NDCA produced by the oxidation reaction is separated by the solid-liquid separator 2, dried by the dryer 3, and introduced into the esterification reactor 4.
In the esterification reactor, esterification reaction with methanol from the channel 19 is performed, and unreacted methanol and produced water are discharged from the channel 20. The crude ester from the esterification reactor is introduced into the ester dissolution tank 5 from the channel 21 and is dissolved in the aromatic hydrocarbon solvent from the channel 22. The obtained crude ester solution is introduced into the solid-liquid separator 6 and the insoluble substance containing the catalyst component is circulated through the flow path 25 to the oxidation reactor. The separated liquid from the solid-liquid separator 6 is sent from the flow path 24 to the solid-liquid separator 8 through the crystallization tank 7, and is separated into a recrystallized separation cake from the flow path 26 and a separated liquid from the flow path 27. . The recrystallized separated cake is dried by a dryer 9 and then introduced into a distillation column 10, and a high-purity 2,6-NDCM product is obtained from the flow path 28. The high boiling point substances separated in the distillation tower are circulated to the esterification reactor via the flow path 29.
[0027]
FIG. 2 is an example of a flow chart in the case where the crude ester is distilled by the method (B) and then purified by recrystallization. In FIG. 2, the raw material 2,6-dialkylnaphthalene is introduced into the oxidation reactor 1 from the flow path 11, and the oxidation reaction solvent and the catalyst are introduced from the flow path 12. In the oxidation reactor, an oxygen-containing gas (air) is introduced from the flow path 13, an oxidation reaction of 2,6-dialkylnaphthalene is performed, and off-gas is discharged from the flow path 15. 2,6-NDCA produced by the oxidation reaction is separated by the solid-liquid separator 2, dried by the dryer 3, and introduced into the esterification reactor 4.
In the esterification reactor, esterification reaction with methanol from the channel 19 is performed, and unreacted methanol and produced water are discharged from the channel 20. The crude ester from the esterification reactor is introduced into the ester distillation column 10 from the channel 21. The distillate from the ester distillation column is introduced into the ester dissolution tank 5, dissolved in the aromatic hydrocarbon solvent from the flow path 22, and sent from the flow path 23 through the crystallization tank 7 to the solid-liquid separator 8 for flow. The recrystallization separation cake from the channel 26 and the separation liquid from the channel 27 are separated. The recrystallized separated cake is dried in a dryer 9, and high purity 2,6-NDCM of the product is obtained from the flow path 28.
The high boiling point (bottle residue) of the ester distillation column is sent to the ester dissolution tank 31 via the flow path 29 and dissolved in the aromatic hydrocarbon solvent from the flow path 35 (separate from the flow path 27). It passes through 36 and is sent to the solid-liquid separator 6. In the solid-liquid separator 6, the insoluble substance containing the catalyst component is circulated to the oxidation reactor via the flow path 25. The separation liquid from the solid-liquid separator 6 is sent to the crystallization tank 32 via the flow path 37, and the recovered crystals are circulated to the esterification reactor 4 via the flow path 38 in the solid-liquid separator 33.
[0028]
【Example】
Next, the present invention will be described specifically by way of examples. In addition, this invention is not restrict | limited by these Examples.
[0029]
Reference example 1
Table 1 shows measured values of the solubility of 2,6-NDCM in various solvents. The solubility of 2,6-NDCM at the boiling point of methanol is shown to be very small compared to aromatic hydrocarbon solvents.
[Table 1]
solvent Normal boiling point At the boiling point 2,6- Solubility of NDCM
Methanol 65 ° C 0.67 g / solvent 100 g
Toluene 111 ° C. 17.5 g / solvent 100 g
Meta-xylene 139 ° C 40 g / solvent 100 g
Ortho-xylene 144 ° C 52 g / solvent 100 g
[0030]
Example 2 [in the case of method (A)]
(1) Oxidation reaction
In 250 kg of glacial acetic acid, cobalt acetate tetrahydrate, manganese acetate tetrahydrate, 47 wt% hydrogen bromide aqueous solution and water are mixed and dissolved, and the cobalt concentration is 0.1 wt%, the manganese concentration is 0.6 wt%, A catalyst solution having a bromine concentration of 0.5% by weight and a water concentration of 3% by weight was prepared.
