JP2002069073A - Method for producing highly pure pyromellitic anhydride - Google Patents

Method for producing highly pure pyromellitic anhydride

Info

Publication number
JP2002069073A
JP2002069073A JP2000252405A JP2000252405A JP2002069073A JP 2002069073 A JP2002069073 A JP 2002069073A JP 2000252405 A JP2000252405 A JP 2000252405A JP 2000252405 A JP2000252405 A JP 2000252405A JP 2002069073 A JP2002069073 A JP 2002069073A
Authority
JP
Japan
Prior art keywords
pyromellitic anhydride
pyromellitic
anhydride
crude
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000252405A
Other languages
Japanese (ja)
Inventor
Kazuo Tanaka
一夫 田中
Atsushi Ogoshi
篤 大越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2000252405A priority Critical patent/JP2002069073A/en
Priority to US09/933,075 priority patent/US6579990B2/en
Priority to DE60104625T priority patent/DE60104625T2/en
Priority to EP01119665A priority patent/EP1199298B1/en
Publication of JP2002069073A publication Critical patent/JP2002069073A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing highly pure colorless pyromellitic anhydride almost free from a by-product and having high quality. SOLUTION: The objective pyromellitic anhydride is recovered as purified crystal by dissolving crude pyromellitic acid or crude pyromellitic anhydride in water under heating, cooling the solution to crystallize pyromellitic acid, heating and dehydrating the obtained crystal, evaporating the obtained pyromellitic anhydride and cooling the vapor of the pyromellitic anhydride.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は耐熱性の高いポリイ
ミド樹脂、発泡ポリエステル用架橋剤、特殊可塑剤等の
原料である高純度無水ピロメリット酸の製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing high-purity pyromellitic anhydride, which is a raw material of a polyimide resin having high heat resistance, a crosslinking agent for expanded polyester, a special plasticizer, and the like.

【0002】[0002]

【従来の技術】ピロメリット酸の製造法として、ジュレ
ンを液相酸化して得る方法、2,4,5−トリメチルベ
ンズアルデヒド等を液相酸化する方法が知られており、
この粗ピロメリット酸を脱水精製し、無水ピロメリット
酸を得る方法としては無水酢酸のような脂肪族酸無水物
の存在下で脱水する方法が知られているが、この方法は
無水酢酸を使用するのでコスト高となる欠点がある。ま
た無水ピロメリット酸の製造法として、またジュレンま
たは2,4,5−トリメチルベンズアルデヒドを気相酸
化する方法が知られている
2. Description of the Related Art As a method for producing pyromellitic acid, there are known a method in which durene is obtained by liquid phase oxidation and a method in which 2,4,5-trimethylbenzaldehyde and the like are liquid phase oxidized.
As a method for dehydrating and purifying the crude pyromellitic acid to obtain pyromellitic anhydride, a method of dehydrating in the presence of an aliphatic acid anhydride such as acetic anhydride is known, but this method uses acetic anhydride. Therefore, there is a disadvantage that the cost is increased. Further, as a method for producing pyromellitic anhydride, a method of vapor-phase oxidation of durene or 2,4,5-trimethylbenzaldehyde is known.

【0003】特公平1−42953号には、粗ピロメリ
ット酸または粗無水ピロメリット酸を昇華させ、混合気
相から冷却して無水ピロメリット酸を得る方法が記載さ
れている。しかしながらこの方法は昇華精製に必要な大
規模な装置が必要である。また特開昭62−59280号に
は、ピロメリット酸を特定温度で加熱して無水ピロメリ
ット酸を製造する方法が記載されている。
[0003] Japanese Patent Publication No. 1-42953 describes a method of sublimating crude pyromellitic acid or crude pyromellitic anhydride and cooling it from a mixed gas phase to obtain pyromellitic anhydride. However, this method requires a large-scale apparatus required for sublimation purification. JP-A-62-59280 describes a method for producing pyromellitic anhydride by heating pyromellitic acid at a specific temperature.

