JPH08157415A - Production of high-purity terephthalic acid - Google Patents

Production of high-purity terephthalic acid

Info

Publication number
JPH08157415A
JPH08157415A JP6300947A JP30094794A JPH08157415A JP H08157415 A JPH08157415 A JP H08157415A JP 6300947 A JP6300947 A JP 6300947A JP 30094794 A JP30094794 A JP 30094794A JP H08157415 A JPH08157415 A JP H08157415A
Authority
JP
Japan
Prior art keywords
terephthalic acid
catalyst
catalytic hydrogenation
catalytic
purity terephthalic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6300947A
Other languages
Japanese (ja)
Inventor
Fumiya Arima
文哉 在間
Fumio Ogoshi
二三夫 大越
Masahito Inari
雅人 稲荷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mizushima Aroma Co Ltd
Mitsubishi Gas Chemical Co Inc
Toyobo Co Ltd
Original Assignee
Mizushima Aroma Co Ltd
Mitsubishi Gas Chemical Co Inc
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mizushima Aroma Co Ltd, Mitsubishi Gas Chemical Co Inc, Toyobo Co Ltd filed Critical Mizushima Aroma Co Ltd
Priority to JP6300947A priority Critical patent/JPH08157415A/en
Publication of JPH08157415A publication Critical patent/JPH08157415A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE: To stably produce high-purity terephthalic acid by adding formic acid at a stage having strong initial catalytic activity after the exchange of a catalytic hydrogenation catalyst in a terephthalic acid production process, thereby generating CO to temporarily poison the catalyst and control the catalytic activity. CONSTITUTION: Crude terephthalic acid (containing 4-carboxybenzaldehyde as an impurity) is produced by the liquid-phase oxidation of a p-phenylene compound having carboxyl groups or carboxyl-forming oxidizable substituents at p-sites. The crude terephthalic acid is dissolved in hot water at >=230 deg.C and subjected to catalytic hydrogenation in the presence of a group 8 noble metal catalyst to obtain high-purity terephthalic acid. In the above process, a part or total of the catalytic hydrogenation catalyst having lowered activity is removed from the reactor, a new catalyst is filled in the reactor and the catalyst is maintained in stationary state by adding formic acid to the system when the catalyst has high catalytic activity. Terephthalic acid having stable quality can be produced over a long period from the initial stage after the exchange of the catalytic hydrogenation catalyst.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は繊維、フィルム、工業用
部材、一般成形品等に広く使用されているポリエステル
樹脂の主原料である高純度テレフタル酸を製造する方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing high-purity terephthalic acid, which is a main raw material for polyester resins widely used for fibers, films, industrial members, general molded articles and the like.

【0002】[0002]

【従来の技術】テレフタル酸は通常、酢酸を溶媒として
使用し、コバルトおよびマンガン触媒に臭素化合物を助
触媒とし、或いはコバルト触媒にアセトアルデヒドのよ
うな促進剤を加えてp−キシレンを高温高圧下に空気酸
化して製造される。この液相空気酸化によって得られた
粗テレフタル酸は、通常白色度が劣っており、4−カル
ボキシベンズアルデヒド(4CBAと称す)をはじめパ
ラトルイル酸など、多量の不純物を含んでおり、この粗
テレフタル酸のままではグリコールと反応させてポリエ
ステルにするには適さない。またテレフタル酸を上記方
法と同様に酢酸を溶媒とし、高温高圧下、コバルト触媒
を使用して、液相酸素酸化して製造する方法も提案され
ているが、この方法においても4CBA等の不純物の副
生が多く、この粗テレフタル酸のままでは前記の方法の
場合と同様、直ちにはグリコール等との反応には適さな
い。
BACKGROUND OF THE INVENTION Terephthalic acid usually uses acetic acid as a solvent, a bromine compound is used as a cocatalyst for cobalt and manganese catalysts, or a promoter such as acetaldehyde is added to the cobalt catalyst to make p-xylene under high temperature and high pressure. Manufactured by air oxidation. The crude terephthalic acid obtained by this liquid phase air oxidation usually has poor whiteness and contains a large amount of impurities such as 4-carboxybenzaldehyde (referred to as 4CBA) and paratoluic acid. As it is, it is not suitable for reacting with glycol to form polyester. Also, a method has been proposed in which terephthalic acid is produced by liquid phase oxygen oxidation using acetic acid as a solvent and a cobalt catalyst under high temperature and high pressure as in the above method. Since there are many by-products, this crude terephthalic acid is not immediately suitable for reaction with glycol etc. as in the case of the above method.

【0003】このような4CBA等の不純物を含む粗テ
レフタル酸から高純度テレフタル酸を製造する方法とし
ては酸化、還元などの反応、或いは単に再結晶により精
製処理する方法(高温での第8族貴金属触媒の存在下に
接触水素化処理または接触処理、再結晶処理、酸化処
理、リスラリー処理、或いはこれらを組み合わせた処理
等)が知られているが、現在商業的に行われているのは
主として接触水素化処理法であり、例えば特公昭41−
16860号には粗テレフタル酸の水溶液を230℃以
上の高温溶媒中で第8族貴金属触媒の存在下に接触水素
化処理する方法が記載されており、また特公昭47−4
9049号にはその改良法が記載されている。
As a method for producing high-purity terephthalic acid from such crude terephthalic acid containing impurities such as 4CBA, a method such as a reaction such as oxidation or reduction, or a purification treatment by simply recrystallization (noble metal of Group 8 at high temperature) Catalytic hydrogenation treatment or catalytic treatment in the presence of a catalyst, recrystallization treatment, oxidation treatment, reslurry treatment, or a combination thereof is known, but currently the main practice is catalytic treatment. A hydrotreating method, for example, Japanese Patent Publication No.
No. 16860 describes a method of catalytic hydrotreating an aqueous solution of crude terephthalic acid in a high temperature solvent at 230 ° C. or higher in the presence of a Group 8 noble metal catalyst, and JP-B-47-4.
No. 9049 describes the improved method.

