JPH0648982A - Production of high-purity terephthalic acid - Google Patents

Production of high-purity terephthalic acid

Info

Publication number
JPH0648982A
JPH0648982A JP4199606A JP19960692A JPH0648982A JP H0648982 A JPH0648982 A JP H0648982A JP 4199606 A JP4199606 A JP 4199606A JP 19960692 A JP19960692 A JP 19960692A JP H0648982 A JPH0648982 A JP H0648982A
Authority
JP
Japan
Prior art keywords
terephthalic acid
acetic acid
slurry
mother liquor
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4199606A
Other languages
Japanese (ja)
Inventor
Fumio Ogoshi
二三夫 大越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mizushima Aroma Co Ltd
Mitsubishi Gas Chemical Co Inc
Toyobo Co Ltd
Original Assignee
Mizushima Aroma Co Ltd
Mitsubishi Gas Chemical Co Inc
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mizushima Aroma Co Ltd, Mitsubishi Gas Chemical Co Inc, Toyobo Co Ltd filed Critical Mizushima Aroma Co Ltd
Priority to JP4199606A priority Critical patent/JPH0648982A/en
Publication of JPH0648982A publication Critical patent/JPH0648982A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To obtain high-purity terephthalic acid having excellent whiteness by oxidizing p-xylene with molecular oxygen in a solvent in the presence of a specific catalyst in a liquid phase, replacing the mother liquor in the slurry with acetic acid, dissolving under heating and bringing the resultant substance into contact with a catalyst of a noble metal of the group VIII. CONSTITUTION:p-Xylene is oxidized with molecular oxygen in a solvent of acetic acid in the presence of a cobalt or manganese-containing catalyst in a liquid phase at 170-230 deg.C under 10-30 atmospheric pressure and the mother liquor in the slurry of oxidation reaction outflow is replaced with acetic acid having 1-50wt.% (preferably 3-20wt.% water content). The prepared terephthalic acid/acetic acid slurry is dissolved under heating at 230-320 deg.C (preferably 240-300 deg.C), brought into contact with a noble metal of the group VIII in the presence of hydrogen under 20-80kg/cm<2>.G, cooled and crystal of terephthalic acid is precipitated, separated and dried to give the objective terephthalic acid. The mother liquor obtained in the separation of crystal of terephthalic acid is circulated, returned to the first process and used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ポリエステル樹脂、繊
維、フィルム等のポリマー中間原料として有用な白度の
優れた高純度テレフタル酸の製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a process for producing high-purity terephthalic acid having excellent whiteness, which is useful as an intermediate raw material for polymers such as polyester resins, fibers and films.

【0002】[0002]

【従来の技術】テレフタル酸はパラキシレンを酸化して
製造され、通常は酢酸を溶媒としてコバルト、マンガン
等の重金属塩触媒、又はこれに臭素化合物、或はアセト
アルデヒドのような促進剤を加えた触媒が用いられる。
液相酸化によって得られた粗テレフタル酸は通常4−カ
ルボキシベンズアルデヒド(4CBA)をはじめ多量の
不純物を含んでおり、このままグリコールと反応させて
ポリエステルにするには適さない。このように4CBA
等の不純物を含む粗テレフタル酸から高純度テレフタル
酸を製造する方法としては、酸化或は還元などの反応に
より精製処理する多くの方法が知られている。水素化還
元精製法としては、例えば特公昭41−16860号に
粗テレフタル酸の水溶液を高温で水素と接触処理(以
下、これを「接触水素化」と称する)する方法が記載さ
れている。また特公昭51−32618号及び特公昭5
1−38698号にはその改良法が示されている。
BACKGROUND OF THE INVENTION Terephthalic acid is produced by oxidizing para-xylene, and is usually a catalyst of a heavy metal salt of cobalt, manganese or the like using acetic acid as a solvent, or a catalyst containing a bromine compound or a promoter such as acetaldehyde. Is used.
Crude terephthalic acid obtained by liquid-phase oxidation usually contains a large amount of impurities such as 4-carboxybenzaldehyde (4CBA), and is not suitable for reacting with glycol as it is to form polyester. 4CBA like this
As a method for producing high-purity terephthalic acid from crude terephthalic acid containing impurities such as, there are known many methods of purifying by a reaction such as oxidation or reduction. As a hydrogenation reduction purification method, for example, Japanese Patent Publication No. 41-16860 describes a method in which an aqueous solution of crude terephthalic acid is subjected to contact treatment with hydrogen at high temperature (hereinafter, referred to as "catalytic hydrogenation"). In addition, Japanese Patent Publication No. 51-32618 and Japanese Patent Publication No. 5
An improved method is shown in 1-38698.