【0004】[0004]

【発明が解決しようとする課題】上記方法で得られるピ
ロメリット酸や無水ピロメリット酸には少量のトリメリ
ット酸(TMA)、メチルトリメリット酸(MTMA)
等の副生物が含まれており、着色しているものが多い。
このため特開昭62−59280号には水により再結晶したピ
ロメリット酸を無水化することが記載されているが、得
られる無水ピロメリット酸の純度、色、粒径等が不十分
であり、更に高品質の無水ピロメリット酸が要求されて
いる。本発明の目的は、副生物を殆ど含まず着色の無い
高品質の高純度無水ピロメリット酸を製造する方法を提
供することである。
The pyromellitic acid and pyromellitic anhydride obtained by the above method include a small amount of trimellitic acid (TMA) and methyltrimellitic acid (MTMA).
Etc., and are often colored.
For this reason, JP-A-62-59280 describes that pyromellitic acid recrystallized with water is dehydrated, but the purity, color, particle size, etc. of the obtained pyromellitic anhydride are insufficient. In addition, higher quality pyromellitic anhydride is required. An object of the present invention is to provide a method for producing high-quality, high-purity pyromellitic anhydride containing little by-products and having no coloring.

【0005】[0005]

【課題を解決するための手段】本発明者らは上記課題を
解決するために鋭意検討を重ねた結果、粗ピロメリット
酸または粗無水ピロメリット酸を水に加熱溶解し、ピロ
メリット酸として冷却結晶化し、濾過することにより不
純物を殆ど含まないピロメリット酸を得、これを加熱無
水化し、さらに減圧下、無水ピロメリット酸を蒸発さ
せ、該蒸気を冷却して、精製結晶として回収することで
着色の無く、粒径の大きい高品質の高純度無水ピロメリ
ット酸を工業的に有利に製造できることを見出し、本発
明に到達した。即ち本発明は、粗ピロメリット酸または
粗無水ピロメリット酸を水に加熱溶解してピロメリット
酸として冷却結晶化し、得られた結晶を加熱して無水化
し、該無水ピロメリット酸を蒸発させ、得られた無水ピ
ロメリット酸の蒸気を冷却して精製結晶として回収する
ことを特徴とする高純度無水ピロメリット酸の製造法で
ある。
Means for Solving the Problems The inventors of the present invention have made intensive studies to solve the above problems, and as a result, dissolved pyromellitic acid or pyromellitic anhydride in water by heating and cooled as pyromellitic acid. By crystallizing and filtering, pyromellitic acid containing almost no impurities is obtained, which is dried by heating, and further, pyromellitic anhydride is evaporated under reduced pressure, and the vapor is cooled to recover as purified crystals. The present inventors have found that high-quality, high-purity pyromellitic anhydride having a large particle size without coloring can be industrially advantageously produced, and arrived at the present invention. That is, the present invention heat-dissolves crude pyromellitic acid or crude pyromellitic anhydride in water to crystallize by cooling as pyromellitic acid, heats the obtained crystal to anhydrate, evaporates the pyromellitic anhydride, This is a method for producing high-purity pyromellitic anhydride, characterized in that the vapor of pyromellitic anhydride obtained is cooled and recovered as purified crystals.

【0006】[0006]

【発明の実施の形態】本発明における精製原料には、ジ
ュレン、2,4,5−トリメチルベンズアルデヒド等を
液相酸化して得た粗ピロメリット酸や、ジュレン、2,
4,5−トリメチルベンズアルデヒド等を気相酸化して
得た粗無水ピロメリット酸、あるいは前記液相酸化で得
た粗ピロメリット酸を無水物にしたものを使用できる。
特に2,4,5−トリメチルベンズアルデヒド等を液相
酸化して得た粗ピロメリット酸を精製原料とすることが
好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION Purifying raw materials in the present invention include crude pyromellitic acid obtained by liquid-phase oxidation of durene, 2,4,5-trimethylbenzaldehyde and the like, durene,
Crude pyromellitic anhydride obtained by vapor-phase oxidation of 4,5-trimethylbenzaldehyde or the like, or an anhydride of crude pyromellitic acid obtained by the liquid phase oxidation can be used.
In particular, it is preferable to use crude pyromellitic acid obtained by subjecting 2,4,5-trimethylbenzaldehyde or the like to liquid phase oxidation as a purification raw material.