【0004】上記のような接触水素化処理法による高純
度テレフタル酸の製造において、4CBAに代表される
不純物の処理効率は経時的に低下することが知られてい
る。つまり不純物の代表的指標として4CBAに注目す
るならば、高純度テレフタル酸中の4CBA含有量が経
時的に増加する現象がみられる。この処理効率の低下
は、主に接触水素化触媒の活性低下が原因である。この
4CBAの経時的増加を抑制し、より安定的な品質の高
純度テレフタル酸を得るための一つの方法として反応塔
に供給する水素量を増す方法がある。つまり水素分圧を
増すことによって4CBAの消滅(水添)反応が加速さ
れるが、しかしながらこの方法では、装置によって定め
られている上限の全圧を越えて水素供給ができないため
に接触水素化触媒を定期的に交換する必要がある。
It is known that in the production of high-purity terephthalic acid by the above catalytic hydrotreating method, the treatment efficiency of impurities represented by 4CBA decreases with time. That is, if attention is focused on 4CBA as a representative index of impurities, there is a phenomenon that the content of 4CBA in high-purity terephthalic acid increases with time. This decrease in treatment efficiency is mainly due to the decrease in activity of the catalytic hydrogenation catalyst. There is a method of increasing the amount of hydrogen supplied to the reaction column as one method for suppressing the increase of 4CBA with time and obtaining highly pure terephthalic acid of more stable quality. In other words, by increasing the hydrogen partial pressure, the 4CBA annihilation (hydrogenation) reaction is accelerated. However, in this method, hydrogen cannot be supplied over the upper limit of the total pressure determined by the apparatus, and therefore the catalytic hydrogenation catalyst Need to be replaced regularly.

【0005】一般に接触水素化触媒は初期活性が高いた
め、接触水素化触媒を交換した当初は高純度テレフタル
酸中の4CBA含有量は通常の分析的手法では検出され
ないほど低くなる。つまり安定的品質を維持するという
目的が達成できなくなり、新鮮な触媒を充填した直後の
数日間は高純度テレフタル酸中の4CBA含有量を一定
の許容された範囲内に収めることが難しくなる。更に触
媒の初期活性が強すぎるために過剰反応による副生成物
が生じ、高純度テレフタル酸の純度の安定性が損なわれ
てしまう。
Since the catalytic hydrogenation catalyst generally has a high initial activity, the content of 4CBA in the high-purity terephthalic acid is so low that it cannot be detected by a usual analytical method when the catalytic hydrogenation catalyst is replaced. That is, the purpose of maintaining stable quality cannot be achieved, and it becomes difficult to keep the 4CBA content in the high-purity terephthalic acid within a certain allowable range for a few days immediately after the fresh catalyst is charged. Furthermore, since the initial activity of the catalyst is too strong, a by-product is generated due to excess reaction, and the stability of the purity of high-purity terephthalic acid is impaired.

【0006】これらの接触水素化触媒の強すぎる初期活
性を抑制し、また接触水素化触媒の寿命の延長を図るた
めに、活性の低下した接触水素化触媒の全量を一括して
交換せず一部のみを新鮮な触媒に交換し、残余は活性の
低下した触媒をそのままに再充填することが知られてい
る(東ドイツ特許第212,162号)。この方法では
触媒寿命を延長することができるとされているが、一部
の触媒を交換した後、製品テレフタル酸が許容される一
定幅の低含量の4CBAを有する定常状態に達するまで
に長時間を必要とし、工業生産においては規格外製品の
発生及び時間の損失が大きい。
In order to suppress the excessively strong initial activity of these catalytic hydrogenation catalysts and to prolong the life of the catalytic hydrogenation catalysts, the total amount of the catalytic hydrogenation catalysts whose activity has decreased is not replaced all at once. It is known that only part of the catalyst is replaced with fresh catalyst and the rest is recharged with the catalyst whose activity has decreased (East German Patent 212,162). It is said that this method can extend the catalyst life, but after replacing some catalysts, it takes a long time for the product terephthalic acid to reach a steady state with an acceptable low content of 4CBA. Therefore, the production of nonstandard products and the loss of time are large in industrial production.