【0003】[0003]

【発明が解決しようとする問題点】上記の水素化還元精
製法により、酸化で得られた粗テレフタル酸水溶液を精
製すれば高純度テレフタル酸を得ることができるが、こ
れを工業的規模で実施した場合、次のような問題点があ
る。 (1)液相酸化により得られた粗テレフタル酸結晶の水
溶液を用いるので、全体の工程は、液相酸化→晶析→分
離→乾燥→再溶解→接触水素化→晶析→分離→乾燥と多
くの工程があり、これらにかかわる多大な投資、複雑な
運転制御が問題となる。 (2)水添精製の溶媒として水を用いるために、結晶を
分離した母液中のトルイル酸や同伴するテレフタル酸は
母液とともに排出されるため排水処理設備を必要とす
る。
High-purity terephthalic acid can be obtained by purifying the crude terephthalic acid aqueous solution obtained by oxidation by the above-mentioned hydrogenation reduction purification method, but this is carried out on an industrial scale. If you do, there are the following problems. (1) Since an aqueous solution of crude terephthalic acid crystals obtained by liquid phase oxidation is used, the overall steps are liquid phase oxidation → crystallization → separation → drying → redissolution → catalytic hydrogenation → crystallization → separation → drying. There are many processes, and large investment and complicated operation control related to these are problems. (2) Since water is used as a solvent for hydrorefining, toluic acid in the mother liquor from which the crystals have been separated and terephthalic acid accompanying it are discharged together with the mother liquor, so that a wastewater treatment facility is required.

【0004】[0004]

【問題点を解決するための手段】発明者等は、テレフタ
ル酸製造にかかる上記の如き問題点を克服するために鋭
意検討した結果、酢酸溶媒のもとでパラキシレンを液相
酸化して得られたスラリー状の酸化反応流出物の結晶分
離を行わずに、この酸化反応流出物中の母液を新鮮な酢
酸に置換して粗テレフタル酸の酢酸溶液とし、これを接
触水素化することにより、テレフタル酸の製造工程が簡
略化されること、また接触水素化後のテレフタル酸結晶
を分離する際に得られた母液を循環使用することにより
排水量が著しく削減され、収率が向上することを見出
し、本発明に至った。
[Means for Solving the Problems] The inventors of the present invention have made extensive studies to overcome the above-mentioned problems in the production of terephthalic acid, and as a result, obtained by liquid-phase oxidation of paraxylene in an acetic acid solvent. Without crystallizing the slurry-like oxidation reaction effluent, the mother liquor in the oxidation reaction effluent was replaced with fresh acetic acid to give a solution of crude terephthalic acid in acetic acid, and by catalytic hydrogenation, It was found that the production process of terephthalic acid is simplified, and that the mother liquor obtained when separating terephthalic acid crystals after catalytic hydrogenation is circulated and used, the amount of wastewater is significantly reduced and the yield is improved. The present invention has been reached.

【0005】即ち本発明は、パラキシレンを分子状酸素
により液相酸化してテレフタル酸を製造するに際し、 (a)酢酸溶媒中コバルトおよびマンガンを含有する触
媒の存在下、パラキシレンを分子状酸素により液相酸化
する工程 (b)工程(a)からの酸化反応流出物スラリー中の母
液を1〜50重量%の水分を含む酢酸と置換する工程 (c)工程(b)で得られたテレフタル酸/酢酸スラリ
ーを加熱溶解し、水素の存在下、第VIII族貴金属触媒と
接触処理した後、冷却してテレフタル酸結晶を析出、分
離、乾燥する工程 を有することを特徴とする高純度テレフタル酸の製造法
である。
That is, according to the present invention, when para-xylene is liquid-phase oxidized with molecular oxygen to produce terephthalic acid, (a) para-xylene is added to molecular oxygen in the presence of a catalyst containing cobalt and manganese in an acetic acid solvent. (B) Substituting the mother liquor in the oxidation reaction effluent slurry from step (a) with acetic acid containing 1-50 wt% water (c) The terephthalate obtained in step (b) High-purity terephthalic acid, which comprises the steps of heating and dissolving an acid / acetic acid slurry, contacting it with a Group VIII noble metal catalyst in the presence of hydrogen, and then cooling to precipitate, separate, and dry terephthalic acid crystals. Is a manufacturing method of.