A titanium reactor having an internal volume of about 60 L equipped with a stirrer and a reflux condenser was charged with 32 kg of the catalyst solution. Further, 2,6-dimethylnaphthalene having a purity of 99.7% by weight was charged in a tank separate from the catalyst solution, and heated to a temperature of 120 ° C. or higher to be melted.
Nitrogen pressure in the reactor is 20 kg / cm2 Adjust to G and heat to 210 ° C. with stirring. After the temperature and pressure are stabilized, 2,6-dimethylnaphthalene is supplied to the reactor at a flow rate of 6 kg / hr and simultaneously compressed air is supplied at about 17 Nm.ThreeThe oxidation reaction was started by feeding the reactor at / hr. When 8 kg of 2,6-dimethylnaphthalene was supplied (80 minutes after the start of the reaction), the catalyst solution was started at a flow rate of 24 kg / hr, and then the liquid level in the reactor was kept constant. The reaction product was extracted into a receiving tank under normal pressure.
After continuing the reaction for about 8 hours, the supply of 2,6-dimethylnaphthalene, catalyst solution and air was stopped to complete the reaction. The product in the reactor was also extracted into a receiving tank to obtain 295 kg of reaction product.
[0031]
Next, this reaction product was separated into a cake and a mother liquor by a decanter type centrifuge. The separated cake was dried to obtain 74.8 kg of crude 2,6-NDCA crystals. The liquid content of the separated cake calculated from the loss on drying was 39% by weight (on a wet basis). The composition of the obtained crude 2,6-NDCA is shown in Table 2.
The 2,6-NDCA yield based on the supplied 2,6-dimethylnaphthalene was 92.3 mol%. In addition, 48% by weight of the catalyst metal (total of cobalt and manganese) used in the reaction remained in the generated crude 2,6-NDCA crystals.
[Table 2]
Figure 0004032186
[0032]
(2) Esterification reaction
In a 6L stainless steel autoclave with a stirrer, 1.2 kg of crude 2,6-NDCA obtained by oxidation reaction, 3.6 kg of crude ester obtained by esterification of the crude 2,6-NDCA in advance and molybdenum trioxide 1.2 g was charged, and after substitution with nitrogen, the mixture was heated to 270 ° C. with stirring.
Methanol was supplied at a flow rate of 1.06 kg / hr from the nozzle at the bottom of the reactor to start the esterification reaction. Pressure is 15 kg / cm2Upon reaching G 1, excess methanol and reaction product water were extracted from the degassing line provided at the top of the reactor, and the reaction was carried out for about 3 hours while adjusting to a constant pressure.
After completion of the reaction, the crude ester was taken out. In addition, the ester content extracted with the methanol out of the reactor was recovered as crystals by evaporating the solvent. The total weight of the recovered crystals from methanol and the molten crude ester was 4.93 kg. Table 3 shows the composition of the obtained crude ester. The reaction yield of 2,6-NDCM was 92.8 mol%.
[0033]
[Table 3]
Figure 0004032186
[0034]
(3) Dissolution of crude ester, separation of insoluble substances
A filter set with a 700 mesh metal filter was connected to the liquid draining pipe of the autoclave with a stirrer to form a pressure filtration device. The autoclave was charged with 800 g of the crude ester obtained by the esterification reaction and 4000 g of orthoxylene. The autoclave is heated to about 120 ° C. with stirring and held for about 30 minutes, and then the reactor is filled with nitrogen at about 1 kg / cm2G was pressurized.
The valve of the drain pipe was opened and the ester solution was filtered with a filter. After completion of filtration, the insoluble material collected by the filter was washed with 400 g of orthoxylene heated to about 120 ° C. The washing solution was mixed with the filtered ester solution.
The insoluble material collected by the filter was dried to obtain 41.8 g of crystals. Table 4 shows the composition of the obtained insoluble substance. This insoluble material contains 98% by weight or more of cobalt and manganese contained in the crude 2,6-NDCA of the raw material for the esterification reaction.
[0035]
[Table 4]
Figure 0004032186
[0036]
(4) Recrystallization
The crude ester solution obtained by filtering off the insoluble material in the previous section was cooled to 40 ° C. with stirring to precipitate crystals. The precipitated crystals were separated from the mother liquor by suction filtration with a glass filter. The obtained cake was washed with about 800 g of ortho-xylene and then dried. The crystal weight after drying was 697 g, and the liquid content of the cake calculated from the loss on drying was 11% by weight on a wet basis.