【0007】また他に、接触水素化触媒の一部または全
部を新鮮な触媒に交換した当初は、反応塔に供給する水
素量を減ずる方法がある。この方法は触媒交換後ある程
度経時した以降、現象的に言えば高純度テレフタル酸中
の4CBA含有量が約1ppm以上検出された以降にお
いては効果があるが、それ以前では触媒の初期活性を抑
制することができない(後述の比較例を参照)。また更
に水素量を減じて殆ど水素供給を停止してしまう程度で
運転することも考えられるが、極端に水素供給量を下げ
て反応を行わせると、接触水素化触媒の活性低下が著し
く進み、活性を回復することが不可能となる。
Another method is to reduce the amount of hydrogen supplied to the reaction column at the beginning when a part or all of the catalytic hydrogenation catalyst is replaced with a fresh catalyst. This method is effective after a certain amount of time has passed since the catalyst was exchanged, but in a phenomenological sense, it was effective after the content of 4CBA in high-purity terephthalic acid was detected at about 1 ppm or more, but before that, the initial activity of the catalyst was suppressed. It is not possible (see the comparative example described later). It is also possible to operate by reducing the amount of hydrogen to almost stop the hydrogen supply, but if the reaction is carried out with the hydrogen supply amount extremely reduced, the activity of the catalytic hydrogenation catalyst will significantly decrease, It becomes impossible to restore activity.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、従来
のテレフタル酸の製造プロセスにおける接触水素化処理
工程の上記の如き問題点を解決し、活性の低下した接触
水素化触媒を交換した後、4CBAを一定の許容される
低含量幅にて含有する高純度テレフタル酸が安定して得
られる定常状態に速やかに達することができる高純度テ
レフタル酸の製造方法を提供することである。
SUMMARY OF THE INVENTION The object of the present invention is to solve the above-mentioned problems in the conventional catalytic hydrotreating process in the production process of terephthalic acid, and to replace the catalytic hydrogenation catalyst with lowered activity. It is intended to provide a method for producing high-purity terephthalic acid, which can quickly reach a steady state in which high-purity terephthalic acid containing 4CBA in a certain allowable low content range is stably obtained.

【0009】[0009]

【課題を解決するための手段】本発明者は上記の目的を
達成するために鋭意検討した結果、接触水素化触媒を交
換して触媒活性の高い状態では、ギ酸を添加して一酸化
炭素を発生させ、一時的に触媒を被毒することにより触
媒活性を制御することができ、高純度テレフタル酸を安
定して製造できるようになることをを見出し、本発明に
到達した。
Means for Solving the Problems As a result of intensive studies for achieving the above object, the present inventor has found that when the catalytic hydrogenation catalyst is replaced and the catalytic activity is high, formic acid is added to remove carbon monoxide. The present inventors have found that the catalytic activity can be controlled by generating and temporarily poisoning the catalyst, and high-purity terephthalic acid can be stably produced, and the present invention has been accomplished.

【0010】即ち本発明は、パラ位にカルボキシル基お
よび/またはカルボキシル基生成性被酸化性置換基を有
するp−フェニレン化合物を液相酸化し、得られた4−
カルボキシベンズアルデヒドを主たる不純物として含む
粗テレフタル酸を230℃以上の高温水に溶解させ、第
8族貴金属触媒の存在下に接触水素化処理して高純度テ
レフタル酸を製造する方法において、反応器から活性の
低下した接触水素化触媒の一部または全部を抜き取り新
鮮な触媒を充填した後、定常状態に至るまでギ酸を添加
することを特徴とする高純度テレフタル酸の製造方法で
ある。
That is, according to the present invention, a p-phenylene compound having a carboxyl group and / or a carboxyl group-forming oxidizable substituent at the para position is subjected to liquid phase oxidation to obtain 4-
In a method for producing high-purity terephthalic acid by dissolving crude terephthalic acid containing carboxybenzaldehyde as a main impurity in high-temperature water at 230 ° C. or higher and subjecting it to catalytic hydrogenation in the presence of a Group 8 noble metal catalyst, a method for producing high-purity terephthalic acid is used. The method for producing high-purity terephthalic acid is characterized in that a part or all of the catalytic hydrogenation catalyst having a reduced amount is extracted, a fresh catalyst is charged, and then formic acid is added until a steady state is reached.

【0011】本発明の高純度テレフタル酸を製造するた
めに用いられる粗テレフタル酸はp−フェニレン化合物
の液相酸化で得られる。使用されるp−フェニレン化合
物はパラ位にカルボキシル基および/または液相空気酸
化によりカルボキシル基を生成する被酸化性置換基を有
するものであり、該置換基としてはメチル基、エチル
基、プロピル基、イソプロピル基、ホルミル基、アセチ
ル基等が例示される。これらの置換基は互いに同一であ
っても、異なっていてもよい。粗テレフタル酸を製造す
るために用いられる該p−フェニレン化合物としてはパ
ラキシレンが最も一般的である。
The crude terephthalic acid used to produce the high purity terephthalic acid of the present invention is obtained by liquid phase oxidation of p-phenylene compounds. The p-phenylene compound used has a carboxyl group at the para position and / or an oxidizable substituent that forms a carboxyl group by liquid phase air oxidation, and the substituent is a methyl group, an ethyl group or a propyl group. , Isopropyl group, formyl group, acetyl group and the like. These substituents may be the same or different from each other. Para-xylene is the most common of the p-phenylene compounds used to produce crude terephthalic acid.

【0012】この液相酸化の溶媒としては水または酢
酸、或いはこれらの混合物が用いられる。液相酸化の触
媒にはマンガン、コバルト、鉄、クロム、ニッケルなど
の遷移金属化合物が用いられ、また助触媒として通常は
臭素化合物が用いられ、臭素触媒を使わない場合にコバ
ルト触媒に対して促進剤としてアセトアルデヒド、メチ
ルエチルケトンが併用される。使用される触媒は酸化反
応器内でコバルトイオン、マンガンイオン、鉄イオン、
クロムイオン、ニッケルイオン、臭化物イオンを生成す
るものならば特に限定はされない。
Water or acetic acid or a mixture thereof is used as a solvent for the liquid phase oxidation. Transition metal compounds such as manganese, cobalt, iron, chromium, and nickel are used as catalysts for liquid-phase oxidation, and bromine compounds are usually used as co-catalysts, which promotes cobalt catalysts when bromine catalysts are not used. Acetaldehyde and methyl ethyl ketone are used together as agents. The catalyst used is cobalt ion, manganese ion, iron ion in the oxidation reactor,
There is no particular limitation as long as it produces chromium ions, nickel ions, and bromide ions.