【0006】また前述の如く工程(c)のテレフタル酸
結晶を分離する際に得られた母液を工程(a)に循環使
用することにより、テレフタル酸製造装置の排水量が著
しく削減され、またテレフタル酸の収率が向上する。以
下、本発明を工程の順に説明する。
Further, as described above, by recycling the mother liquor obtained when separating the terephthalic acid crystals in the step (c) to the step (a), the amount of waste water discharged from the terephthalic acid production apparatus is remarkably reduced, and the terephthalic acid is also reduced. Yield is improved. Hereinafter, the present invention will be described in the order of steps.

【0007】(a)液相酸化工程 液相酸化工程の触媒には、通常コバルト、マンガンおよ
び臭素化合物が用いられる。また臭素化合物の代わりに
アセトアルデヒド、メチルエチルケトン等の促進剤を用
いる方法も行われる。この液相酸化工程には通常3〜2
0%程度の水分を含有した酢酸溶媒が用いられる。酸化
反応のための分子状酸素としては通常空気または酸素が
用いられる。液相酸化の反応温度は170〜230℃、
圧力は10〜30気圧である。
(A) Liquid Phase Oxidation Step Usually, cobalt, manganese and bromine compounds are used as a catalyst in the liquid phase oxidation step. A method of using an accelerator such as acetaldehyde or methyl ethyl ketone instead of the bromine compound is also performed. This liquid phase oxidation step usually takes 3 to 2
An acetic acid solvent containing about 0% water is used. Air or oxygen is usually used as the molecular oxygen for the oxidation reaction. The reaction temperature of the liquid phase oxidation is 170 to 230 ° C,
The pressure is 10 to 30 atmospheres.

【0008】(b)液置換工程 液相酸化工程を終えたスラリー状の反応流出物中にはテ
レフタル酸結晶以外に4CBA、トルイル酸、触媒その
他種々の不純物を含有している。本工程はこの反応流出
物を酢酸の上昇流中に導き、酸化反応母液は酢酸の上昇
液流とともに上方へ、テレフタル酸結晶は酢酸中を沈降
させ、酢酸の一部とともに下方へ抜き出す工程である。
本工程で用いる酢酸中の水分濃度は1〜50重量%、好
ましくは3〜20重量%の範囲とする。酢酸の温度、即
ち液置換工程の温度は特に制限はないが、高温で液置換
すれば抜き出したテレフタル酸結晶中の不純物がより少
なくなる。また酸化反応温度より著しく低い温度で液置
換するためには、酸化工程と液置換工程の間に適当な結
晶槽の設置が必要になる。従って液置換工程の温度はお
おむね酸化反応温度−50℃以内にするのが好ましい。
圧力は溶媒を液相に維持するに足りる圧力である。酢酸
の上昇液流の流速は装置の構造、結晶の大きさなどによ
っても変化するが、0.001〜0.01m/sec程度が
好ましい。流速が低すぎると母液の置換が不充分とな
る。また流速が高すぎると一部のテレフタル酸結晶が充
分に沈降せず上昇液流とともに上方へ取り出されること
になるので好ましくない。
(B) Liquid Replacement Step The slurry-like reaction effluent after the liquid phase oxidation step contains 4CBA, toluic acid, a catalyst and various other impurities in addition to terephthalic acid crystals. In this step, this reaction effluent is introduced into an ascending flow of acetic acid, and the mother liquor of the oxidation reaction is taken out upward together with the ascending liquid flow of acetic acid, and terephthalic acid crystals are precipitated in acetic acid and taken out together with part of acetic acid. .
The water concentration in acetic acid used in this step is in the range of 1 to 50% by weight, preferably 3 to 20% by weight. The temperature of acetic acid, that is, the temperature of the liquid replacement step is not particularly limited, but if liquid replacement is performed at a high temperature, the impurities in the extracted terephthalic acid crystals will be smaller. Further, in order to carry out liquid replacement at a temperature significantly lower than the oxidation reaction temperature, it is necessary to install an appropriate crystallization tank between the oxidation step and the liquid replacement step. Therefore, it is preferable that the temperature of the liquid replacement step is generally within the oxidation reaction temperature −50 ° C.
The pressure is sufficient to keep the solvent in the liquid phase. The flow rate of the ascending liquid flow of acetic acid varies depending on the structure of the apparatus, the size of the crystal, etc., but is preferably about 0.001 to 0.01 m / sec. If the flow rate is too low, the replacement of the mother liquor will be insufficient. On the other hand, if the flow rate is too high, some terephthalic acid crystals will not fully settle and will be taken out upward together with the rising liquid flow, which is not preferable.