【0007】粗ピロメリット酸又は粗無水ピロメリット
酸を溶解する水はイオン交換水又は蒸留水を使用する。
粗ピロメリット酸又は粗無水ピロメリット酸と水との割
合は重量比で1:2〜1:10の範囲であり、好ましく
は1:3〜1:8の範囲である。水の割合を余り多くす
ると収率が悪くなるので粗ピロメリット酸又は粗無水ピ
ロメリット酸を溶解する最小限の水の量が好ましい。溶
解温度は70〜180℃、好ましくは80〜160℃の
範囲である。
As the water for dissolving the crude pyromellitic acid or the crude pyromellitic anhydride, ion-exchanged water or distilled water is used.
The ratio of crude pyromellitic acid or crude pyromellitic anhydride to water is in the range of 1: 2 to 1:10 by weight, preferably in the range of 1: 3 to 1: 8. If the proportion of water is too large, the yield will be poor, so the minimum amount of water that dissolves crude pyromellitic acid or crude pyromellitic anhydride is preferred. The dissolution temperature is in the range from 70 to 180C, preferably from 80 to 160C.

【0008】精製原料を溶解した液を冷却する事で結晶
化は行われる。この際、減圧して晶析する方法が好まし
く、最終の晶析温度は20〜40℃の範囲で行う。晶析
した結晶は遠心分離機、真空濾過機等で分離し、必要に
応じてリンスし、さらに乾燥することで高純度ピロメリ
ット酸が得られる。この晶析操作で、不純物の無水トリ
メリット酸、無水メチルトリメリット酸等は母液側に大
部分移り、精製された高純度のピロメリット酸が結晶と
して得られる
[0008] Crystallization is performed by cooling the liquid in which the purified raw material is dissolved. At this time, a method of crystallization under reduced pressure is preferable, and the final crystallization temperature is in the range of 20 to 40 ° C. The crystallized crystals are separated by a centrifugal separator, a vacuum filter or the like, rinsed if necessary, and dried to obtain high-purity pyromellitic acid. In this crystallization operation, impurities such as trimellitic anhydride and methyl trimellitic anhydride are largely transferred to the mother liquor, and purified high-purity pyromellitic acid is obtained as crystals.

【0009】次に精製されたピロメリット酸を170℃
から260℃、好ましくは180℃から240℃で加熱
無水化することで無水ピロメリット酸が得られる。17
0℃以下では脱水効率が低く、260℃以上では着色す
るおそれがある。加熱時間は1〜20時間、好ましくは
3〜10時間である。ピロメリット酸を加熱無水化する
装置としては固体を均一に加熱するような装置であれ
ば、流動床、固定床、回分式、半連続式、連続式等、い
かなる形式の装置でもよい。圧力は常圧、加圧、減圧下
いずれでも実施できるが、装置の簡便さ、水の排出効率
等を考慮すると常圧又は減圧が好ましい。
Next, the purified pyromellitic acid is heated at 170 ° C.
To 260 ° C., preferably 180 ° C. to 240 ° C. to obtain pyromellitic anhydride. 17
At 0 ° C. or lower, the dehydration efficiency is low, and at 260 ° C. or higher, coloring may occur. The heating time is 1 to 20 hours, preferably 3 to 10 hours. As an apparatus for heating and dehydrating pyromellitic acid, any apparatus such as a fluidized bed, a fixed bed, a batch system, a semi-continuous system, and a continuous system may be used as long as the system uniformly heats a solid. The pressure can be reduced to normal pressure, increased pressure, or reduced pressure. However, considering the simplicity of the apparatus and the water discharge efficiency, normal pressure or reduced pressure is preferable.