[0037]
(5) Distillation
The ester crystals obtained by recrystallization were purified by batch distillation. Distillation was carried out using a 10-stage distillation column at a top pressure of 16 mmHg, and purified 2,6-NDCM was obtained at a distillation rate of 89% by weight based on the amount charged. The purified 2,6-NDCM obtained had an organic impurity content of 0.028% by weight and an acid value of 0.004 mg-KOH / g.
[0038]
Example 3
Using the crude ester obtained in the esterification reaction of Example 2, the same method as in Example 2 was used except that toluene was used in place of orthoxylene as a solvent for the dissolution step and a washing liquid for the separation cake in the recrystallization step. The crude ester was dissolved and insoluble was separated, recrystallized and distilled to obtain purified 2,6-NDCM.
Table 5 shows the liquid content of the cake obtained by recrystallization and the quality of purified 2,6-NDCM after distillation.
[0039]
Comparative Example 1
Using the crude ester obtained in the esterification reaction of Example 2, the same method as in Example 1 was used, except that methanol was used in place of orthoxylene as the solvent for the dissolution step and the washing liquid for the separation cake in the recrystallization step. The crude ester was dissolved and insoluble was separated, recrystallized and distilled to obtain purified 2,6-NDCM. In the step of dissolving the crude ester, a heating temperature of 130 ° C. is required to dissolve the entire amount of 2,6-NDCM, and the pressure at that time is about 7 kg / cm2G.
Table 5 shows the liquid content of the cake obtained by recrystallization and the quality of purified 2,6-NDCM after distillation. As a characteristic impurity, trimellitic anhydride monomethyl ester, which was considered to be generated by decomposition of trimethyl trimellitic acid that was not removed by recrystallization during distillation, was observed.
[0040]
Example 4 (in the case of the method (B))
800 g of the crude ester obtained in the esterification reaction of Example 2 was subjected to batch distillation under reduced pressure of 16 mmHg using the distillation column used in Example 2 to obtain 664 g of a fraction. This fraction was dissolved in 4000 g of metaxylene and then recrystallized in the same manner as in Example 2 to obtain purified 2,6-NDCM. Table 5 shows the cake liquid content during recrystallization and the quality of purified 2,6-NDCM.
The residue in the distillation was heated and dissolved in 2000 g of the separated mother liquor obtained by recrystallization purification of the distillation fraction together with the ester remaining in the distillation column, and taken out from the distillation column. This pot residue solution was charged into the pressure filtration apparatus used in Example 2, and insolubles were separated by the same operation as in Example 2. The dry weight of the insoluble matter obtained was 43.3 g, and the composition was as shown in Table 6. Also by this method, 98% by weight or more of cobalt and manganese contained in the crude 2,6-NDCA of the raw material for esterification reaction is recovered in the insoluble material.
[0041]
[Table 5]
Figure 0004032186
[0042]
[Table 6]
Figure 0004032186
[0043]
Comparative Example 2
In 287 g of glacial acetic acid, cobalt acetate tetrahydrate, manganese acetate tetrahydrate, 47 wt% hydrogen bromide aqueous solution and water were mixed and dissolved to obtain a cobalt concentration of 0.05 wt%, a manganese concentration of 0.3 wt%, About 300 g of a catalyst solution having a bromine concentration of 0.25 wt% and a water concentration of 3 wt% was prepared.
112 g of the catalyst solution was charged into a 500 ml titanium autoclave equipped with a stirrer, a reflux condenser and a raw material feed pump. The remaining 188 g of catalyst solution was mixed with 37.5 g of 2,6-dimethylnaphthalene, charged into a raw material supply tank, and heated to dissolve dimethylnaphthalene to prepare a raw material solution.
The pressure in the reaction system is 18 kg / cm with nitrogen.2Adjusted to G and heated to 200 ° C. with stirring. After the temperature and pressure were stabilized, 2,6-dimethylnaphthalene, catalyst solution and compressed air were supplied to the reactor to start the oxidation reaction. The raw material liquid was continuously supplied over 1 hour while adjusting the supply air flow rate so that the oxygen concentration in the exhaust gas was 2% by volume. After the supply of the raw material liquid was completed, the supply of air was continued until the oxygen concentration in the exhaust gas reached 10% by volume.