【0013】液相で行う酸化に使用される酸化剤は酸素
または空気が使用される。酢酸溶液中、コバルトおよび
マンガン触媒及び臭素化合物の存在下での酸化では空気
で十分であり、酢酸溶液中、コバルト触媒の存在下での
酸化では酸素が好ましい。酢酸溶液中、液相酸化法で得
られる粗テレフタル酸は通常4CBAをはじめ多くの不
純物が含まれ、色相の指標であるOD340 の値も、直接
成形用ポリマー原料として使用できる水準ではないた
め、通常は精製工程が必要である。その精製処理に用い
られる粗テレフタル酸中の4CBA含量その他の不純物
の含量およびOD340 は特に上限はない。
Oxygen or air is used as the oxidizer used for the oxidation carried out in the liquid phase. Air is sufficient for oxidation in acetic acid solution in the presence of cobalt and manganese catalysts and bromine compounds, and oxygen is preferred for oxidation in acetic acid solution in the presence of cobalt catalyst. In an acetic acid solution, crude terephthalic acid obtained by a liquid phase oxidation method usually contains many impurities such as 4CBA, and the value of OD 340 , which is an index of hue, is not at a level at which it can be directly used as a raw material for a polymer for molding. A purification step is usually required. There is no particular upper limit on the 4CBA content or the content of other impurities and OD 340 in the crude terephthalic acid used for the purification treatment.

【0014】接触水素化処理は溶液状態の高温・高圧で
行われ、接触水素化温度は水素存在下で230℃以上、
好ましくは240〜300℃の範囲が採用される。一
方、粗テレフタル酸の濃度は10〜40重量%の範囲が
好ましく、従って、圧力は液相を維持するに十分であ
り、しかも接触水素化反応に適切な水素分圧を保持でき
る圧力が好ましく、通常30〜80気圧の範囲が好まし
い。
The catalytic hydrogenation treatment is carried out at a high temperature and high pressure in a solution state, and the catalytic hydrogenation temperature is 230 ° C. or higher in the presence of hydrogen.
The range of 240 to 300 ° C. is preferably adopted. On the other hand, the concentration of crude terephthalic acid is preferably in the range of 10 to 40% by weight, and therefore, the pressure is sufficient to maintain the liquid phase, and the pressure which can maintain the hydrogen partial pressure suitable for the catalytic hydrogenation reaction is preferable. Usually, a range of 30-80 atm is preferable.

【0015】接触水素化反応の触媒には第8族貴金属が
使用されるが、該第8族貴金属としてはパラジウム、白
金、ルテニウム、ロジウムが好ましく、特にパラジウム
が好適に用いられる。接触水素化触媒は通常は担体に担
持させて使用される。この担体としては通常は多孔性物
質が使用されるが、材質的には炭素系担体が好ましく、
活性炭、特に粒状椰子殻炭が好適である。触媒の担体へ
の担持量は微量でも効果があり、特に範囲が限定される
ものではないが、長期活性を維持するためには、0.1
〜1.0重量%程度の担持量が好適である。
A noble metal of Group VIII is used as a catalyst for the catalytic hydrogenation reaction, and as the noble metal of Group VIII, palladium, platinum, ruthenium and rhodium are preferable, and palladium is particularly preferably used. The catalytic hydrogenation catalyst is usually used by supporting it on a carrier. A porous material is usually used as this carrier, but a carbon-based carrier is preferable in terms of material.
Activated carbon, especially granular coconut shell charcoal is preferred. The amount of the catalyst loaded on the carrier is effective even if the amount is small, and the range is not particularly limited, but in order to maintain long-term activity, it is 0.1
A supported amount of about 1.0% by weight is suitable.

【0016】接触水素化処理溶媒には水または酢酸、或
いはこれらの混合物が用いられる。接触水素化のための
水素量は少なくとも4CBAに対して2倍モル以上の供
給が必要である。接触水素化処理時間は、実質的に水素
化反応が進行するに十分な時間であればよく、充填塔方
式の反応の場合は通常1〜60分、好ましくは2〜20
分の範囲である。通常、接触水素化処理は連続式で行わ
れる。
Water or acetic acid or a mixture thereof is used as the catalytic hydrotreating solvent. The amount of hydrogen for catalytic hydrogenation needs to be at least twice the molar amount of 4 CBA. The catalytic hydrotreating time may be a time sufficient for the hydrogenation reaction to proceed substantially, and in the case of a packed column reaction, it is usually 1 to 60 minutes, preferably 2 to 20 minutes.
It is in the range of minutes. Usually, the catalytic hydrotreatment is carried out continuously.

