JPH04145044A - Production of high-purity terephthalic acid - Google Patents
Production of high-purity terephthalic acidInfo
- Publication number
- JPH04145044A JPH04145044A JP2263732A JP26373290A JPH04145044A JP H04145044 A JPH04145044 A JP H04145044A JP 2263732 A JP2263732 A JP 2263732A JP 26373290 A JP26373290 A JP 26373290A JP H04145044 A JPH04145044 A JP H04145044A
- Authority
- JP
- Japan
- Prior art keywords
- terephthalic acid
- mother liquor
- solvent
- acid
- acetic acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 title claims abstract description 164
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims abstract description 86
- 239000012452 mother liquor Substances 0.000 claims abstract description 23
- URLKBWYHVLBVBO-UHFFFAOYSA-N Para-Xylene Chemical group CC1=CC=C(C)C=C1 URLKBWYHVLBVBO-UHFFFAOYSA-N 0.000 claims abstract description 22
- 239000003054 catalyst Substances 0.000 claims abstract description 21
- 239000002904 solvent Substances 0.000 claims abstract description 20
- 239000007791 liquid phase Substances 0.000 claims abstract description 18
- 239000013078 crystal Substances 0.000 claims abstract description 14
- 238000006243 chemical reaction Methods 0.000 claims abstract description 11
- 229910000510 noble metal Inorganic materials 0.000 claims abstract description 6
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 4
- 238000007254 oxidation reaction Methods 0.000 claims description 27
- 230000003647 oxidation Effects 0.000 claims description 18
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 4
- 229910017052 cobalt Inorganic materials 0.000 claims description 4
- 239000010941 cobalt Substances 0.000 claims description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 4
- 229910001882 dioxygen Inorganic materials 0.000 claims description 4
- 239000000706 filtrate Substances 0.000 claims description 4
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 3
- 239000011572 manganese Substances 0.000 claims description 3
- 239000012071 phase Substances 0.000 claims 1
- 239000002253 acid Substances 0.000 abstract description 10
- 239000001257 hydrogen Substances 0.000 abstract description 10
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 10
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 9
- 239000002351 wastewater Substances 0.000 abstract description 5
- 230000001590 oxidative effect Effects 0.000 abstract description 4
- 238000004064 recycling Methods 0.000 abstract description 3
- 238000000034 method Methods 0.000 description 18
- 238000009903 catalytic hydrogenation reaction Methods 0.000 description 15
- 239000000243 solution Substances 0.000 description 13
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 11
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 10
- 238000001914 filtration Methods 0.000 description 9
- 238000005984 hydrogenation reaction Methods 0.000 description 9
- 239000012535 impurity Substances 0.000 description 7
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 238000010992 reflux Methods 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 5
- 229910052763 palladium Inorganic materials 0.000 description 5
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 3
- 229910052794 bromium Inorganic materials 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 3
- 238000011109 contamination Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical class [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- 235000013162 Cocos nucifera Nutrition 0.000 description 2
- 244000060011 Cocos nucifera Species 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- -1 bromine compound Chemical class 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 239000012295 chemical reaction liquid Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- LPNBBFKOUUSUDB-UHFFFAOYSA-N p-toluic acid Chemical compound CC1=CC=C(C(O)=O)C=C1 LPNBBFKOUUSUDB-UHFFFAOYSA-N 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 1
- 241000425362 Hydrium Species 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- ZBYYWKJVSFHYJL-UHFFFAOYSA-L cobalt(2+);diacetate;tetrahydrate Chemical compound O.O.O.O.[Co+2].CC([O-])=O.CC([O-])=O ZBYYWKJVSFHYJL-UHFFFAOYSA-L 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000005674 electromagnetic induction Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 150000002431 hydrogen Chemical group 0.000 description 1
- 238000007327 hydrogenolysis reaction Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 239000012442 inert solvent Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229940082328 manganese acetate tetrahydrate Drugs 0.000 description 1
- CESXSDZNZGSWSP-UHFFFAOYSA-L manganese(2+);diacetate;tetrahydrate Chemical compound O.O.O.O.[Mn+2].CC([O-])=O.CC([O-])=O CESXSDZNZGSWSP-UHFFFAOYSA-L 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000003969 polarography Methods 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000011110 re-filtration Methods 0.000 description 1
- 239000012066 reaction slurry Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
- 238000003911 water pollution Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野コ
本発明はポリエステル樹脂、繊維、フィルム等のポリマ
ー中間原料として有用な白変の優れた高純度テレフタル
酸の製造法に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing high-purity terephthalic acid with excellent white discoloration and useful as a polymer intermediate raw material for polyester resins, fibers, films, etc.
[従来の技術]
テレフタル酸はパラキシレンを酸化して製造され、通常
は酢酸を溶媒として、コバルト、マンガン等の重金属塩
触媒、又はこれに臭素化合物、或いはアセトアルデヒド
のような促進剤を加えた触媒が用いられる。[Prior art] Terephthalic acid is produced by oxidizing paraxylene, and is usually produced using acetic acid as a solvent and a heavy metal salt catalyst such as cobalt or manganese, or a catalyst in which a promoter such as a bromine compound or acetaldehyde is added thereto. is used.