After completion of the reaction, the autoclave was cooled to room temperature, the reaction product was taken out, and suction filtered through a glass filter to separate crystals. The separated cake was weighed and then dried in a drier to obtain 50.7 g of crude 2,6-NDCA crystals. The composition of crude 2,6-NDCA and the 2,6-NDCA yield based on the 2,6-dimethylnaphthalene supplied are shown in Table 7.
[0044]
Example 5 (When the oxidation catalyst metal is recovered and recycled)
The same conditions as in Comparative Example 2 except that the insoluble material containing the oxidation catalyst metal separated and recovered from the ortho-xylene solution of the crude ester in Example 2 was used as part of the cobalt and manganese sources in the preparation of the catalyst solution. By the operation, an oxidation reaction of 2,6-dimethylnaphthalene was performed. The amount of the insoluble material used for the preparation of the catalyst solution was 3.0 g, and the catalyst metal deficiency was adjusted to a predetermined catalyst concentration using cobalt acetate tetrahydrate and manganese acetate tetrahydrate.
The weight of the obtained dry crystals of crude 2,6-NDCA was 53.2 g. Table 7 shows the composition of crude 2,6-NDCA and the 2,6-NDCA yield based on the 2,6-dimethylnaphthalene supplied. In determining the yield, the calculation was performed by subtracting the 2,6-NDCA content in the insoluble substance from the 2,6-NDCA in the reaction product.
[0045]
Example 6
3 g of the insoluble substance containing the oxidation catalyst metal separated and recovered from the ortho-xylene solution of the crude ester in Example 2 was mixed with 60 g of acetic acid containing 30% by weight of water, stirred at 80 ° C. for 20 minutes, and then filtered with a glass filter. It was separated into crystals and filtrate. The migration rate of metal content into the filtrate was 98.1% for cobalt, 95.4% for manganese, and 11.5% for molybdenum.
Next, the mother liquor from which the metal content was extracted was heated to evaporate the solvent and concentrate. An oxidation reaction of 2,6-dimethylnaphthalene was carried out under the same conditions and operation as in Comparative Example 2 except that this concentrated solution was used as a part of the cobalt and manganese sources in the preparation of the catalyst solution. The catalyst metal deficiency was adjusted to a predetermined catalyst concentration using cobalt acetate tetrahydrate and manganese acetate tetrahydrate.
The weight of the obtained dry crystals of crude 2,6-NDCA was 50.8 g. The composition of crude 2,6-NDCA and the 2,6-NDCA yield based on the 2,6-dimethylnaphthalene supplied are shown in Table 7.
[0046]
[Table 7]
Figure 0004032186
[0047]
【The invention's effect】
As is clear from the examples, according to the method of the present invention, extremely high quality dimethyl 2,6-naphthalenedicarboxylate can be obtained from a crude ester obtained by esterifying 2,6-naphthalenedicarboxylic acid with methanol. Moreover, the oxidation catalyst metal can be easily recovered in high yield and can be recycled for use in the oxidation reaction.
Accordingly, dimethyl 2,6-naphthalenedicarboxylate can be produced industrially very advantageously by the present invention, and the industrial significance of the present invention is great.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is an example of a flow chart in the case where a crude ester from which insoluble catalytic metals have been removed by the method (A) in the present invention is purified by recrystallization and then purified by distillation.
FIG. 2 is an example of a flow diagram in the case of purifying by recrystallization after distillation of a crude ester by the method (B) in the present invention.
[Explanation of symbols]
1: Oxidation reactor
2, 6, 8, 33: Solid-liquid separator
3, 9: dryer
4: Esterification reactor
5, 31: Ester dissolution tank
7, 32: Crystallization tank
10: Distillation tower
11: 2,6-dialkylnaphthalene
12: Acetic acid and oxidation reaction catalyst
13: Air
14: Oxidation reaction product
15: Off gas
16: Separate cake
18: Crude 2,6-NDCA
19: Methanol
20: Methanol and reaction product water
21: Crude ester
22, 35: Aromatic hydrocarbon solvent
23: Crude ester solution
24, 37: Separation liquid
25: Solvent insoluble material
26: Recrystallization separation cake
27,39: Recrystallization separation mother liquor
28: High purity 2,6-NDCM
29: High boiling point (distilled kettle remaining)
34: Distillation distillation
36: High boiling point solution
38: recovered crystal