【0010】つぎに無水化された無水ピロメリット酸は
蒸発させ、冷却することで、精製結晶として、回収され
る。蒸発させる圧力は150Torr以下、好ましくは
120Torr以下の減圧であり、温度は250〜40
0℃の範囲である。無水ピロメリット酸の融点は287
℃であり、液状での蒸発操作が好ましく、好ましくは2
90〜350℃の条件で、無水ピロメリット酸を蒸発さ
せる。無水ピロメリット酸の蒸気の冷却温度は通常20
0℃以下、好ましくは100℃以下である。冷却方法は
無水ピロメリット酸を減圧加熱して蒸発させる装置内の
気相部、または気相部に連通した冷却部に板状の冷却面
を有する冷却部でおこなうのが好ましく、板状の冷却面
に付着した無水ピロメリット酸の結晶は適当なかきとり
装置によって容易に回収できる。蒸発に要する時間は熱
分解を出来るだけ抑える為、短時間が好ましく、通常は
0.2〜8時間、好ましくは0.5〜5時間の範囲であ
る。この範囲を越えた場合、無水トリメリット酸等が生
成し、無水ピロメリット酸の純度が低下する。無水ピロ
メリット酸の蒸発、冷却、回収は、回分式、半連続式、
連続式等、いかなる形式でも適用できる。
Next, the pyromellitic anhydride which has been dehydrated is evaporated and cooled, whereby it is recovered as purified crystals. The pressure for evaporation is 150 Torr or less, preferably 120 Torr or less, and the temperature is 250 to 40.
It is in the range of 0 ° C. Pyromellitic anhydride has a melting point of 287
° C and a vaporization operation in a liquid state is preferable.
The pyromellitic anhydride is evaporated at a temperature of 90 to 350 ° C. The cooling temperature of the vapor of pyromellitic anhydride is usually 20
The temperature is 0 ° C or lower, preferably 100 ° C or lower. The cooling method is preferably performed in a gas phase part in the apparatus for evaporating pyromellitic anhydride by heating under reduced pressure, or a cooling part having a plate-shaped cooling surface in a cooling part communicating with the gas phase part. The crystals of pyromellitic anhydride adhering to the surface can be easily recovered by a suitable scraping device. The time required for evaporation is preferably short, in order to suppress thermal decomposition as much as possible, and is usually in the range of 0.2 to 8 hours, preferably 0.5 to 5 hours. If it exceeds this range, trimellitic anhydride or the like will be generated, and the purity of pyromellitic anhydride will decrease. Evaporation, cooling, and recovery of pyromellitic anhydride are batch, semi-continuous,
Any form such as a continuous type can be applied.

【0011】[0011]

【実施例】次に実施例及び比較例により本発明を具体的
に説明する。但し本発明は以下の実施例により制限され
るものではない。尚、以下の実施例において無水ピロメ
リット酸等の着色度合はメタノール溶解色により示し
た。メタノール溶解色は次の方法で求めた。サンプル5
gを100mlのメタノールに溶解し、波長430nm
の吸光度を測定し、測定値の100倍をメタノール溶解
色とした。
Next, the present invention will be described specifically with reference to examples and comparative examples. However, the present invention is not limited by the following examples. In the following examples, the degree of coloring of pyromellitic anhydride and the like was indicated by the methanol-soluble color. The methanol dissolution color was determined by the following method. Sample 5
g was dissolved in 100 ml of methanol, and the wavelength was 430 nm.
Was measured and 100 times the measured value was taken as the methanol-soluble color.

【0012】参考例(粗ピロメリット酸の製造) 還流冷却器、攪拌装置、加熱装置および原料送入口、ガ
ス導入口、反応物排出口を有する内容積2LのZr製オ
ートクレーブ2台を接続した連続2段式反応器の1段目
の反応器に水1450.3g、100%臭化水素15.
3g、臭化マンガン(4水塩)34.4gおよび臭化第
二鉄0.1gを混合した臭素イオン濃度2.3重量%、
マンガンイオン濃度0.44重量%、鉄イオン濃度13
ppmの触媒液を仕込み、2段目の反応器に1段目と同
じ組成の触媒液を1000g仕込んだ。ガス導入口から
窒素を圧入し、1MPaに昇圧し、加熱装置で220℃
まで昇温した。ついで1段目反応器に2,4,5−トリ
メチルベンズアルデヒドを90g/hの割合で、触媒液
(反応器仕込み液と同一組成)を780g/hの割合で
別々に供給した。2,4,5−トリメチルベンズアルデ
ヒドの供給と同時にガス導入口から空気の送入を開始
し、反応器よりの排ガス中の酸素を2.5%に保つよう
に流量を制御した。ついで1段目反応器中の液面を一定
に保ちつつ、1段目反応器より2段目反応器への液移送
を開始し、同時に2段目反応器に水58gおよび100
%臭化水素2gを混合した臭素イオン濃度3.3重量%
の触媒液を60g/hの割合で供給し、ガス導入口から空
気の送入開始し、反応器よりの排ガス中の酸素を4.5
%に保つように流量を制御した。2段目反応器中の液面
を一定に保ちつつ、2段目反応器より1150g/hの反
応生成物を抜き出した。この間、反応器の圧力は1段目
を3.2MPa、2段目を2.9MPaに保った。上記
で得た反応生成液を0.5%Pd/C触媒存在下、15
0℃、1MPaで水添反応を行い、冷却後、得られた結
晶を濾過分離し、乾燥して、粗ピロメリット酸を得た。
得られた粗ピロメリット酸にはトリメリット酸1.6重
量%、メチルトリメリット酸0.97重量%を含有し、
純度は96.7重量%であった。
Reference Example (Production of Crude Pyromellitic Acid) Continuous connection of two 2 L Zr autoclaves having a reflux condenser, a stirrer, a heating device, a raw material inlet, a gas inlet, and a reactant outlet having a capacity of 2 L. 14. 1450.3 g of water and 100% hydrogen bromide in the first reactor of a two-stage reactor.
3 g, 34.4 g of manganese bromide (tetrahydrate) and 0.1 g of ferric bromide, a bromine ion concentration of 2.3% by weight,
Manganese ion concentration 0.44% by weight, iron ion concentration 13
ppm of the catalyst solution was charged, and 1000 g of the catalyst solution having the same composition as the first stage was charged into the second stage reactor. Nitrogen was injected from the gas inlet, the pressure was increased to 1 MPa, and the heating device was 220 °
Temperature. Then, 2,4,5-trimethylbenzaldehyde and a catalyst solution (the same composition as the solution charged in the reactor) were separately supplied to the first-stage reactor at a rate of 90 g / h and 780 g / h. Air supply was started from the gas inlet simultaneously with the supply of 2,4,5-trimethylbenzaldehyde, and the flow rate was controlled so that the oxygen in the exhaust gas from the reactor was kept at 2.5%. Next, while the liquid level in the first-stage reactor was kept constant, liquid transfer from the first-stage reactor to the second-stage reactor was started, and at the same time, 58 g of water and 100 g of water were added to the second-stage reactor.
% Hydrogen bromide mixed with 2 g of bromine ion concentration 3.3% by weight
Is supplied at a rate of 60 g / h, and the introduction of air from the gas inlet is started to reduce the oxygen in the exhaust gas from the reactor to 4.5.
The flow rate was controlled to maintain the percentage. While keeping the liquid level in the second-stage reactor constant, 1150 g / h of a reaction product was withdrawn from the second-stage reactor. During this time, the pressure of the reactor was maintained at 3.2 MPa in the first stage and 2.9 MPa in the second stage. The reaction product solution obtained above was treated with 0.5% Pd / C catalyst in the presence of 15%
A hydrogenation reaction was performed at 0 ° C. and 1 MPa, and after cooling, the obtained crystals were separated by filtration and dried to obtain crude pyromellitic acid.
The obtained crude pyromellitic acid contains 1.6% by weight of trimellitic acid and 0.97% by weight of methyltrimellitic acid,
Purity was 96.7% by weight.

【0013】比較例1 参考例で得られた粗ピロメリット酸300gを純水22
00gに80℃で溶解し、0.5時間その状態で保持し
た後、冷却し、40℃で結晶を分離した。得られた結晶
を等量の水でリンスし、120℃で1昼夜乾燥した。乾
燥後のピロメリット酸の200gを攪拌下、250℃で
10時間加熱し、無水化を行った。得られたピロメリッ
ト酸と無水ピロメリット酸の測定結果を表1に示す。
COMPARATIVE EXAMPLE 1 300 g of the crude pyromellitic acid obtained in Reference Example was mixed with pure water 22
The solution was dissolved in 00 g at 80 ° C., kept in that state for 0.5 hour, cooled, and the crystals were separated at 40 ° C. The obtained crystals were rinsed with an equal amount of water and dried at 120 ° C. for one day. 200 g of the pyromellitic acid after drying was heated at 250 ° C. for 10 hours while stirring to dehydrate. Table 1 shows the measurement results of the obtained pyromellitic acid and pyromellitic anhydride.

【0014】実施例1 比較例1と同じ処理をし、得られた無水ピロメリット酸
150gを70Torr、305℃で単蒸留した。蒸留
時間は1時間で、無水ピロメリット酸の回収率は95%
であった。結果を表1に示す。
Example 1 The same treatment as in Comparative Example 1 was carried out, and 150 g of the obtained pyromellitic anhydride was subjected to simple distillation at 305 ° C. and 70 Torr. Distillation time is 1 hour, recovery of pyromellitic anhydride is 95%
Met. Table 1 shows the results.

【0015】実施例2 実施例1において、50Torr、297℃で単蒸留し
た。蒸留時間は1時間で、無水ピロメリット酸の回収率
は90%であった。結果を表1に示す。
Example 2 In Example 1, simple distillation was carried out at 50 Torr and 297 ° C. The distillation time was 1 hour, and the recovery of pyromellitic anhydride was 90%. Table 1 shows the results.

【0016】比較例2 参考例で得た粗ピロメリット酸の再結晶およびリンスを
せず、200gを攪拌下、250℃で10時間加熱し、
無水化を行った。得られた無水ピロメリット酸150g
を70Torr、305℃で単蒸留した。蒸留時間は1
時間で、無水ピロメリット酸の回収率は95%であっ
た。結果を表1に示す。
Comparative Example 2 200 g of the crude pyromellitic acid obtained in Reference Example was heated at 250 ° C. for 10 hours with stirring without recrystallization and rinsing.
Dehydration was performed. 150 g of the obtained pyromellitic anhydride
Was subjected to simple distillation at 305 ° C. and 70 Torr. Distillation time is 1
Over time, the recovery of pyromellitic anhydride was 95%. Table 1 shows the results.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【発明の効果】以上の実施例から明らかなように、本発
明の方法により、粗ピロメリット酸または粗無水ピロメ
リット酸を純水に溶解させ、再結晶することにより得ら
れたピロメリット酸を、加熱脱水後、蒸留することで、
副生物を殆ど含まず着色の無い、高品質の高純度無水ピ
ロメリット酸を製造することできる。本発明方法は、高
品質の高純度無水ピロメリット酸を容易に得ることがで
き、工業的に優れた方法であるので、本発明の工業的意
義は大きい。
As is clear from the above examples, the pyromellitic acid obtained by dissolving crude pyromellitic acid or crude pyromellitic anhydride in pure water and recrystallization by the method of the present invention. After heating and dehydrating, by distillation,
A high-quality, high-purity pyromellitic anhydride containing almost no by-products and no coloring can be produced. INDUSTRIAL APPLICABILITY The method of the present invention can easily obtain high-quality, high-purity pyromellitic anhydride and is an industrially superior method, so that the present invention has great industrial significance.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】粗ピロメリット酸または粗無水ピロメリッ
ト酸を水に加熱溶解してピロメリット酸として冷却結晶
化し、得られた結晶を加熱無水化し、該無水ピロメリッ
ト酸を蒸発させ、得られた無水ピロメリット酸蒸気を冷
却して精製結晶として回収することを特徴とする高純度
無水ピロメリット酸の製造方法。
(1) Crude pyromellitic acid or crude pyromellitic anhydride is dissolved in water by heating and crystallized by cooling as pyromellitic acid, the obtained crystals are dried by heating, and the pyromellitic anhydride is evaporated to obtain A method for producing high-purity pyromellitic anhydride, comprising cooling the recovered pyromellitic anhydride vapor and recovering it as purified crystals.
【請求項2】無水ピロメリット酸を150Torr以下
の減圧下、250℃〜400℃の範囲の温度で蒸発させ
る請求項1記載の高純度無水ピロメリット酸の製造方
法。
2. The method according to claim 1, wherein the pyromellitic anhydride is evaporated under a reduced pressure of 150 Torr or less at a temperature in the range of 250 ° C. to 400 ° C.
JP2000252405A 2000-08-23 2000-08-23 Method for producing highly pure pyromellitic anhydride Pending JP2002069073A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2000252405A JP2002069073A (en) 2000-08-23 2000-08-23 Method for producing highly pure pyromellitic anhydride
US09/933,075 US6579990B2 (en) 2000-08-23 2001-08-21 Process for producing refined pyromellitic acid and refined pyromellitic anhydride
DE60104625T DE60104625T2 (en) 2000-08-23 2001-08-22 Process for the preparation of purified pyromellitic acid and purified pyromellitic anhydride
EP01119665A EP1199298B1 (en) 2000-08-23 2001-08-22 Process for producing refined pyromellitic acid and refined pyromellitic anhydride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000252405A JP2002069073A (en) 2000-08-23 2000-08-23 Method for producing highly pure pyromellitic anhydride