【0017】本発明の方法において、定常状態とは該p
−フェニレン化合物を液相酸化して得られた4CBAを
主たる不純物として含む粗テレフタル酸を反応器中で接
触水素化触媒にて水素の存在下に処理を行って高純度テ
レフタル酸を製造する方法において、一定幅の低含量の
4CBAを含有する高純度テレフタル酸を安定して得る
ことができる状態をいう。接触水素化触媒の活性の低下
は、得られるテレフタル酸中の4CBA含量の増加によ
って知ることができる。また一般に製品として得られる
テレフタル酸の品質は、その340nmにおける透過率
(OD340 )とも相関関係があるため、工業的なテレフ
タル酸の製造においては、通常は4CBA含量とOD
340 によって純度の判定が行われる。接触水素化処理の
定常状態においてはこのように4CBA及びOD340
ある幅の管理値に保持されている。従ってこれらの管理
値が前記定常状態を外れたとき、反応器内の接触水素化
触媒が新鮮な触媒と交換される。
In the method of the present invention, the steady state means the p
A method for producing high-purity terephthalic acid by treating crude terephthalic acid containing 4CBA as a main impurity obtained by liquid-phase oxidation of a phenylene compound in a reactor in the presence of hydrogen with a catalytic hydrogenation catalyst. , A state in which high-purity terephthalic acid containing a low content of 4CBA within a certain range can be stably obtained. The decrease in the activity of the catalytic hydrogenation catalyst can be known by the increase in the content of 4CBA in the obtained terephthalic acid. In addition, since the quality of terephthalic acid generally obtained as a product also correlates with its transmittance at 340 nm (OD 340 ), in the industrial production of terephthalic acid, 4CBA content and OD are usually used.
Purity is determined by 340 . In the steady state of the catalytic hydrotreatment, 4CBA and OD 340 are thus maintained at a certain control value within a certain range. Therefore, when these control values deviate from the steady state, the catalytic hydrogenation catalyst in the reactor is replaced with fresh catalyst.

【0018】接触水素化触媒を交換した後、粗テレフタ
ル酸の接触水素化反応を再開した時点においては、前述
のように触媒の活性が高いために粗テレフタル酸を接触
水素化して得られる高純度テレフタル酸は4CBA含量
が著しく低いものになる。本発明の方法においては、こ
のような接触水素化処理の再開時に、ギ酸を添加して一
酸化炭素を発生させて接触水素化触媒を一時的に被毒し
て定常状態に至るまで反応を行う。このように触媒活性
を制御することにより、より短時間で定常状態に到達さ
せることができる。添加するギ酸の量は高純度テレフタ
ル酸中の4CBA含有量を測定しながらフィードバック
的に決定するが、一般的に言って溶媒中の濃度として
0.0001〜0.1%の範囲が適当である。なおギ酸
の添加による接触水素化触媒の被毒は一時的なものであ
り、本発明の操作を行うことにより接触水素化触媒の寿
命を低下させるものではない。
At the time when the catalytic hydrogenation reaction of the crude terephthalic acid was restarted after the catalytic hydrogenation catalyst was replaced, the high purity obtained by catalytic hydrogenation of the crude terephthalic acid due to the high activity of the catalyst as described above. Terephthalic acid has a significantly lower 4CBA content. In the method of the present invention, when such catalytic hydrotreating is restarted, formic acid is added to generate carbon monoxide, and the catalytic hydrogenation catalyst is temporarily poisoned to carry out the reaction until a steady state is reached. . By controlling the catalyst activity in this way, the steady state can be reached in a shorter time. The amount of formic acid to be added is determined by feedback while measuring the 4CBA content in high-purity terephthalic acid, but generally speaking, the concentration in the solvent is preferably in the range of 0.0001 to 0.1%. . The poisoning of the catalytic hydrogenation catalyst due to the addition of formic acid is temporary, and the operation of the present invention does not shorten the life of the catalytic hydrogenation catalyst.

【0019】接触水素化処理された粗テレフタル酸溶液
は、触媒担体に使用した例えば活性炭の摩耗により生ず
る微粉末の混入を防止するために、耐食性のある材料の
濾過器で濾過後、まず直列に連結された2〜6段の晶析
器あるいはバッチ式晶析器へ導入され、順次減圧するこ
とで、溶媒の蒸発によって120〜220℃まで降温さ
せることによって、テレフタル酸結晶が晶析し、スラリ
ー溶液となる。該スラリー溶液を結晶分離器に送り、テ
レフタル酸を分離して取り出し、乾燥工程を経て高純度
テレフタル酸が得られる。
The catalytic hydrotreated crude terephthalic acid solution is first filtered in series with a filter made of a corrosion-resistant material in order to prevent contamination of fine powder caused by abrasion of, for example, activated carbon used for the catalyst carrier. The terephthalic acid crystals were crystallized by being introduced into a connected 2 to 6-stage crystallizer or a batch-type crystallizer, and sequentially depressurized to lower the temperature to 120 to 220 ° C. by evaporation of the solvent. Become a solution. The slurry solution is sent to a crystal separator, terephthalic acid is separated and taken out, and a high-purity terephthalic acid is obtained through a drying step.

【0020】[0020]

【実施例】次に実施例を挙げて本発明を説明する、但し
本発明はこれら実施例により何ら限定されるものではな
い。以下の実施例および比較例において、粗テレフタル
酸は商業的規模の装置を使用し、触媒として酢酸マンガ
ン、酢酸コバルトおよび臭化水素酸を用い、温度205
℃、圧力17気圧の条件下、含水酢酸溶媒中でパラキシ
レンを空気酸化して製造した。粗テレフタル酸中の4C
BA含有量は3090ppmであった。
The present invention will now be described with reference to examples, but the present invention is not limited to these examples. In the following examples and comparative examples, crude terephthalic acid was used on a commercial scale apparatus with manganese acetate, cobalt acetate and hydrobromic acid as catalysts at a temperature of 205
It was produced by air-oxidizing para-xylene in a water-containing acetic acid solvent under the conditions of ° C and a pressure of 17 atm. 4C in crude terephthalic acid
The BA content was 3090 ppm.