Claims (10)

2,6-ジアルキルナフタレンの分子状酸素によるコバルト及びマンガンを含む重金属及び臭素からなる触媒の存在下にて行う液相酸化で得られる2,6-ナフタレンジカルボン酸をメタノールでエステル化した後、精製して高純度の2,6-ナフタレンジカルボン酸ジメチルを製造するに際し、エステル化反応で生成した粗エステルを減圧下で蒸留して高沸分を除去し、留出した2,6-ナフタレンジカルボン酸ジメチルを芳香族炭化水素溶媒による再結晶で精製品を得、前記高沸分に芳香族炭化水素溶媒を加え一部を加熱溶解し、不溶性物質は濾過または沈降により分離し、酸化触媒金属として前記 2,6- ジアルキルナフタレン酸化の触媒源に循環使用し、不溶性物質を分離回収した前記加熱溶解の溶液からは、冷却、結晶析出により 2,6- ナフタレンジカルボン酸ジメチルを回収する高純度2,6-ナフタレンジカルボン酸ジメチルの製造法。Purification after esterification of 2,6-naphthalenedicarboxylic acid obtained by liquid phase oxidation of 2,6-dialkylnaphthalene with molecular oxygen in the presence of a catalyst consisting of heavy metals and bromine including cobalt and manganese and bromine. Then, when producing high purity dimethyl 2,6-naphthalenedicarboxylate, the crude ester produced by the esterification reaction was distilled under reduced pressure to remove the high boiling point and distilled 2,6-naphthalenedicarboxylic acid. Dimethyl is recrystallized with an aromatic hydrocarbon solvent to obtain a purified product, an aromatic hydrocarbon solvent is added to the high boiling point, and a part is dissolved by heating. Insoluble substances are separated by filtration or sedimentation, and the above-mentioned as an oxidation catalyst metal. circulating used catalyst source of 2,6-dialkyl naphthalene oxide from a solution of the heat dissolving the insoluble material was separated and recovered, cooled, 2,6-naphthalene dicarboxylic acid di by crystallization High purity dimethyl 2,6-naphthalene dicarboxylate of the production process to recover the chill. 再結晶工程で分離された母液の一部を蒸留の高沸分を溶解するための溶媒に用いる請求項に記載の高純度2,6-ナフタレンジカルボン酸ジメチルの製造法。The method for producing dimethyl 2,6-naphthalenedicarboxylate according to claim 1 , wherein a part of the mother liquor separated in the recrystallization step is used as a solvent for dissolving a high boiling point component of distillation. 回収された2,6-ナフタレンジカルボン酸ジメチルをエステル化反応に循環する請求項に記載の高純度2,6-ナフタレンジカルボン酸ジメチルの製造法。The method for producing high-purity dimethyl 2,6-naphthalenedicarboxylate according to claim 1 , wherein the recovered dimethyl 2,6-naphthalenedicarboxylate is circulated in an esterification reaction. 酸化反応で使用する2,6-ジアルキルナフタレンが2,6-ジメチルナフタレンである請求項1〜3の何れかに記載の高純度2,6-ナフタレンジカルボン酸ジメチルの製造法。The method for producing high-purity dimethyl 2,6-naphthalenedicarboxylate according to any one of claims 1 to 3 , wherein the 2,6-dialkylnaphthalene used in the oxidation reaction is 2,6-dimethylnaphthalene. 溶媒として用いる芳香族炭化水素が、100℃〜170℃の範囲の沸点を有する芳香族炭化水素である請求項1〜4の何れかに記載の高純度2,6-ナフタレンジカルボン酸ジメチルの製造法。The method for producing dimethyl 2,6-naphthalenedicarboxylate according to any one of claims 1 to 4 , wherein the aromatic hydrocarbon used as the solvent is an aromatic hydrocarbon having a boiling point in the range of 100 ° C to 170 ° C. . 芳香族炭化水素が、トルエンおよび/またはキシレン類である請求項に記載の高純度2,6-ナフタレンジカルボン酸ジメチルの製造法。6. The process for producing high purity dimethyl 2,6-naphthalenedicarboxylate according to claim 5 , wherein the aromatic hydrocarbon is toluene and / or xylenes. 