【0009】上記の結晶と反応溶媒の分離装置の構造は
酢酸の上昇液流がバックミキシングを伴わずにある程度
の線速度をもって上昇させるために、塔状のものである
ことが望ましい。このような目的を達するためには内部
に適宜バッフルを有する塔、あるいは多孔板塔などが好
適である。塔内に撹拌機は必ずしも必要でないが、結晶
が酢酸中に懸濁、沈降する過程において酢酸と結晶の接
触を良くし、結晶中に同伴する反応母液を除去するた
め、撹拌機を設けることが効果的である。このような目
的を達成するためにはいわゆるRDC塔(Rotary
Disc Contactor)の使用が推奨され
る。液置換塔頂から得られる液流は主としてそのまま、
あるいは適宜濃縮などの処理をした上で酸化反応溶媒と
して工程 (a) で再使用される。塔底から抜き出したテ
レフタル酸の酢酸溶媒スラリー液流は工程 (c) へ導か
れる。
The structure of the apparatus for separating the crystal and the reaction solvent is preferably columnar in order that the rising liquid flow of acetic acid rises at a certain linear velocity without backmixing. In order to achieve such a purpose, a tower having baffles inside or a perforated plate tower is suitable. A stirrer is not necessarily required in the column, but a stirrer should be provided in order to improve the contact between acetic acid and crystals and to remove the reaction mother liquor entrained in the crystals in the process of suspending and settling the crystals in acetic acid. It is effective. In order to achieve such an object, a so-called RDC tower (Rotary)
Use of the Disc Contactor is recommended. The liquid stream obtained from the top of the liquid displacement tower is mainly as it is,
Alternatively, after appropriate treatment such as concentration, it is reused in step (a) as an oxidation reaction solvent. The acetic acid solvent slurry liquid stream of terephthalic acid extracted from the bottom of the column is guided to step (c).

【0010】(c)接触水素化工程 上記により得られたテレフタル酸の酢酸溶媒スラリーを
加熱溶解し、水素の存在下周期律表第VIII族貴金属触媒
と接触水素化処理する。なお工程 (b) の塔底から抜き
出したテレフタル酸の酢酸溶媒スラリー液流を接触水素
化装置に導く前に、後述する処理温度でのテレフタル酸
溶解度以下のスラリー濃度とするために、必要に応じて
所定量の酢酸を加えて調整しなければならない。この工
程は高圧高温下で行う。テレフタル酸の酢酸への溶解度
は温度に大きく依存するため低い温度では低濃度のテレ
フタル酸溶液しか処理できず、工業的に不利なので24
0℃以上に保持する必要がある。しかし温度が高すぎる
と副反応を生じるおそれがあるとともに酢酸の水素化分
解を招くので、通常230〜320℃、好ましくは24
0〜300℃の温度が選ばれる。テレフタル酸溶液の濃
度は10〜30重量%の範囲が好ましく、採択した温度
に対しテレフタル酸が完全に溶解する濃度以下の濃度で
あればよい。圧力は溶媒の液相を保持するに充分で、か
つ接触水素化に適切な水素分圧を有する圧力であればよ
く、通常20〜80kg/cm2 Gの範囲である。水素
量は少なくとも4CBAに対し2倍モル以上を供給する
ことが望ましい。処理時間は実質的に接触反応が進行す
るに充分な時間であれば良く、通常1〜300分、好ま
しくは2〜120分の範囲である。
(C) Catalytic hydrogenation step The acetic acid solvent slurry of terephthalic acid obtained above is dissolved by heating, and catalytic hydrogenation treatment is carried out in the presence of hydrogen with a Group VIII noble metal catalyst of the periodic table. Before introducing the acetic acid solvent slurry liquid stream of terephthalic acid extracted from the bottom of the step (b) to the catalytic hydrogenation device, if necessary, in order to make the slurry concentration equal to or lower than the solubility of terephthalic acid at the treatment temperature described later. The amount of acetic acid must be added to adjust. This step is performed under high pressure and high temperature. Since the solubility of terephthalic acid in acetic acid greatly depends on the temperature, only a low concentration terephthalic acid solution can be processed at low temperatures, which is industrially disadvantageous.
It is necessary to keep at 0 ° C or higher. However, if the temperature is too high, side reactions may occur and hydrogenolysis of acetic acid may occur. Therefore, the temperature is usually 230 to 320 ° C., preferably 24.
A temperature of 0-300 ° C is chosen. The concentration of the terephthalic acid solution is preferably in the range of 10 to 30% by weight, and may be a concentration below the concentration at which the terephthalic acid is completely dissolved at the selected temperature. The pressure may be a pressure that is sufficient to maintain the liquid phase of the solvent and has a hydrogen partial pressure suitable for catalytic hydrogenation, and is usually in the range of 20 to 80 kg / cm 2 G. It is desirable that the amount of hydrogen is at least twice the molar amount of 4 CBA. The treatment time may be a time that is substantially sufficient for the catalytic reaction to proceed, and is usually in the range of 1 to 300 minutes, preferably 2 to 120 minutes.

【0011】接触水素化後のテレフタル酸溶液は高温下
で濾過され、微量の水素化触媒の破片等の不溶解成分が
除かれた後、冷却してテレフタル酸を晶析させ、次いで
結晶を固液分離する。分離した結晶を洗浄後乾燥するこ
とにより白色度の優れた高純度テレフタル酸が得られ
る。結晶を分離した母液は再濾過の後、その一部を
(a) の酸化工程へ循環され、残部は (c) の接触水素
化工程へ循環される。再濾過された濾液にはテレフタル
酸およびp-トルイル酸が溶解しており、酸化工程で粗テ
レフタル酸として回収されるので、収率が向上する。
After the catalytic hydrogenation, the terephthalic acid solution is filtered at a high temperature to remove a small amount of insoluble components such as fragments of the hydrogenation catalyst, and then cooled to crystallize terephthalic acid, and then the crystals are solidified. Separate the liquid. Highly pure terephthalic acid with excellent whiteness can be obtained by washing the separated crystals and drying them. The mother liquor from which the crystals were separated was refiltered and then part of it was removed.
It is recycled to the oxidation step (a), and the rest is recycled to the catalytic hydrogenation step (c). Since the terephthalic acid and p-toluic acid are dissolved in the refiltered filtrate and recovered as crude terephthalic acid in the oxidation step, the yield is improved.

【0012】この分離母液の再濾過処理は、結晶が析出
しない温度で行う必要があり、多孔性の濾過材を通過さ
せる方法が好ましい。かかる濾過処理を必要とする理由
は、接触水素化に用いた第VIII族貴金属触媒が液相酸化
反応に阻害作用を及ぼすためである。濾過処理には開孔
0.1〜5 μm の多孔性材料からなるフイルターを通過さ
せる方法が好適である。特に高温で濾過する場合の耐腐
性基材として、炭素、セラミックス、ガラス、焼結金属
等の多孔性材料を用いることが望ましい。
The re-filtration of the separated mother liquor must be carried out at a temperature at which crystals do not precipitate, and a method of passing a porous filter medium is preferable. The reason why such filtration treatment is necessary is that the Group VIII noble metal catalyst used for catalytic hydrogenation exerts an inhibitory action on the liquid phase oxidation reaction. Open holes for filtration
A preferred method is to pass a filter made of a porous material having a diameter of 0.1 to 5 μm. In particular, it is desirable to use a porous material such as carbon, ceramics, glass, and sintered metal as the anticorrosive base material when filtering at high temperature.

【0013】[0013]

【実施例】次に実施例によって本発明を説明する。ただ
し本願はこれらの実施例により制限されるものではな
い。なお着色性不純物を示すOD340 値はテレフタル酸
結晶の2gを2N水酸化カリウム溶液25mlに溶解し
た後、50mm幅ガラスセルを用いて測定した波長34
0mμでの吸光度である。
EXAMPLES The present invention will now be described with reference to examples. However, the present application is not limited to these examples. The OD 340 value indicating a coloring impurity was determined by dissolving 2 g of terephthalic acid crystal in 25 ml of 2N potassium hydroxide solution and then measuring the wavelength at a wavelength of 34 with a 50 mm wide glass cell.
Absorbance at 0 mμ.

【0014】実施例1 (a)酸化工程 撹拌装置、還流冷却装置、加熱装置を装備し、空気導入
口、排ガス排出口、還流液還流口を有する耐圧チタン製
の反応器に酢酸、酢酸コバルト、酢酸マンガン、臭化水
素を仕込み昇温後、原料パラキシレンと空気を導入して
酸化反応を行った。反応温度は200℃とした。
Example 1 (a) Oxidation step Acetic acid and cobalt acetate were placed in a pressure-resistant titanium reactor equipped with a stirrer, a reflux cooling device, and a heating device, and having an air inlet, an exhaust gas outlet, and a reflux liquid reflux inlet. After manganese acetate and hydrogen bromide were charged and the temperature was raised, raw material paraxylene and air were introduced to carry out an oxidation reaction. The reaction temperature was 200 ° C.

【0015】(b)液置換工程 酸化反応器に直結した酸化反応流出物導入口、熱酢酸送
入口および上部、下部からの排出口を有するチタン製の
円筒形分離塔(内径25mm、有効長さ1500mm)
を設置し、酸化反応流出物導入口は底面から750mm
の位置に、また熱酢酸導入口は底面から200mmとし
た。この分離塔の上部、下部の排出口にはそれぞれ内容
積50Lの還流冷却器、撹拌装置および液面検出器を備
えた受器を結合した。酸化反応流出物を導入するにあた
っては、あらかじめ分離塔を200℃に保つように加熱
し、熱酢酸入口より毎時5.7kgの割合で200℃の熱
酢酸(10重量%の水分を含む)を供給し、塔が熱酢酸
で満たされたら上部及び下部の排出口より受器へ排出し
た。酸化反応流出物を7.1kg/hrの割合で分離塔に
導き、分離塔の塔頂から6.2kg/hr、塔底から6.6
kg/hr(内テレフタル酸1.8kg/hr)を抜き出
す。塔底の受器に受けたテレフタル酸の酢酸スラリーを
常温まで冷却して抜き出した。
(B) Liquid replacement step A cylindrical separation column made of titanium (inner diameter 25 mm, effective length) having an oxidation reaction effluent inlet directly connected to the oxidation reactor, a thermal acetic acid inlet and outlets from the upper and lower portions. 1500 mm)
Is installed, and the oxidation reaction effluent inlet is 750 mm from the bottom.
And the hot acetic acid inlet was 200 mm from the bottom. To the upper and lower outlets of this separation column, receivers each equipped with a reflux condenser having an internal volume of 50 L, a stirring device and a liquid level detector were connected. When introducing the oxidative reaction effluent, the separation tower is heated in advance so as to be maintained at 200 ° C, and hot acetic acid at 200 ° C (containing 10% by weight of water) is supplied from the hot acetic acid inlet at a rate of 5.7 kg per hour. Then, when the tower was filled with hot acetic acid, it was discharged to the receiver through the upper and lower discharge ports. The oxidation reaction effluent was introduced into the separation column at a rate of 7.1 kg / hr, and 6.2 kg / hr from the top of the separation column and 6.6 from the bottom of the column.
Withdraw kg / hr (internal terephthalic acid 1.8 kg / hr). The acetic acid slurry of terephthalic acid received in the receiver at the bottom of the tower was cooled to room temperature and extracted.

【0016】(c)接触水素化工程 接触水素化装置は、水素供給口、テレフタル酸結晶など
の再溶解管、触媒層、晶析槽及び加熱装置からなる流通
式装置を使用した。触媒には椰子殻活性炭(4〜8メッ
シュ)にパラジュウムを担持させた粒状パラジュウム触
媒(パラジュウム 0.5 wt%担持)200mlを充填
した。反応温度は240℃に保持した。工程(b)で抜
き出したテレフタル酸酢酸スラリー100重量部に対し
て酢酸(10重量%の水分を含む)200重量部を加え
た混合物を1200kg/h、水素を2.4nL/hの速
度で供給し反応させた。反応生成物は100℃の晶析器
に移しテレフタル酸結晶を析出させた後、抜き出した。
得られたスラリーを酢酸で洗浄しながら濾過分離後乾燥
し、テレフタル酸を得た。得られたテレフタル酸をポー
ラログフで分析した結果4CBAは検出されず、またメ
チルエステル化してガスクロマトグラフによりp−トル
イル酸を分析したが、これも検出されなかった。OD
340 は0.1であった。
(C) Catalytic Hydrogenation Process As the catalytic hydrogenation device, a flow-through type device comprising a hydrogen supply port, a remelting tube for terephthalic acid crystals, a catalyst layer, a crystallization tank and a heating device was used. The catalyst was charged with 200 ml of a granular palladium catalyst (supporting 0.5 wt% of palladium) in which palladium was supported on coconut shell activated carbon (4 to 8 mesh). The reaction temperature was kept at 240 ° C. A mixture obtained by adding 200 parts by weight of acetic acid (containing 10% by weight of water) to 100 parts by weight of the terephthalic acid acetic acid slurry extracted in the step (b) is supplied at a rate of 1200 kg / h and hydrogen at a rate of 2.4 nL / h. Then reacted. The reaction product was transferred to a crystallizer at 100 ° C. to precipitate terephthalic acid crystals and then extracted.
The resulting slurry was washed with acetic acid, separated by filtration, and dried to obtain terephthalic acid. As a result of analyzing the obtained terephthalic acid by polarogov, 4CBA was not detected, and p-toluic acid was analyzed by gas chromatography after methyl esterification, but this was also not detected. OD
The 340 was 0.1.

【0017】実施例2 実施例1において、テレフタル酸の結晶を分離した濾過
母液を100℃に加熱し、0.5μmのカーボン製フィル
ターで再濾過した後、得られた酢酸溶液を液相酸化工程
の溶媒に用いた。この結果、液相酸化および接触水素化
工程の反応の状況は新しい酢酸を使用した場合と全く変
わらず、同等の製品が得られた。
Example 2 In Example 1, the filtered mother liquor from which the terephthalic acid crystals were separated was heated to 100 ° C. and refiltered with a 0.5 μm carbon filter, and then the resulting acetic acid solution was subjected to a liquid phase oxidation step. Used as the solvent. As a result, the reaction conditions of the liquid phase oxidation and catalytic hydrogenation steps were completely the same as when fresh acetic acid was used, and an equivalent product was obtained.

【0018】[0018]

【発明の効果】本発明の方法を用いることにより、前述
のテレフタル酸の製造工程において、酸化反応後の晶
析、分離、乾燥および再溶解工程が不要となる。このた
めテレフタル酸の製造工程が簡略化され、投資額の低減
および操作の単純化が図られる。また接触水素化後の分
離母液は液相酸化反応の溶媒として循環再使用できるの
で排水量が著しく削減され、更にこれにより分離母液中
のテレフタル酸およびp-トルイル酸がテレフタル酸とし
て回収されるため収率が向上する。
By using the method of the present invention, the crystallization, separation, drying and re-dissolution steps after the oxidation reaction are unnecessary in the above-mentioned terephthalic acid production step. Therefore, the manufacturing process of terephthalic acid is simplified, the investment amount is reduced and the operation is simplified. In addition, the separated mother liquor after catalytic hydrogenation can be reused as a solvent for the liquid-phase oxidation reaction, so the amount of wastewater is significantly reduced, and by this, terephthalic acid and p-toluic acid in the separated mother liquor are recovered as terephthalic acid. The rate is improved.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】パラキシレンを分子状酸素により液相酸化
してテレフタル酸を製造するに際し、 (a)酢酸溶媒中コバルトおよびマンガンを含有する触
媒の存在下、パラキシレンを分子状酸素により液相酸化
する工程 (b)工程(a)からの酸化反応流出物スラリー中の母
液を1〜50重量%の水分を含む酢酸と置換する工程 (c)工程(b)で得られたテレフタル酸/酢酸スラリ
ーを加熱溶解し、水素の存在下、第VIII族貴金属触媒と
接触処理した後、冷却してテレフタル酸結晶を析出、分
離、乾燥する工程 を有することを特徴とする高純度テレフタル酸の製造法
1. When liquid phase oxidation of para-xylene with molecular oxygen to produce terephthalic acid, (a) liquid phase oxidation of para-xylene with molecular oxygen in the presence of a catalyst containing cobalt and manganese in an acetic acid solvent. Step of oxidizing (b) Step of replacing mother liquor in the oxidation reaction effluent slurry from step (a) with acetic acid containing 1 to 50% by weight of water (c) Terephthalic acid / acetic acid obtained in step (b) A method for producing high-purity terephthalic acid, which comprises the steps of dissolving a slurry by heating, subjecting the slurry to contact treatment with a Group VIII noble metal catalyst in the presence of hydrogen, and then cooling to precipitate, separate, and dry terephthalic acid crystals.
【請求項2】工程(c)のテレフタル酸結晶を分離する
際に得られた母液を工程(a)に循環使用する請求項1
の高純度テレフタル酸の製造法
2. The mother liquor obtained when separating the terephthalic acid crystals of step (c) is recycled to step (a).
Of high-purity terephthalic acid
JP4199606A 1992-07-27 1992-07-27 Production of high-purity terephthalic acid Pending JPH0648982A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4199606A JPH0648982A (en) 1992-07-27 1992-07-27 Production of high-purity terephthalic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4199606A JPH0648982A (en) 1992-07-27 1992-07-27 Production of high-purity terephthalic acid

Publications (1)

Publication Number Publication Date
JPH0648982A true JPH0648982A (en) 1994-02-22

Family

ID=16410663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4199606A Pending JPH0648982A (en) 1992-07-27 1992-07-27 Production of high-purity terephthalic acid

Country Status (1)

Country Link
JP (1) JPH0648982A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100708919B1 (en) * 2005-05-30 2007-04-17 삼성석유화학(주) A method of recovering terephthalic acid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100708919B1 (en) * 2005-05-30 2007-04-17 삼성석유화학(주) A method of recovering terephthalic acid

Similar Documents

Publication Publication Date Title
JP3729284B2 (en) Method for producing high purity terephthalic acid
JP3757995B2 (en) Method for producing high purity isophthalic acid
KR100969841B1 (en) Method of removing iron contaminants from liquid streams during the manufacture and/or purification of aromatic acids
EP1214285B1 (en) Process for producing pure terephthalic acid with improved recovery of precursors, solvent and methyl acetate
JPH0558948A (en) Preparation of terephthalic acid
JP4055913B2 (en) Method for producing high purity terephthalic acid
JP3939367B2 (en) Method for producing high purity terephthalic acid
JP2893860B2 (en) Production method of high purity isophthalic acid
EP1104396B1 (en) Method for recovering methyl acetate and residual acetic acid in the production of pure terephthalic acid
JP3269508B2 (en) Method for producing high-purity isophthalic acid
JPH0648982A (en) Production of high-purity terephthalic acid
CA2295650C (en) Improved process for separating pure terephthalic acid
JP3201436B2 (en) Production method of high purity isophthalic acid
JPH0717900A (en) Production of high-purity isophthalic acid
JPH04145044A (en) Production of high-purity terephthalic acid
JPH0717901A (en) Production of high-purity isophthalic acid
JPH0454149A (en) Production of high-purity isophthalic acid
JPH072731A (en) Production of isophthalic acid of high purity
KR100527416B1 (en) Method for producing high purity isophthalic acid
RU2152937C1 (en) Method of preparing intramolecular anhydride of trimellitic acid
JPH07173100A (en) Production of high-purity 2,6-naphthalene-dicarboxylic acid
KR820002006B1 (en) Process for recovering terephthalic acid
JPH08157415A (en) Production of high-purity terephthalic acid
JPH10195016A (en) Production of high-purity terephthalic acid
JP2002069031A (en) Method for manufacturing high-purity pyromellitic acid and high-purity pyromellitic anhydride