液相酸化によって得られる粗テレフタル酸は、通常4−
カルポキシヘンズアルデヒト(4CBA)をはしめ多量
の不純物を多量に含んでおり、このままグリコールと反
応させてポリエステルとするには適さない。Crude terephthalic acid obtained by liquid phase oxidation is usually 4-
It contains carpoxyhenzaldehyde (4CBA) and contains a large amount of impurities, so it is not suitable for reacting with glycol as it is to make polyester.
このように4 CBA等の不純物を含む粗テレフタル酸
から高純度テレフタル酸を製造する方法としては、酸化
あるいは還元等の反応による精製処理する多くの方法が
知られている。たとえば水素化還元精製法として、特公
昭41−16860号には粗テレフタル酸の水溶液を高
温で水素添加触媒の存在下に水素添加処理する方法が記
載されており、また特公昭51−32618号および特
公昭51−38698号にはこの水素添加処理の改良法
が示されている。As a method for producing high-purity terephthalic acid from crude terephthalic acid containing impurities such as 4 CBA, many methods are known in which purification treatment is performed through reactions such as oxidation or reduction. For example, as a hydrogenation reduction purification method, Japanese Patent Publication No. 41-16860 describes a method of hydrogenating an aqueous solution of crude terephthalic acid at high temperature in the presence of a hydrogenation catalyst, and Japanese Patent Publication No. 51-32618 and Japanese Patent Publication No. 51-38698 discloses an improved method of this hydrogenation treatment.
[発明が解決しようとする問題点]
粗テレフタル酸溶液を水素添加処理する上記の特公昭4
1−16860号、特公昭51−32618号および特
公昭51−38698号では、反応に不活性な溶媒とし
て水が用いられている。しかし水は有機物に対し良い溶
媒でないために、粗テレフタル酸中の4 CBAの還元
生成物であるp−)ルイル酸をはじめ、不純物がテレフ
タル酸結晶に混入し易く、かつ、テレフタル酸の色相が
十分に改善されないという欠点を有する。特公昭47−
49049号および特公昭53−24057号にはp−
)ルイル酸の混入を防くための改良方法が示されている
が、かかる方法は製造工程を複雑にし、かつ操作が煩雑
である。またかかる方法を講しても、p−)ルイル酸の
混入を実質的に無(するためには粗テレフタル酸の4C
BAを低含量に抑える必要がある。このためには粗テレ
フタル酸の製造工程における酸化反応条件が厳しくなる
ので燃焼の増加を招く。しかも、テレフタル酸を分離し
た排液は、母液と共に排出されるp−)ルイル酸をはじ
めテレフタル酸の他、多くの有機物を含有しており、廃
水として工場外へ排出するに際し水質汚染防止処理を必
要とする。[Problems to be Solved by the Invention] The above-mentioned Japanese Patent Publication No. 4 in which crude terephthalic acid solution is hydrogenated
In Japanese Patent Publication No. 1-16860, Japanese Patent Publication No. 51-32618, and Japanese Patent Publication No. 51-38698, water is used as an inert solvent for the reaction. However, since water is not a good solvent for organic substances, impurities such as p-)ruyl acid, which is a reduction product of 4 CBA in crude terephthalic acid, are easily mixed into the terephthalic acid crystals, and the color of terephthalic acid is It has the disadvantage that it cannot be improved sufficiently. Special Public Service 1977-
No. 49049 and Special Publication No. 53-24057 have p-
) An improved method for preventing the contamination of ruyl acid has been proposed, but such a method complicates the manufacturing process and requires complicated operations. Furthermore, even if such a method is adopted, it is necessary to substantially eliminate the contamination of p-)ruyl acid (4C of crude terephthalic acid).
It is necessary to keep the BA content to a low level. For this reason, the oxidation reaction conditions in the production process of crude terephthalic acid become severe, leading to an increase in combustion. Furthermore, the wastewater from which terephthalic acid has been separated contains many organic substances in addition to p-)ruyl acid and terephthalic acid, which are discharged together with the mother liquor, and must be treated to prevent water pollution before being discharged outside the factory as wastewater. I need.
本発明は、かかる従来技術の抱える品質上の問題を克服
して4 CBAなどの不純物を多量に含む粗テレフタル
酸の精製法を改良し、簡単な操作で工業的に実施でき、
経済的に極めて有利な高純度テレフタル酸の製造法を従
供するものである9[問題点を解決するための手段]
発明者等は上記の如き問題点を有するテレフタル酸の製
造法について鋭意研究を重ねた結果、酢酸溶媒のもとて
パラキシレンを液相酸化して得られた粗テレフタル酸を
、含水酢酸を溶媒にして水素添加処理を行ない、テレフ
タル酸を晶析させて分離した母液を再濾過処理すること
により、該分離母液が液相酸化反応の溶媒に循環使用で
きることを見出し本発明に至った。The present invention overcomes the quality problems faced by the prior art, improves the method for purifying crude terephthalic acid containing a large amount of impurities such as 4CBA, and enables industrial implementation with simple operations.
The present invention provides an economically extremely advantageous method for producing high-purity terephthalic acid.9 [Means for solving the problems] The inventors have conducted intensive research into a method for producing terephthalic acid that has the above-mentioned problems. As a result, the crude terephthalic acid obtained by liquid-phase oxidation of paraxylene in an acetic acid solvent was subjected to hydrogenation treatment using aqueous acetic acid as a solvent, and the terephthalic acid was crystallized and the separated mother liquor was recycled. It was discovered that the separated mother liquor can be recycled as a solvent for liquid phase oxidation reaction by filtration treatment, leading to the present invention.
即ち本発明は、p−ジアルキルベンゼン類を分子状酸素
により液相酸化してテレフタル酸を製造するに際し、
(a)酢酸溶媒中コバルトおよびマンガンを含有する触
媒の存在下、パラキシレンを分子状酸素により液相酸化
して得られた粗テレフタル酸を製造する工程
(b)工程(a)からの粗テレフタル酸を、1〜50重
量%の水分を含む酢酸を溶媒として、水素の存在下第V
III族貴金属と接触処理する工程(c)工程ら)の反
応液を冷却してテレフタル酸結晶を析出させて分離し、
分離母液を再濾過して得られに濾液を工程(a)に循環
使用する工程を有することを特徴とする高純度テレフタ
ル酸の製造法である。That is, the present invention provides a method for producing terephthalic acid by liquid-phase oxidation of p-dialkylbenzenes with molecular oxygen. Step (b) of producing crude terephthalic acid obtained by liquid phase oxidation of step (b).
Cooling the reaction solution in step (c) of contact treatment with a group III noble metal to precipitate and separate terephthalic acid crystals,
This is a method for producing high purity terephthalic acid, which is characterized by having a step of re-filtering the separated mother liquor and recycling the obtained filtrate to step (a).
以下、本発明の詳細な説明する。The present invention will be explained in detail below.
本発明はパラキシレンを液相酸化法により酸化して得ら
れる粗テレフタル酸を精製するものである。この工程(
a)の酸化工程の触媒には通常コバルト、マンガンおよ
び臭素化合物が用いられる。また臭素化合物の代わりに
アセトアルデヒド、メチルエチルケトン等の促進剤を用
いる方法であってもよい。この酸化工程では酢酸を溶媒
に用いる。The present invention purifies crude terephthalic acid obtained by oxidizing paraxylene by a liquid phase oxidation method. This process (
Cobalt, manganese and bromine compounds are usually used as catalysts for the oxidation step a). Alternatively, a method may be used in which a promoter such as acetaldehyde or methyl ethyl ketone is used instead of the bromine compound. Acetic acid is used as a solvent in this oxidation step.
なおこの酢酸溶媒中には3〜20′A程度の水が含まれ
ていても良い。分子状酸素としては通常空気または酸素
が用いられ、一般に温度170〜230″C1圧力10
〜30気圧で反応が行われる。Note that this acetic acid solvent may contain about 3 to 20'A of water. Air or oxygen is usually used as molecular oxygen, and generally the temperature is 170-230'' C1 pressure 10
The reaction is carried out at ~30 atmospheres.
液相酸化法で得られる粗テレフタル酸は通常4CBAを
はじめとする多くの不純物が含まれる。Crude terephthalic acid obtained by liquid phase oxidation usually contains many impurities including 4CBA.
本発明は4CBA含量が11000pp以上、殊に20
00ppm以上の粗テレフタル酸に適用するのが好まし
い。これは粗テレフタル酸の製造に於て4 CBA含量
が高くなると酸化反応条件を緩和できるので、酸化反応
による酢酸等の燃焼ロスを抑制でき、工業的に極めて有
利となるからである。The present invention has a 4CBA content of 11,000 pp or more, especially 20
It is preferable to apply it to crude terephthalic acid of 00 ppm or more. This is because in the production of crude terephthalic acid, if the 4 CBA content is high, the oxidation reaction conditions can be relaxed, and the combustion loss of acetic acid etc. due to the oxidation reaction can be suppressed, which is extremely advantageous industrially.
工程ら)では前記酸化で得られた粗テレフタル酸を高温
の含水酢酸に溶解した後、水素の存在下周期律表第■族
貴金属触媒と接触水素化処理する。In step 3), the crude terephthalic acid obtained by the above oxidation is dissolved in high-temperature hydrous acetic acid, and then subjected to catalytic hydrogenation treatment with a noble metal catalyst from group Ⅰ of the periodic table in the presence of hydrogen.
この接触水素化処理によって、粗テレフタル酸に含まれ
ていた4 CBAはp−トルイル酸に転化されると共乙
こ、その他着色性不純物も酢酸乙こ可溶性の物質に転化
される。By this catalytic hydrogenation treatment, 4 CBA contained in the crude terephthalic acid is converted to p-toluic acid, and other coloring impurities are also converted to acetic acid soluble substances.
接触水素化処理の触媒として周期律表第■族に属する貴
金属が有効で、パラジウム、白金、ロジウム、ルテニウ
ム等が好ましく、特にパラジウム、白金が好ましい。こ
れらの金属は必ずしも単独である必要はなく複合させて
使うこともできる。Noble metals belonging to Group 1 of the periodic table are effective as catalysts for catalytic hydrogenation treatment, with palladium, platinum, rhodium, ruthenium and the like being preferred, with palladium and platinum being particularly preferred. These metals do not necessarily have to be used alone and can be used in combination.
これらの触媒金属は多孔性物質に担持させて使用され、
多孔性物質としては通常活性炭が用いられる。活性炭は
特に椰子殻炭が好ましい。触媒金属の担体への担装置は
微量で効果を発揮するが、長期使用に活性を維持するに
は適切な量が必要であり、0.1〜53!1%が好まし
い。担持金属触媒は粒状でも粉末でも良い。These catalytic metals are used supported on porous materials,
Activated carbon is usually used as the porous material. Coconut shell charcoal is particularly preferred as the activated carbon. The catalytic metal supported on the carrier is effective in a small amount, but an appropriate amount is required to maintain activity for long-term use, and 0.1 to 53!1% is preferable. The supported metal catalyst may be in the form of granules or powder.
工程(b)における溶媒には酢酸を用いる。酢酸に含ま
れる水分濃度は1〜50重量%、好ましくは3〜20重
量%の範囲である。かかる範囲の含水酢酸を用いること
によって溶媒としての酢酸の特性を生かすことができ、
カラー品質の優れた高純度テレフタル酸が得られるばか
りでなく、高純度テレフタル酸を工業的に極めて経済的
に製造できる。Acetic acid is used as the solvent in step (b). The water concentration contained in acetic acid is in the range of 1 to 50% by weight, preferably 3 to 20% by weight. By using hydrated acetic acid in this range, the characteristics of acetic acid as a solvent can be utilized,
Not only can high-purity terephthalic acid with excellent color quality be obtained, but also high-purity terephthalic acid can be industrially produced extremely economically.
すなわち水分濃度が3重量%以上の酢酸を用いることに
よって高温でのテレフタル酸の溶解度が上がり、かつ酢
酸の水素化反応による酢酸ロスも抑制できる。水分が5
0!i量χを越えると得られるテレフタル酸の品質が悪
化する。また水分が20重量%を越えると接触水素化処
理後の分離母液を酸化工程に循環した場合、酸化工程に
おいて水分濃度が高くなるために不純物生成量が増大し
、テレフタル酸が着色し製品品質を悪化するので好まし
くない。またこの場合に分離母液を蒸留処理することが
考えられるが、これはエネルギー消費量が増大するので
経済的でない。That is, by using acetic acid with a water concentration of 3% by weight or more, the solubility of terephthalic acid at high temperatures can be increased, and loss of acetic acid due to the hydrogenation reaction of acetic acid can also be suppressed. moisture is 5
0! If the i amount exceeds χ, the quality of the obtained terephthalic acid will deteriorate. In addition, if the water content exceeds 20% by weight, if the separated mother liquor after catalytic hydrogenation treatment is recycled to the oxidation process, the water concentration will increase in the oxidation process, resulting in an increase in the amount of impurities produced, and the terephthalic acid will become colored, impairing product quality. This is not desirable as it will make things worse. In this case, it may be considered to subject the separated mother liquor to distillation treatment, but this is not economical because it increases energy consumption.
粗テレフタル酸の接触水素化処理は溶液状態で行うため
に高圧下高温で行う。テレフタル酸の溶媒への溶解度が
温度に依存するため低い温度では低濃度の粗テレフタル
酸溶液しか処理できず工業的に不利なので、温度は24
0″C以上に保持する必要がある。しかし温度が高過ぎ
ると副反応を生じるおそれがあると共に、酢酸の水素化
分解を招くので、普通240〜320°C1好ましくは
250〜300°Cの範囲の温度が選ばれる。粗テレフ
タル酸溶液の濃度は10〜30重量%の範囲が好ましく
、採択した温度に対しテレフタル酸が完全に溶解する濃
度以下の濃度であればよい。圧力は溶媒の液相を保持す
るに十分で、かつ接触水素化に適切な水素分圧を有する
圧力であれば良く、通常30〜80kg/cm”の範囲
である。水素量は少なくとも4CBAに対し2倍モル以
上を供給することが望ましい。The catalytic hydrogenation treatment of crude terephthalic acid is carried out under high pressure and high temperature in order to be carried out in a solution state. Since the solubility of terephthalic acid in a solvent depends on temperature, at low temperatures only a low concentration crude terephthalic acid solution can be processed, which is industrially disadvantageous, so the temperature is set at 24.
It is necessary to maintain the temperature above 0"C. However, if the temperature is too high, there is a risk of side reactions occurring and hydrogenolysis of acetic acid. The concentration of the crude terephthalic acid solution is preferably in the range of 10 to 30% by weight, and it is sufficient that the concentration is below the concentration at which terephthalic acid is completely dissolved at the selected temperature.The pressure is determined by the liquid phase of the solvent. Any pressure is sufficient as long as it is sufficient to maintain hydrogen pressure and has a hydrogen partial pressure suitable for catalytic hydrogenation, and is usually in the range of 30 to 80 kg/cm''. It is desirable that the amount of hydrogen is at least twice the molar amount of 4CBA.
接触水素化処理は回分式でも連続式でも良い。Catalytic hydrogenation treatment may be carried out either batchwise or continuously.
処理時間は実質的に水素化反応が進行するに十分な時間
を与えれば良く、通常1〜300分、好ましくは2〜1
20分の範囲である。The treatment time should be sufficient time for the hydrogenation reaction to substantially proceed, usually 1 to 300 minutes, preferably 2 to 1 minute.