【0021】実施例1 外部加熱装置を有する内径26mm、長さ350mmの
耐圧ステンレス製反応器にパラジウム0.5%を活性炭
に担持した新鮮な触媒200ミリリットルを充填し、全
系に水を張って280℃に制御した。原料槽に粗テレフ
タル酸25重量部、0.01%のギ酸水溶液75重量部
を仕込み、攪拌してスラリー状態とし、スラリー送液ポ
ンプで反応器頂部に毎時800g送液した。なおスラリ
ー送液ポンプ吐出口から反応器頂部に至る経路途中には
加熱用油浴を設け、スラリー液を280℃に加熱した。
また反応器頂部に接続された水素供給ラインから水素ガ
スを毎時0.7ノルマルリットル供給した。反応器の底
部から流出した反応液は、供給速度と抜き出し速度の差
を調節するために設けた緩衝槽を経て常温まで冷却し、
三方バルブとアクチュエーターから構成された間欠抜き
出し装置で外部受器中にスラリー溶液として抜き出し
た。抜き出されたスラリー溶液は約95℃に制御された
湯浴中で攪拌しながら30分間保持された後、十分に加
熱されたG3グラスフィルターで素早く濾過し、結晶と
母液に分離した。ガラスフィルター上のケーキは少量の
熱水でリンスし、窒素気流中で115℃、6時間乾燥
し、高純度テレフタル酸の結晶として取出した。得られ
た高純度テレフタル酸を分析したところ、4CBA含有
量は6ppmであった。
Example 1 A pressure-resistant stainless steel reactor having an inner diameter of 26 mm and a length of 350 mm equipped with an external heating device was charged with 200 ml of a fresh catalyst having 0.5% palladium supported on activated carbon, and the whole system was filled with water. The temperature was controlled at 280 ° C. A raw material tank was charged with 25 parts by weight of crude terephthalic acid and 75 parts by weight of a 0.01% formic acid aqueous solution, and the mixture was stirred to form a slurry, and 800 g of the slurry was sent to the top of the reactor by a slurry sending pump every hour. An oil bath for heating was provided on the way from the discharge port of the slurry feed pump to the top of the reactor, and the slurry liquid was heated to 280 ° C.
In addition, 0.7 normal liters of hydrogen gas was supplied per hour from a hydrogen supply line connected to the top of the reactor. The reaction liquid flowing out from the bottom of the reactor is cooled to room temperature through a buffer tank provided to adjust the difference between the supply rate and the withdrawal rate,
It was extracted as a slurry solution into an external receiver by an intermittent extraction device composed of a three-way valve and an actuator. The extracted slurry solution was held in a hot water bath controlled at about 95 ° C. for 30 minutes while stirring, and then rapidly filtered through a sufficiently heated G3 glass filter to separate into crystals and mother liquor. The cake on the glass filter was rinsed with a small amount of hot water, dried in a nitrogen stream at 115 ° C. for 6 hours, and taken out as high-purity terephthalic acid crystals. When the obtained high-purity terephthalic acid was analyzed, the 4CBA content was 6 ppm.

【0022】比較例1 接触水素化反応器の原料槽に仕込む溶媒を0.01%ギ
酸水溶液から純水にした以外は実施例と同様の操作を行
った。得られた高純度テレフタル酸を分析したところ、
4CBAは検出されなかった。
Comparative Example 1 The same operation as in Example was carried out except that the solvent charged into the raw material tank of the catalytic hydrogenation reactor was changed from 0.01% formic acid aqueous solution to pure water. When the obtained high-purity terephthalic acid was analyzed,
4CBA was not detected.

【0023】比較例2 接触水素化反応器に供給する水素ガス量を毎時0.15
ノルマルリットルにした以外は比較例1と同様の操作を
行った。得られた高純度テレフタル酸を分析したとこ
ろ、4CBAは検出されなかった。
Comparative Example 2 The amount of hydrogen gas supplied to the catalytic hydrogenation reactor was 0.15 per hour.
The same operation as in Comparative Example 1 was performed except that the normal liter was used. When the obtained high-purity terephthalic acid was analyzed, 4CBA was not detected.

【0024】比較例3 接触水素化触媒として商業的規模の粗テレフタル酸精製
装置で一年間使用したパラジウムカーボン触媒を充填し
た以外は比較例1と同様の操作を行った。得られた高純
度テレフタル酸を分析したところ、4CBA含有量は1
0ppmであった。
Comparative Example 3 The same operation as in Comparative Example 1 was carried out except that the catalytic hydrogenation catalyst was charged with a palladium carbon catalyst which had been used for one year in a commercial-scale crude terephthalic acid refining apparatus. When the obtained high-purity terephthalic acid was analyzed, the content of 4CBA was 1
It was 0 ppm.

【0025】比較例4 比較例3の実験が終わった後、溶媒を純水から0.01
%ギ酸水溶液に代えて同様の操作を行った。得られた高
純度テレフタル酸を分析したところ、4CBA含有量は
32ppmであった。
Comparative Example 4 After the experiment of Comparative Example 3 was completed, the solvent was changed from pure water to 0.01
The same operation was performed instead of the% formic acid aqueous solution. When the obtained high-purity terephthalic acid was analyzed, the 4CBA content was 32 ppm.

【0026】比較例5 比較例4の実験が終わった後、溶媒を純水に戻して比較
例3の操作を繰り返した。得られた高純度テレフタル酸
を分析したところ、4CBA含有量は9ppmであっ
た。以上の実施例および比較例の操作条件および高純度
テレフタル酸の分析値を次に示す。
Comparative Example 5 After the experiment of Comparative Example 4 was completed, the solvent was returned to pure water and the operation of Comparative Example 3 was repeated. When the obtained high-purity terephthalic acid was analyzed, the 4CBA content was 9 ppm. The operating conditions and analytical values of high-purity terephthalic acid in the above Examples and Comparative Examples are shown below.