Publications (1)

Publication Number Publication Date
JP2002069073A true JP2002069073A (en) 2002-03-08

Family

ID=18741652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000252405A Pending JP2002069073A (en) 2000-08-23 2000-08-23 Method for producing highly pure pyromellitic anhydride

Country Status (1)

Country Link
JP (1) JP2002069073A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004217586A (en) * 2003-01-16 2004-08-05 Mitsubishi Gas Chem Co Inc Method for producing aromatic polycarboxylic acid and acid anhydride thereof
CN102911181A (en) * 2012-11-14 2013-02-06 曹永平 Preparation method of high-purity pyromellitic dianhydride

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49102638A (en) * 1973-02-16 1974-09-27
JPS6259280A (en) * 1985-09-10 1987-03-14 Mitsubishi Gas Chem Co Inc Production of pyromellitic anhydride
JPH03294272A (en) * 1990-04-13 1991-12-25 Hitachi Ltd Production of highly pure tetracarboxylic acid dianhydride

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49102638A (en) * 1973-02-16 1974-09-27
JPS6259280A (en) * 1985-09-10 1987-03-14 Mitsubishi Gas Chem Co Inc Production of pyromellitic anhydride
JPH03294272A (en) * 1990-04-13 1991-12-25 Hitachi Ltd Production of highly pure tetracarboxylic acid dianhydride

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004217586A (en) * 2003-01-16 2004-08-05 Mitsubishi Gas Chem Co Inc Method for producing aromatic polycarboxylic acid and acid anhydride thereof
CN102911181A (en) * 2012-11-14 2013-02-06 曹永平 Preparation method of high-purity pyromellitic dianhydride

Similar Documents

Publication Publication Date Title
RU2163231C2 (en) Method and device for production of purified terephthalic acid
US5705682A (en) Process for producing highly pure terephthalic acid
KR100658555B1 (en) Process for Producing Pure Terephthalic Acid with Improved Recovery of Precursors, Solvent and Methyl Acetate
US6054610A (en) Method and apparatus for preparing purified terephthalic acid and isophthalic acid from mixed xylenes
JPH0558948A (en) Preparation of terephthalic acid
JPS6247864B2 (en)
EP1082286B1 (en) Method for preparing purified terephthalic acid and isophthalic acid from mixed xylenes
US6150553A (en) Method for recovering methyl acetate and residual acetic acid in the production acid of pure terephthalic acid
EP1104396B1 (en) Method for recovering methyl acetate and residual acetic acid in the production of pure terephthalic acid
JPH07118200A (en) Production of naphthalenedicarboxylic acid
JP2002069073A (en) Method for producing highly pure pyromellitic anhydride
US4987238A (en) Process for the preparation of high-purity 5,5'-[2,2,2-trifluoro-1-(trifluoromethyl)-ethylidene]bis-1,3-isobenzofurandione
EP1199298B1 (en) Process for producing refined pyromellitic acid and refined pyromellitic anhydride
JP4626031B2 (en) Method for producing high purity pyromellitic acid and high purity pyromellitic anhydride
JP4622266B2 (en) Purification method of fluorine-containing aromatic tetracarboxylic dianhydride
JPH07238051A (en) Production of naphthalene-dicarboxylic acid of high purity
JP4032186B2 (en) Method for producing high purity dimethyl 2,6-naphthalenedicarboxylate
JP2924104B2 (en) Method for producing high-purity isophthalic acid
JP2002524390A (en) Method for producing purified terephthalic acid and isophthalic acid from mixed xylene
JPH07206763A (en) Production of purified 3,3',4,4',-biphenyltetracarboxylic acid or its acid dianhydride
JPH0717901A (en) Production of high-purity isophthalic acid
JPH04264050A (en) Method for purifying 2,6-naphthalenedicarboxylic acid
JP4386153B2 (en) Crystallization method of acid dianhydride
JP2004331585A (en) High-purity trimellitic anhydride and method for producing the same
JPH03123755A (en) Production of aromatic carboxylic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101108

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101215