The duration is 20 minutes.
なお接触水素化処理後のテレフタル酸溶液は高温下で濾
過され、微量の水素上触媒の破片やテレフタル酸中の異
物等の不溶解成分が除かれる。Note that the terephthalic acid solution after the catalytic hydrogenation treatment is filtered at high temperature to remove insoluble components such as traces of fragments of the hydrogen-based catalyst and foreign substances in the terephthalic acid.
工程(c)では接触水素化処理したテレフタル酸溶液を
冷却してテレフタル酸を晶出させ、次いで結晶を固液分
離する。分離した結晶を洗浄後乾燥することにより白色
度の極めて優れた高純度テレフタル酸が得られる。In step (c), the terephthalic acid solution subjected to the catalytic hydrogenation treatment is cooled to crystallize terephthalic acid, and then the crystals are separated into solid and liquid. By washing and drying the separated crystals, high purity terephthalic acid with extremely high whiteness can be obtained.
結晶を分離した母液は再濾過の後、その一部を工程(a
)の酸化工程に循環され、残部は工程(b)の接触水素
化工程に循環される。再濾過された濾液にはテレフタル
酸およびp−)ルイル酸が溶解しており酸化工程で頼テ
レフタル酸として回収される。After the mother liquor from which the crystals have been separated is refiltered, a part of it is passed through step (a).
) and the remainder is recycled to the catalytic hydrogenation step (b). Terephthalic acid and p-)ruyl acid are dissolved in the refiltered filtrate, and are recovered as p-terephthalic acid in the oxidation step.
分離母液の再濾過処理は、結晶が析出しない温度で行う
必要があり、多孔性の濾過材を通過させる方法が好まし
い。ががる濾過処理を必要とする理由は、接触水素化処
理に用いた第■族貴金属触媒が液相酸化反応に強烈な阻
害作用を及ぼすので、再使用する分離母液には接触水素
化処理に使用した触媒金属の混入を避ける必要があるか
らである。濾過処理として、開孔径0.1〜5μmの多
孔性材料からなるフィルターを通過させる方法が適する
。特に高温で濾過する場合耐腐性の基材として炭素、セ
ラミック、ガラス、焼結金属等の多孔性材料を用いるこ
とが望ましい。Refiltration of the separated mother liquor needs to be carried out at a temperature at which crystals do not precipitate, and a method of passing it through a porous filter medium is preferred. The reason why the Gagaru filtration treatment is necessary is that the group II noble metal catalyst used in the catalytic hydrogenation treatment has a strong inhibitory effect on the liquid phase oxidation reaction, so the separated mother liquor to be reused is not used in the catalytic hydrogenation treatment. This is because it is necessary to avoid contamination with the catalyst metal used. As the filtration treatment, a method of passing through a filter made of a porous material with an opening diameter of 0.1 to 5 μm is suitable. Particularly when filtering at high temperatures, it is desirable to use a porous material such as carbon, ceramic, glass, or sintered metal as the corrosion-resistant base material.
分離母液を酸化反応に使用することによって、分離母液
に含まれているp−)ルイル酸およびテレフタル酸が粗
テレフタル酸として再び回収されるばかりでなく、酢酸
の水素化生成物であるアセトアルデヒド、エタノール、
酢酸エチル等も酢酸に酸化される。すなわち本発明の方
法によればテレフタル酸の収率が向上する。By using the separated mother liquor in the oxidation reaction, p-)luic acid and terephthalic acid contained in the separated mother liquor are not only recovered as crude terephthalic acid, but also acetaldehyde and ethanol, which are hydrogenation products of acetic acid, are recovered. ,
Ethyl acetate etc. are also oxidized to acetic acid. That is, according to the method of the present invention, the yield of terephthalic acid is improved.
[発明の効果]
テレフタル酸の製造において本発明の方法を用いること
により次のような利点を有する。[Effects of the Invention] The use of the method of the present invention in the production of terephthalic acid has the following advantages.
(1)高機能化用途のポリエステル製品原料として極′
めてカラー品質の優れた高純度テレフタル酸が得られる
。(1) Extremely useful as a raw material for polyester products for highly functional applications
High purity terephthalic acid with excellent color quality can be obtained for the first time.
(2)接触水素化処理に供される粗テレフタル酸として
11000pp以上の4 CBAを含むものを用いるこ
とができるので、液相酸化反応条件を緩和することがで
き、原料および溶媒の燃焼損失を少なくすることができ
る。(2) Since crude terephthalic acid containing 11,000 pp or more of 4 CBA can be used for catalytic hydrogenation treatment, the liquid phase oxidation reaction conditions can be relaxed and combustion losses of raw materials and solvent can be reduced. can do.
(3)接触水素化処理後の分離母液を液相酸化反応の溶
媒に循環使用することにより、分離母液中のテレフタル
酸およびp−)ルイル酸等が酢酸と共に循環されるので
、テレフタル酸の収率が向上する。(3) By recycling the separated mother liquor after catalytic hydrogenation treatment as a solvent for liquid-phase oxidation reaction, terephthalic acid, p-)ruyl acid, etc. in the separated mother liquor are recycled together with acetic acid, so terephthalic acid can be recovered. rate will improve.
(4)本発明の方法においてはテレフタル酸製造装置か
らの排水量が極めて少なくなり、排水処理設備は実質的
に不要である。(4) In the method of the present invention, the amount of waste water from the terephthalic acid production equipment is extremely small, and waste water treatment equipment is substantially unnecessary.
以上により本発明の工業的意義が大きい。As described above, the present invention has great industrial significance.
[実施例コ
次に実施例によって本発明をさらに詳細に説明する。但
し本願はこれらの実施例によって制限されるものでない
。なおりラー品質を示すOlh、、はテレフタル酸結晶
2gを2N水酸化力リウム溶液25m1に?容器したテ
レフタル酸溶液について50mm巾ガラスセルを用いて
測定した波長340mmの吸光度である。[Example] Next, the present invention will be explained in more detail with reference to Examples. However, the present application is not limited to these Examples. Olh, which indicates Naori quality, is 2 g of terephthalic acid crystals added to 25 ml of 2N hydrium hydroxide solution? This is the absorbance at a wavelength of 340 mm measured using a 50 mm wide glass cell for a containerized terephthalic acid solution.
実施例1
粗テレフタル酸は次の方法でパラキシレンを液相酸化し
て得た。Example 1 Crude terephthalic acid was obtained by liquid phase oxidation of paraxylene in the following manner.
攪拌装置、還流冷却装置、加熱装置、原料導入口、空気
導入口、排ガス排出口、還流液還流口を装備した耐圧チ
タン製酸化反応器(内容積242)に予め酢酸コバルト
4水塩1.11g、酢酸マンガン4水塩2.15g、臭
化水素酸(47χ) 2.36gおよび酢酸(水分10
χ) 1044gを仕込んだ(コバルト249ppm、
マンガン458ppm、臭素101044pp。上記触
媒および酢酸を仕込んだ反応器を210″Cまで加熱昇
温し、温度210°C1圧力17kg/cm”Gの条件
において空気を吹き込みながらパラキシレン350gを
45分間−定速度で連続的に供給して酸化した。この間
排ガスの酸素濃度は約2zに保つよう空気供給量を調節
した。パラキシレンの供給停止の5分後に空気の吹き込
みを止め反応器を冷却した。冷えた反応スラリーを反応
器から取り出し濾過分離した結晶を酢酸で洗浄したのち
乾燥して粗テレフタル酸を得た。この結果、粗テレフタ
ル・酸の品質は4 CBA含量3,000ppm、 0
Dano 1.5であり、収率は96.5モIL2であ
った。1.11 g of cobalt acetate tetrahydrate was placed in advance in a pressure-resistant titanium oxidation reactor (inner volume 242) equipped with a stirring device, a reflux cooling device, a heating device, a raw material inlet, an air inlet, an exhaust gas outlet, and a reflux liquid reflux port. , manganese acetate tetrahydrate 2.15g, hydrobromic acid (47χ) 2.36g and acetic acid (moisture 10
χ) 1044g (cobalt 249ppm,
Manganese 458ppm, bromine 101044ppm. The reactor containing the catalyst and acetic acid was heated to 210"C, and 350g of paraxylene was continuously supplied at a constant rate for 45 minutes while blowing air at a temperature of 210°C and a pressure of 17kg/cm"G. and oxidized. During this time, the amount of air supplied was adjusted to maintain the oxygen concentration of the exhaust gas at approximately 2z. Five minutes after the supply of paraxylene was stopped, air blowing was stopped and the reactor was cooled. The cooled reaction slurry was taken out from the reactor and the crystals separated by filtration were washed with acetic acid and dried to obtain crude terephthalic acid. As a result, the quality of crude terephthalic acid was 4, CBA content 3,000 ppm, 0
Dano 1.5, and the yield was 96.5 mo IL2.
次にこの粗テレフタル酸の接触水素化処理を下記により
行った。Next, this crude terephthalic acid was subjected to catalytic hydrogenation treatment as described below.
攪拌装置、還流冷却装置、加熱装置、原料導入口、ガス
導入口、反応液排出口、排ガス排出口、底部に平均3μ
mのカーボンフィルタ一部、およびカーボンフィルタ一
部と連結バルブを経て濾液を受ける耐圧受器、還流液還
流口を有し電磁誘導装置により上下できる吊り下げ式の
チタン金網製触媒ケージを装備した耐圧チタン製反応容
器(内容積2j2)に粗テレフタル酸120g 、酢酸
(水分10χ含有) 1080gを仕込み容器内のガス
を水素で置換したのち水素で5 kg/cm2G加圧し
加熱昇温した。触媒は椰子殻活性炭(4〜8メツシユ)
にパラジウムを担持させた粒状パラジウム触媒(パラジ
ウム0.5wt%含有)15gを予め前記の触媒ケージ
に入れて反応容器に取り付は触媒が反応液液面より上の
位置に保持した。240°Cに達すると触媒ケージの位
置を下げ触媒を反応液に浸した状態で温度240°C1
圧力30kg/cm2Gの条件下で水素を16N f
/hの一定流量で20分間吹き込んだ。20分経過する
と触媒を反応液から引き上げると共に水素の吹き込みを
止め、接触水素化された高温溶液を容器底部のカーボン
フィルターにより濾過して濾過母液を耐圧受器に回収し
た。耐圧受器を100°Cまで徐々に冷却して精製テレ
フタル酸を結晶化させた。次に耐圧受器を開放し、内部
のスラリーを標準径10〜16μmのガラスフィルター
で濾別し、結晶は100°Cの純水でリンスした後、乾
燥し、製品とした。この結果、粗テレフタル酸結晶に対
する製品の回収率は98.2モルχであった。得られた
テレフタル酸をポーラログラフイーによって分析した結
果、4 CBAは検出されず、またメチルエステル化し
てガスクロマトグラフィーによりp4ルイル酸を分析し
たが、これも検出されなかった。Stirring device, reflux cooling device, heating device, raw material inlet, gas inlet, reaction liquid outlet, exhaust gas outlet, bottom with an average of 3μ
A pressure-resistant model equipped with a part of the carbon filter, a pressure-resistant receiver that receives the filtrate through the carbon filter and the connecting valve, and a reflux liquid reflux port, and a hanging titanium wire mesh catalyst cage that can be raised and lowered by an electromagnetic induction device. 120 g of crude terephthalic acid and 1080 g of acetic acid (containing 10 x water) were placed in a titanium reaction vessel (inner volume 2j2), and the gas in the vessel was replaced with hydrogen, and then the pressure was increased to 5 kg/cm2G with hydrogen and the temperature was raised. Catalyst is coconut shell activated carbon (4-8 mesh)
15 g of a granular palladium catalyst (containing 0.5 wt % palladium) on which palladium was supported was placed in the catalyst cage and attached to the reaction vessel, and the catalyst was held at a position above the level of the reaction liquid. When the temperature reaches 240°C, the catalyst cage is lowered and the temperature is increased to 240°C with the catalyst immersed in the reaction solution.
Hydrogen at 16Nf under pressure 30kg/cm2G
The air was blown for 20 minutes at a constant flow rate of /h. After 20 minutes, the catalyst was withdrawn from the reaction solution and the hydrogen injection was stopped, the catalytically hydrogenated high-temperature solution was filtered through a carbon filter at the bottom of the container, and the filtration mother liquor was collected in a pressure receiver. The pressure receiver was gradually cooled to 100°C to crystallize purified terephthalic acid. Next, the pressure receiver was opened, and the slurry inside was filtered through a glass filter with a standard diameter of 10 to 16 μm, and the crystals were rinsed with pure water at 100° C. and then dried to obtain a product. As a result, the recovery rate of the product based on the crude terephthalic acid crystals was 98.2 mol χ. As a result of analyzing the obtained terephthalic acid by polarography, 4CBA was not detected, and p4ruyl acid was analyzed by gas chromatography after methyl esterification, but this was also not detected.
また0D340は0.1であった。Moreover, 0D340 was 0.1.
結晶を分離した濾過母液を100°Cに加熱し0.5μ
mのカーボン製フィルターで再濾過して得られた酢酸溶
液を溶媒に用いて上記と同様にパラキシレンを液相酸化
したところ、酸化反応の状況および粗テレフタル酸の性
状は上記の新しい酢酸を使用した場合と全く変わらず、
粗テレフタル酸の収率が97.1モルχとなった。この
収率増は濾過母液に含まれていたテレフタル酸およびp
−1ルイル酸からのテレフタル酸か回収されたことによ
る。The filtered mother liquor from which the crystals were separated was heated to 100°C and 0.5μ
When para-xylene was oxidized in liquid phase in the same manner as above using the acetic acid solution obtained by re-filtering with a carbon filter of It's no different than if you did
The yield of crude terephthalic acid was 97.1 mol χ. This increase in yield is due to the terephthalic acid contained in the filtration mother liquor and p.
-1 This is because terephthalic acid was recovered from ruyl acid.
なお水素化処理してテレフタル酸結晶を分離した母液を
そのまま液相酸化の溶媒に使用したところ、酸化反応の
進行が極めて遅く品質の悪い粗テレフタル酸しか得られ
なかった (粗テレフタル酸の収率86モル2、粗テレ
フタル酸中の4CBA含量1.8モルχ)。得られたテ
レフタル酸は水素化処理しても高純度化できず、実質的
に精製原料として使用できなかった。Furthermore, when the mother liquor from which the terephthalic acid crystals were separated by hydrogenation treatment was directly used as a solvent for liquid phase oxidation, the oxidation reaction proceeded extremely slowly and only poor quality crude terephthalic acid was obtained (yield of crude terephthalic acid 86 mol 2, 4CBA content in crude terephthalic acid 1.8 mol χ). The obtained terephthalic acid could not be purified to a high degree even by hydrogenation treatment, and could not be practically used as a raw material for purification.
特許出願人 三菱瓦斯化学株式会社 代理人 弁理士 小 堀 貞 文Patent applicant: Mitsubishi Gas Chemical Co., Ltd. Agent: Patent Attorney Sadafumi Kohori
Claims (1)
ル酸を製造するに際し、 (a)酢酸溶媒中コバルトおよびマンガンを含有する触
媒の存在下、パラキシレンを分子状酸素により液相酸化
して得られた粗テレフタル酸を製造する工程 (b)工程(a)からの粗テレフタル酸を、1〜50重
量%の水分を含む酢酸を溶媒として、水素の存在下第V
III族貴金属と接触処理する工程 (c)工程(b)の反応液を冷却してテレフタル酸結晶
を析出させて分離し、分離母液を再濾過して得られた濾
液を工程(a)に循環使用する工程 を有することを特徴とする高純度テレフタル酸の製造法[Claims] When producing terephthalic acid by liquid-phase oxidation of para-xylene with molecular oxygen, (a) para-xylene is oxidized with molecular oxygen in the presence of a catalyst containing cobalt and manganese in an acetic acid solvent; Step (b) of producing crude terephthalic acid obtained by phase oxidation.
Step (c) of contact treatment with a group III noble metal; the reaction solution of step (b) is cooled to precipitate and separate terephthalic acid crystals; the separated mother liquor is refiltered; the resulting filtrate is recycled to step (a). A method for producing high-purity terephthalic acid, characterized by having a step of using
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2263732A JPH04145044A (en) | 1990-10-03 | 1990-10-03 | Production of high-purity terephthalic acid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2263732A JPH04145044A (en) | 1990-10-03 | 1990-10-03 | Production of high-purity terephthalic acid |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04145044A true JPH04145044A (en) | 1992-05-19 |
Family
ID=17393530
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2263732A Pending JPH04145044A (en) | 1990-10-03 | 1990-10-03 | Production of high-purity terephthalic acid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04145044A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004217586A (en) * | 2003-01-16 | 2004-08-05 | Mitsubishi Gas Chem Co Inc | Method for producing aromatic polycarboxylic acid and acid anhydride thereof |
JP2005029563A (en) * | 2003-06-18 | 2005-02-03 | Mitsubishi Gas Chem Co Inc | Method for producing spiroglycol |
JP2005330207A (en) * | 2004-05-19 | 2005-12-02 | Mitsubishi Gas Chem Co Inc | Method for producing highly pure spiroglycol having improved particle diameter |
KR100708919B1 (en) * | 2005-05-30 | 2007-04-17 | 삼성석유화학(주) | A method of recovering terephthalic acid |
-
1990
- 1990-10-03 JP JP2263732A patent/JPH04145044A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004217586A (en) * | 2003-01-16 | 2004-08-05 | Mitsubishi Gas Chem Co Inc | Method for producing aromatic polycarboxylic acid and acid anhydride thereof |
JP2005029563A (en) * | 2003-06-18 | 2005-02-03 | Mitsubishi Gas Chem Co Inc | Method for producing spiroglycol |
JP4604562B2 (en) * | 2003-06-18 | 2011-01-05 | 三菱瓦斯化学株式会社 | Method for producing spiroglycol |
JP2005330207A (en) * | 2004-05-19 | 2005-12-02 | Mitsubishi Gas Chem Co Inc | Method for producing highly pure spiroglycol having improved particle diameter |
JP4604549B2 (en) * | 2004-05-19 | 2011-01-05 | 三菱瓦斯化学株式会社 | Method for producing high purity spiroglycol with improved particle size |
US9067950B2 (en) | 2004-05-19 | 2015-06-30 | Mitsubishi Gas Chemical Company, Inc. | Process for producing spiroglycol |
KR100708919B1 (en) * | 2005-05-30 | 2007-04-17 | 삼성석유화학(주) | A method of recovering terephthalic acid |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7135596B2 (en) | Method of removing iron contaminants from liquid streams during the manufacture and/or purification of aromatic acids | |
RU2374219C2 (en) | Stepped counterflow catalystic oxidation of disubstituted benzene | |
US5166420A (en) | Process for the production of high purity terephthalic acid | |
EP0265137B1 (en) | Purifying terephthalic acid | |
JPH1025266A (en) | Production of high-purity isophthalic acid | |
US4260817A (en) | Process for the purification of terephthalic acid | |
US20040260052A1 (en) | Process for producing a high purity aromatic polycarboxylic acid | |
JP2893860B2 (en) | Production method of high purity isophthalic acid | |
RU2258693C2 (en) | Method for purifying naphthalene carboxylic acid | |
JP2803835B2 (en) | Method for reactivating Group V noble metal catalyst | |
JPH04145044A (en) | Production of high-purity terephthalic acid | |
US4317923A (en) | Purification of dicarboxylic aromatic acids | |
JP3269508B2 (en) | Method for producing high-purity isophthalic acid | |
JPS58116439A (en) | Preparation of high purity aromatic polycarboxylic acid | |
JP2002542213A (en) | Method for producing and purifying aromatic acid | |
JP4626031B2 (en) | Method for producing high purity pyromellitic acid and high purity pyromellitic anhydride | |
JP3201436B2 (en) | Production method of high purity isophthalic acid | |
JP2000037633A (en) | Method for purifying crude aromatic dicarboxylic acid and catalyst to be used in purification | |
JPH07173100A (en) | Production of high-purity 2,6-naphthalene-dicarboxylic acid | |
US4317924A (en) | Process for producing purified terephthalic acid | |
JPH0648982A (en) | Production of high-purity terephthalic acid | |
JPH06157416A (en) | Production of glyoxylic acid ester | |
JPH0717900A (en) | Production of high-purity isophthalic acid | |
JPH072731A (en) | Production of isophthalic acid of high purity | |
JPH06157399A (en) | Production of glyoxylic acid |