2,6-ナフタレンジカルボン酸を溶融2,6-ナフタレンジカルボン酸ジメチルに分散させ、これにメタノール蒸気を連続的に供給することによりエステル化反応を行う求項1〜6の何れかに記載の高純度2,6-ナフタレンジカルボン酸ジメチルの製造法。2,6-naphthalene dicarboxylic acid is dispersed in molten dimethyl 2,6-naphthalenedicarboxylate, according to any of the Motomeko 1-6 to perform esterification reaction by this continuously feeding methanol vapor A method for producing high purity dimethyl 2,6-naphthalenedicarboxylate. エステル化反応を、温度190〜320℃、圧力2〜40 kg/cm2 G で行う請求項に記載の高純度2,6-ナフタレンジカルボン酸ジメチルの製造法。The process for producing high purity dimethyl 2,6-naphthalenedicarboxylate according to claim 7 , wherein the esterification reaction is carried out at a temperature of 190 to 320 ° C and a pressure of 2 to 40 kg / cm2G. 粗エステルから回収した不溶性物質を、固体のまま酸化反応器に循環する請求項に記載の高純度2,6-ナフタレンジカルボン酸ジメチルの製造法。The method for producing high-purity dimethyl 2,6-naphthalenedicarboxylate according to claim 1 , wherein the insoluble substance recovered from the crude ester is circulated to the oxidation reactor as a solid. 粗エステルから回収した不溶性物質を水または水分含有低級脂肪族カルボン酸溶媒と混合し撹拌した後、不溶性物質を除去した液を酸化反応の触媒源として用いる請求項に記載の高純度2,6-ナフタレンジカルボン酸ジメチルの製造法。2. The high purity 2,6 according to claim 1 , wherein the insoluble substance recovered from the crude ester is mixed with water or a water-containing lower aliphatic carboxylic acid solvent and stirred, and then the liquid from which the insoluble substance has been removed is used as a catalyst source for the oxidation reaction. -A process for producing dimethyl naphthalenedicarboxylate.
JP11816397A 1997-05-08 1997-05-08 Method for producing high purity dimethyl 2,6-naphthalenedicarboxylate Expired - Fee Related JP4032186B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP11816397A JP4032186B2 (en) 1997-05-08 1997-05-08 Method for producing high purity dimethyl 2,6-naphthalenedicarboxylate
US09/069,815 US6013831A (en) 1997-05-08 1998-04-30 Processes for the production of high-purity dimethyl 2, 6-naphthalenedicarboxylate and naphthalenedicarboxylic acid
TW087106895A TW421642B (en) 1997-05-08 1998-05-05 Processes for the production of high-purity dimethyl 2,6-naphthalenedicarboxylate and naphthalenedicarboxylic acid
EP98303601A EP0877012B1 (en) 1997-05-08 1998-05-07 Process for the production of high-purity dimethyl 2,6-naphthalenedicarboxylate and naphthalenedicarboxylic acid
DE69813361T DE69813361T2 (en) 1997-05-08 1998-05-07 Process for the preparation of high-purity dimethyl 2,6-naphthalene dicarboxylate and 2,6-naphthalenedicarboxylic acid
ES98303601T ES2196489T3 (en) 1997-05-08 1998-05-07 PROCEDURE FOR THE MANUFACTURE OF 2,6-NAFTALENDICARBOXYLATE OF ELEVATED PURITY DIMETHYL AND NAFTALENDICARBOXILIC ACID.
KR1019980016554A KR100562436B1 (en) 1997-05-08 1998-05-08 Process for the preparation of high purity dimethyl 2,6-naphthalenedicarboxylate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11816397A JP4032186B2 (en) 1997-05-08 1997-05-08 Method for producing high purity dimethyl 2,6-naphthalenedicarboxylate