【表1】 ──────────────────────────────────── 触媒 溶媒 水素供給量 4CBA濃度 [Nリットル/時] [ppm] ──────────────────────────────────── 実施例1 新鮮 0.01%ギ酸水溶液 0.7 6 比較例1 新鮮 純水 0.7 未検出 比較例2 新鮮 純水 0.15 未検出 比較例3 使用済 純水 0.7 10 比較例4 使用済 0.01%ギ酸水溶液 0.7 32 比較例5 使用済 純水 0.7 9 ────────────────────────────────────[Table 1] ──────────────────────────────────── Catalyst solvent Hydrogen supply amount 4CBA concentration [N liters] / Hour] [ppm] ──────────────────────────────────── Example 1 Fresh 0.01% Aqueous formic acid solution 0.7 6 Comparative example 1 Fresh pure water 0.7 Not detected Comparative example 2 Fresh pure water 0.15 Not detected Comparative example 3 Used pure water 0.7 10 Comparative example 4 Used 0.01% formic acid aqueous solution 0.7 32 Comparative Example 5 Used pure water 0.7 9 ──────────────────────────────────── ─

【0027】表1より以下の点が確認される。 新鮮な接触水素化触媒を充填して溶媒として純水を使
うと高純度テレフタル酸中に4CBAは検出されないが
(比較例1)、ギ酸を加えた水を使った場合には高純度
テレフタル酸中の4CBAが6ppmとなり(実施例
1)、ギ酸添加が触媒の初期活性を制御するのに有効で
ある。 使用済の接触水素化触媒ではギ酸を加えない場合には
高純度テレフタル酸中の4CBAが10ppmと安定し
ているのに対して(比較例3)、ギ酸を加えると高純度
テレフタル酸中の4CBAが32ppmにアップする
(比較例4)。その後再び溶媒を純水に戻すと4CBA
は9ppmとなり(比較例5)、比較例3と同じ水準に
戻る。すなわちギ酸添加による触媒活性抑制効果は一時
的なものであり、ギ酸添加を止めれば触媒活性が元に復
帰する。 比較例2は接触水素化触媒の初期活性を抑制する目的
で水素供給量を減らしたが、4CBAは検出されず抑制
効果はない。なお比較例2での水素供給量は原料粗テレ
フタル酸中の4CBA量に対して約2倍モル量に相当す
る。水素供給量をこれより更に下げることも考えられる
が、水素不足の状態で反応を継続するとパラジウム触媒
に回復不能な劣化が生じ易くなるので好ましくない。
The following points are confirmed from Table 1. Although 4CBA was not detected in high-purity terephthalic acid when a fresh catalytic hydrogenation catalyst was used and pure water was used as a solvent (Comparative Example 1), in the case of using formic acid-added water, high-purity terephthalic acid was detected. 4CBA was 6 ppm (Example 1), and addition of formic acid is effective for controlling the initial activity of the catalyst. In the used catalytic hydrogenation catalyst, 4CBA in high-purity terephthalic acid is stable at 10 ppm when formic acid is not added (Comparative Example 3), whereas when formic acid is added, 4CBA in high-purity terephthalic acid is added. Increase to 32 ppm (Comparative Example 4). After that, when the solvent is returned to pure water again, 4 CBA
Is 9 ppm (Comparative Example 5), returning to the same level as Comparative Example 3. That is, the effect of suppressing the catalytic activity due to the addition of formic acid is temporary, and the catalytic activity is restored when the addition of formic acid is stopped. In Comparative Example 2, the hydrogen supply amount was reduced for the purpose of suppressing the initial activity of the catalytic hydrogenation catalyst, but 4CBA was not detected and there was no suppressing effect. The amount of hydrogen supplied in Comparative Example 2 corresponds to about twice the molar amount of 4CBA in the raw material crude terephthalic acid. It is conceivable to further reduce the hydrogen supply amount, but it is not preferable to continue the reaction in a hydrogen-deficient state because the palladium catalyst is likely to undergo unrecoverable deterioration.

【0028】[0028]

【発明の効果】以上の実施例および比較例から明らかな
ように、本発明の方法により接触水素化触媒換装後の初
期活性が強い時期にギ酸を加えることによって安定した
品質の高純度テレフタル酸を得ることができる。すなわ
ち接触水素化装置において新鮮な触媒を充填した直後の
数日間は、高純度テレフタル酸中の4CBA含有量を一
定の許容された範囲内に収めることが難しく、触媒の初
期活性が強すぎるために過剰反応による副生成物が生
じ、高純度テレフタル酸の安定的品質を維持することが
困難であるが、本発明の方法により接触水素化触媒の初
期より安定した品質が長期間に渡って得られる。
As is apparent from the above Examples and Comparative Examples, by the method of the present invention, stable quality high-purity terephthalic acid can be obtained by adding formic acid at a time when the initial activity after catalytic catalytic hydrogenation catalyst replacement is strong. Obtainable. That is, it is difficult to keep the 4CBA content in high-purity terephthalic acid within a certain allowable range for a few days immediately after charging a fresh catalyst in the catalytic hydrogenation device, and the initial activity of the catalyst is too strong. Although it is difficult to maintain the stable quality of high-purity terephthalic acid due to a by-product due to excess reaction, the method of the present invention can provide a stable quality of the catalytic hydrogenation catalyst from the initial stage over a long period of time. .

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大越 二三夫 岡山県倉敷市水島海岸通3丁目10番地 三 菱瓦斯化学株式会社水島工場内 (72)発明者 稲荷 雅人 岡山県倉敷市水島海岸通3丁目10番地 三 菱瓦斯化学株式会社水島工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Fumio Ogoshi, 3-10 Mizushima Kaigan Dori, Kurashiki City, Okayama Prefecture Sanryo Gas Chemical Co., Ltd. Mizushima Plant (72) Inhito Masato, 3 Mizushima Kaigan Dori, Kurashiki City, Okayama Prefecture No. 10 Sanritsu Gas Chemical Co., Ltd., Mizushima Plant

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 パラ位にカルボキシル基および/または
カルボキシル基生成性被酸化性置換基を有するp−フェ
ニレン化合物を液相酸化し、得られた4−カルボキシベ
ンズアルデヒドを主たる不純物として含む粗テレフタル
酸を230℃以上の高温水に溶解させ、第8族貴金属触
媒の存在下に接触水素化処理して高純度テレフタル酸を
製造する方法において、反応器から活性の低下した接触
水素化触媒の一部または全部を抜き取り新鮮な触媒を充
填した後、定常状態に至るまでギ酸を添加することを特
徴とする高純度テレフタル酸の製造方法。
1. A crude terephthalic acid containing 4-carboxybenzaldehyde as a main impurity obtained by liquid phase oxidation of a p-phenylene compound having a carboxyl group and / or a carboxyl group-forming oxidizable substituent at the para position. In a method for producing high-purity terephthalic acid by dissolving it in high-temperature water at 230 ° C. or higher and subjecting it to catalytic hydrogenation in the presence of a Group 8 noble metal catalyst, a part of the catalytic hydrogenation catalyst whose activity has decreased from the reactor or A method for producing high-purity terephthalic acid, which comprises extracting all of them and filling them with fresh catalyst, and then adding formic acid until a steady state is reached.
JP6300947A 1994-12-05 1994-12-05 Production of high-purity terephthalic acid Pending JPH08157415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6300947A JPH08157415A (en) 1994-12-05 1994-12-05 Production of high-purity terephthalic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6300947A JPH08157415A (en) 1994-12-05 1994-12-05 Production of high-purity terephthalic acid

Publications (1)

Publication Number Publication Date
JPH08157415A true JPH08157415A (en) 1996-06-18

Family

ID=17891011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6300947A Pending JPH08157415A (en) 1994-12-05 1994-12-05 Production of high-purity terephthalic acid

Country Status (1)

Country Link
JP (1) JPH08157415A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020046902A (en) * 2000-12-14 2002-06-21 유현식 The stable catalyst for hydropurification and the process for purification using the same
KR100398160B1 (en) * 1999-09-07 2003-09-19 미쓰이 가가쿠 가부시키가이샤 Process for producing aromatic carboxylic acid
WO2009143531A3 (en) * 2008-05-23 2010-03-18 Gtc Technology Lp Catalyst systems for the production of acids

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100398160B1 (en) * 1999-09-07 2003-09-19 미쓰이 가가쿠 가부시키가이샤 Process for producing aromatic carboxylic acid
KR20020046902A (en) * 2000-12-14 2002-06-21 유현식 The stable catalyst for hydropurification and the process for purification using the same
WO2009143531A3 (en) * 2008-05-23 2010-03-18 Gtc Technology Lp Catalyst systems for the production of acids
US8658820B2 (en) 2008-05-23 2014-02-25 Gtc Technology Us, Llc Catalyst systems for the production of acids

Similar Documents

Publication Publication Date Title
EP1497252B1 (en) Method of removing iron contaminants from liquid streams during the manufacture and/or purification of aromatic acids
RU2374219C2 (en) Stepped counterflow catalystic oxidation of disubstituted benzene
JP3757995B2 (en) Method for producing high purity isophthalic acid
JP3729284B2 (en) Method for producing high purity terephthalic acid
JP4055913B2 (en) Method for producing high purity terephthalic acid
JP3939367B2 (en) Method for producing high purity terephthalic acid
JPH08157415A (en) Production of high-purity terephthalic acid
JP3269508B2 (en) Method for producing high-purity isophthalic acid
KR100267897B1 (en) Process for producing highly pure terephthalic acid
JP3769312B2 (en) Method for producing succinic acid
JP3267191B2 (en) Purification method of aromatic polycarboxylic acid
JP2000037633A (en) Method for purifying crude aromatic dicarboxylic acid and catalyst to be used in purification
JP3201436B2 (en) Production method of high purity isophthalic acid
JP3232765B2 (en) Method for producing high-purity terephthalic acid
JPH0769975A (en) Production of high-purity terephthalic acid
JP3348462B2 (en) Method for producing high-purity terephthalic acid
JP3804150B2 (en) Method for producing high purity terephthalic acid
JPH10330312A (en) Production of high-purity terephthalic acid
JPH072731A (en) Production of isophthalic acid of high purity
JPH0648982A (en) Production of high-purity terephthalic acid
JPH0717900A (en) Production of high-purity isophthalic acid
JPH06321857A (en) Production of high-purity terephthalic acid
JPH08259496A (en) Production of high-purity terephthalic acid
JPH08259495A (en) Production of high-purity terephthalic acid
JPS5911573B2 (en) Terephthalic acid purification method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050615

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060125