Publications (2)

Publication Number Publication Date
JPH10306059A JPH10306059A (en) 1998-11-17
JP4032186B2 true JP4032186B2 (en) 2008-01-16

Family

ID=14729674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11816397A Expired - Fee Related JP4032186B2 (en) 1997-05-08 1997-05-08 Method for producing high purity dimethyl 2,6-naphthalenedicarboxylate

Country Status (1)

Country Link
JP (1) JP4032186B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006070000A (en) * 2004-09-06 2006-03-16 Mitsubishi Gas Chem Co Inc Preparation method of dimethyl naphthalenedicarboxylate
JP5936947B2 (en) * 2012-08-09 2016-06-22 三菱化学株式会社 Method for producing high-purity vinylene carbonate
CN114773192B (en) * 2022-05-23 2023-09-26 煤炭科学技术研究院有限公司 Method for continuously preparing 2, 6-dimethyl naphthalene dicarboxylate slices
CN114805071A (en) * 2022-05-23 2022-07-29 煤炭科学技术研究院有限公司 Method for continuously refining dimethyl 2, 6-naphthalene dicarboxylate

Also Published As

Publication number Publication date
JPH10306059A (en) 1998-11-17

Similar Documents

Publication Publication Date Title
US5705682A (en) Process for producing highly pure terephthalic acid
KR0152534B1 (en) Extraction process for removal of impurities from terephthalic acid filtrate
JP4272704B2 (en) Process and apparatus for producing purified terephthalic acid
US5292934A (en) Method for preparing aromatic carboxylic acids
EP1214285B1 (en) Process for producing pure terephthalic acid with improved recovery of precursors, solvent and methyl acetate
JPH0558948A (en) Preparation of terephthalic acid
US4302595A (en) Process for the preparation of terephthalic acid by the hydrolysis of intermediate stage crude dimethyl terephthalate
US5338882A (en) Process for the production of DMT-intermediate product of specific purity and pure terephthalic acid
US6150553A (en) Method for recovering methyl acetate and residual acetic acid in the production acid of pure terephthalic acid
EP0877012B1 (en) Process for the production of high-purity dimethyl 2,6-naphthalenedicarboxylate and naphthalenedicarboxylic acid
US4675438A (en) Direct continuous flow integration of production and purification of high purity iso- or terephthalic acid
JP4032186B2 (en) Method for producing high purity dimethyl 2,6-naphthalenedicarboxylate
EP1104396B1 (en) Method for recovering methyl acetate and residual acetic acid in the production of pure terephthalic acid
JP2001226323A (en) Method for recovering benzyl benzoate
JP2924104B2 (en) Method for producing high-purity isophthalic acid
JP3199104B2 (en) Process for producing 2,6-naphthalenedicarboxylic acid and its ester
JPH07238051A (en) Production of naphthalene-dicarboxylic acid of high purity
JP4008803B2 (en) Method for recovering acrylic acid
JP3484792B2 (en) Preparation method of terephthalic acid aqueous slurry
JPH1180074A (en) Production of highly pure 2,6-naphthalene dicarboxylic acid
JPH01121238A (en) Treatment of filtrate containing aromatic carboxylic acid
JPH1129521A (en) Production of naphthalenedicarboxylic acid
JPH08143509A (en) Preparation of terephthalic acid aqueous slurry
JPH04364152A (en) Method for recovering catalyst
JPH05339209A (en) Recovery of effective component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040506

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070402

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070814

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071009

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees