JPH045323B2 - - Google Patents

Info

Publication number
JPH045323B2
JPH045323B2 JP16093085A JP16093085A JPH045323B2 JP H045323 B2 JPH045323 B2 JP H045323B2 JP 16093085 A JP16093085 A JP 16093085A JP 16093085 A JP16093085 A JP 16093085A JP H045323 B2 JPH045323 B2 JP H045323B2
Authority
JP
Japan
Prior art keywords
thickness
liner
tube
eddy current
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16093085A
Other languages
Japanese (ja)
Other versions
JPS6221004A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP16093085A priority Critical patent/JPS6221004A/en
Publication of JPS6221004A publication Critical patent/JPS6221004A/en
Publication of JPH045323B2 publication Critical patent/JPH045323B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、渦電流法によりライニング管のライ
ナ層や全肉厚等の厚みを測定する方法に関し、特
にジルコニウム合金(以下、ジルカロイを称す)
管の内面に純ジルコニウムライナ層を形成した原
子炉核燃料用の被覆管におけるライナ厚さや全肉
厚の測定等に好適に適用可能な測定法に関するも
のである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for measuring the thickness of a liner layer, total wall thickness, etc. of a lined pipe using an eddy current method, and particularly relates to a method for measuring the thickness of a liner layer, total wall thickness, etc. of a lined pipe using an eddy current method, and particularly for measuring the thickness of a zirconium alloy (hereinafter referred to as Zircaloy).
The present invention relates to a measurement method that can be suitably applied to the measurement of liner thickness and total wall thickness in cladding tubes for reactor nuclear fuel in which a pure zirconium liner layer is formed on the inner surface of the tube.

〔従来技術〕[Prior art]

原子炉運転の効率化のためには急激な出力上昇
や下降が不可欠であるが、従来のジルカロイ製の
核燃料被覆管では、急激な出力変動があると応力
腐食割れが懸念される。そこで、ジルカロイ管の
内面に極薄の純ジルコニウムライナ層を形成した
被覆管が開発されている。このような被覆管にお
いては強度上の問題からライナ層や全肉厚が所定
の厚さを有していることが必要であり、そのため
にこれらの厚さを正確に測定する必要がある。
Rapid increases and decreases in power are essential for efficient nuclear reactor operation, but with conventional Zircaloy nuclear fuel cladding, there are concerns about stress corrosion cracking if there are sudden changes in power. Therefore, a cladding tube in which an extremely thin pure zirconium liner layer is formed on the inner surface of a Zircaloy tube has been developed. In such a cladding tube, it is necessary that the liner layer and the total wall thickness have a predetermined thickness due to strength issues, and therefore, it is necessary to accurately measure these thicknesses.

一般に、ライニング管のように2種以上の金属
からできている管の各層や全体の厚さの測定法と
しては、破壊的測定法と非破壊的測定法がある
が、破壊的測定法では管の両端部の測定しかでき
ず、管内面全面の測定が不可欠な上記被覆管の場
合には適用できない。非破壊的測定法としては超
音波法と渦電流法があるが、超音波法は、上記被
覆管においてはライナ層とジルカロイ管の境界面
でのエコー識別が極めて困難であるため適用でき
ない。一方、渦電流法はジルコニウムライナ層の
導電率(1/ρ、ρ=50μΩ・cm)とジルカロイ
部の導電率(1/ρ、ρ=70μΩ・cm)の差を利
用することによつてライナ厚や全肉厚の測定が可
能である。即ち、渦電流法の原理は、交流電流を
流したコイルを金属表面に近接させることにより
金属表面に渦電流が流れ、その渦電流によつて誘
導磁場が誘起されてコイルのインピーダンスが変
化するため、このインピーダンスの変化量によつ
て金属表面の情報を得ることができるということ
であり、ライニング管のライナ厚の変動によつて
インピーダンスが変化し、また全肉厚の変動によ
つてもインピーダンスが変化することも周知のこ
とであり、これによつてライナ厚や管の全肉厚を
測定することが原理的には可能である。
In general, there are two methods for measuring the thickness of each layer and the entire thickness of pipes made of two or more metals, such as lining pipes: destructive measurement methods and non-destructive measurement methods. This method can only measure both ends of the tube, and cannot be applied to the above-mentioned cladding tube, where measurement of the entire inner surface of the tube is essential. Nondestructive measurement methods include the ultrasonic method and the eddy current method, but the ultrasonic method cannot be applied to the above-mentioned clad tube because it is extremely difficult to identify echoes at the interface between the liner layer and the Zircaloy tube. On the other hand, the eddy current method uses the difference between the conductivity of the zirconium liner layer (1/ρ, ρ = 50 μΩ・cm) and the conductivity of the Zircaloy part (1/ρ, ρ = 70 μΩ・cm). Thickness and total wall thickness can be measured. In other words, the principle of the eddy current method is that when a coil carrying an alternating current is brought close to a metal surface, an eddy current flows on the metal surface, and the eddy current induces an induced magnetic field, changing the impedance of the coil. This means that information about the metal surface can be obtained from the amount of change in impedance.The impedance changes as a result of changes in the liner thickness of the lining tube, and also changes in the total wall thickness. It is also well known that the liner thickness and the total wall thickness of the pipe can be measured in principle.

このような渦電流法によるライナ厚の具体的な
測定法の一例として、特開昭59−67405号公報に
開示されたものがある。これはコイルと管内面と
の間の空隙(以下、リフトオフと称す)の変動に
起因するコイルインピーダンス変化方向のインピ
ーダンス成分Vyとそれに直交する方向のインピ
ーダンス成分Vxを求め、Vxから、あるいはVx
をVyで補正したものからライナ厚を求めている。
An example of a specific method for measuring liner thickness using such an eddy current method is disclosed in Japanese Patent Application Laid-Open No. 1987-67405. This is done by determining the impedance component Vy in the direction of coil impedance change due to fluctuations in the air gap between the coil and the inner surface of the tube (hereinafter referred to as lift-off) and the impedance component Vx in the direction orthogonal to it.
The liner thickness is calculated from the value corrected by Vy.

ところで、測定されたインピーダンス成分をラ
イナ厚に変換する際には基準点が必要であり、そ
こで上記公報では既知のライナ層を備えた基準試
片を用い、停止しているこの基準試片の一点にお
けるインピーダンス成分を基準としている。しか
し、管内におけるインピーダンスの変化を正規化
インピーダンス平面に示した第6図から明らかな
ように、リフトオフが異なると基準点が大きく変
化するが、上記方法では基準点設定時のリフトオ
フを再現性よく設定するのは非常に困難であり、
再現性の良い基準(零)点設定や感度設定が不可
能で、正確な測定ができないという問題があつ
た。
By the way, a reference point is necessary when converting the measured impedance component into liner thickness, so in the above publication, a reference specimen with a known liner layer is used, and one point of this reference specimen that is stationary is used. The impedance component in is the standard. However, as is clear from Figure 6, which shows the change in impedance in the pipe on the normalized impedance plane, the reference point changes greatly when the liftoff is different, but the above method allows for reproducibility of the liftoff when setting the reference point. It is very difficult to
There was a problem in that it was impossible to set a reference (zero) point or sensitivity with good reproducibility, making accurate measurements impossible.

〔発明の目的〕[Purpose of the invention]

本発明は、上記従来の問題点を解決するために
なされたものであつて、渦電流法によつてライニ
ング管の各厚みを測定する場合、その基準点及び
感度の再現性を良くしたライニング管の厚みに測
定法の提供を目的とする。
The present invention has been made in order to solve the above-mentioned conventional problems, and is a lining tube that improves the reproducibility of reference points and sensitivity when measuring each thickness of a lining tube by the eddy current method. The purpose is to provide a method for measuring the thickness of

〔発明の構成〕[Structure of the invention]

本発明のライニング管の厚み測定法は、ライニ
ング管の厚みを、管内部に電磁誘導試験用のコイ
ルを挿入して渦電流法により測定する際に、被測
定ライニング管と同径でかつライナ厚が既知で互
いにその厚みが異なる2種の標準ライニング管を
回転させて得られた渦流測定器の出力の一方の平
均値を基準点とし、他方の平均値との対比によつ
て感度を設定してライニング管の厚みを算出し、
標準ライニング管を回転させてリフトオフ量を平
均化させることによつて基準点の再現性を良くす
るとともに、同様に感度の再現性を良くしたこと
を特徴とするものである。
The method for measuring the thickness of a lined pipe of the present invention is to measure the thickness of a lined pipe by inserting a coil for electromagnetic induction testing inside the pipe and using the eddy current method. The average value of one of the outputs of the eddy current measuring device obtained by rotating two types of standard lining tubes with known values and different thicknesses is used as a reference point, and the sensitivity is set by comparing it with the other average value. Calculate the thickness of the lining pipe using
By rotating the standard lining tube and averaging the lift-off amount, the reproducibility of the reference point is improved, and the reproducibility of the sensitivity is also improved.

〔実施例〕〔Example〕

次に、本発明をライナ被覆管のライナ厚及び全
肉厚の測定に適用した一実施例を、第1図〜第5
図に基づいて説明する。第1図aにおいて、同図
bに示すように母材管であるジルカロイ管1aの
内面に純ジルコニウムのライナ層1bを形成され
たライナ被覆管1が回転機2によりその軸心回り
に回転駆動可能に保持され、このライナ被覆管1
内に装入可能なプローブ3が装入装置4にて支持
されている。プローブ3内には絶対値型のコイル
が埋め込まれており、そのコイル径は約1mmであ
る。このコイルからの信号、即ちインピーダンス
変化は渦流測定器5で検知されて例えば電圧に変
換され、その出力が所定の算出式をプログラムさ
れた演算装置6に入力されてライナ厚、全肉厚及
びそれからジルカロイ厚が演算され、その結果が
表示器7に表示されるように構成されている。
Next, an example in which the present invention is applied to the measurement of the liner thickness and total wall thickness of a liner cladding tube is shown in FIGS. 1 to 5.
This will be explained based on the diagram. In FIG. 1a, as shown in FIG. 1b, a liner cladding tube 1 in which a liner layer 1b of pure zirconium is formed on the inner surface of a Zircaloy tube 1a, which is a base material tube, is rotated around its axis by a rotating machine 2. This liner cladding tube 1
A probe 3 that can be inserted into the container is supported by a charging device 4. An absolute value type coil is embedded within the probe 3, and the coil diameter is approximately 1 mm. The signal from this coil, that is, the change in impedance, is detected by an eddy current measuring device 5 and converted into, for example, a voltage. The Zircaloy thickness is calculated and the result is displayed on the display 7.

コイルに印加される試験周波数は、主に全肉厚
を測定するための500KHzと、主にライナ厚を測
定するための2MHzと4MHzの2重周波数との計3
重周波数が用いられている。このようにライナ厚
の測定において、2重周波数にてコイルを励磁す
ると、周波数によつてインピーダンス変化の方向
が変わるため、各励磁周波数を微小変化させたと
きに生ずる前記コイルのインピーダンス変化の方
向とそれに直交する方向のインピーダンス成分を
検出し、これらインピーダンス成分からリフトオ
フ量の変動やライナ層とジルカロイ部の導電率の
変動等の影響を無くしてライナ厚を求めることが
できるのである。
The test frequencies applied to the coil are 500KHz, which mainly measures the total wall thickness, and a dual frequency of 2MHz and 4MHz, which mainly measures the liner thickness.
Multiple frequencies are used. In measuring liner thickness, when a coil is excited at dual frequencies, the direction of impedance change changes depending on the frequency. Impedance components in a direction perpendicular to this are detected, and the liner thickness can be determined from these impedance components without the effects of variations in lift-off amount, variations in conductivity between the liner layer and the Zircaloy portion, etc.

前記ライナ被覆管1の一端部には、このライナ
被覆管1と同径でかつジルカロイ管8aの内面に
50μm厚の純ジルコニウムのライナ層8bが形成
された第1の標準ライナ被覆管8と、ジルカロイ
管9aの内面に130μm厚の純ジルコニウムのラ
イナ層9bが形成された第2の標準ライナ被覆管
9が同心状に固定されている。なお、ライナ被覆
管1のライナ層1bは、50μm〜130μmの範
囲内である。
At one end of the liner cladding tube 1, there is a hole having the same diameter as the liner cladding tube 1 and on the inner surface of the Zircaloy tube 8a.
A first standard liner cladding tube 8 in which a 50 μm thick liner layer 8b of pure zirconium is formed, and a second standard liner cladding tube 9 in which a 130 μm thick pure zirconium liner layer 9b is formed on the inner surface of the Zircaloy tube 9a. are fixed concentrically. Note that the liner layer 1b of the liner cladding tube 1 is within the range of 50 μm to 130 μm.

以上の構造における測定手順は、まずプローブ
3を第1の標準ライナ被覆管8内に移動させて第
1の標準ライナ被覆管8を回転させ、その1回転
中における渦流測定器5の出力を各周波数毎にそ
れぞれ平均化してこれを基準点(零点)とする。
さらにプローブ3を第2の標準ライナ被覆管9内
に移動させてこの第2の標準ライナ被覆管9を回
転させ、その一回転中における渦流測定器5の出
力を各周波数毎にそれぞれ平均化してライナ厚が
130μmの場合の出力とし、それを前記ライナ厚
が50μmの場合の基準点と対比し、感度を設定す
る、次に、プローブ3を被測定管であるライナ被
覆管1内に移動し、このライナ被覆管1を回転し
ながらプローブ3を移動させる。この時の渦流測
定器5の各周波数毎の出力からそれぞれの前記基
準点を減算し、その値に基づき、さらに前記感度
に基づいて演算装置6でライナ厚と全肉厚を算出
し、さらに全肉厚からライナ厚を減算することに
よつてジルカロイ厚を算出し、これらを表示器7
に表示する。
The measurement procedure in the above structure is to first move the probe 3 into the first standard liner cladding tube 8, rotate the first standard liner cladding tube 8, and measure the output of the eddy current measuring device 5 during one rotation. Each frequency is averaged and this is used as a reference point (zero point).
Further, the probe 3 is moved into the second standard liner cladding tube 9, this second standard liner cladding tube 9 is rotated, and the output of the eddy current measuring device 5 during one rotation is averaged for each frequency. liner thickness
Set the sensitivity by setting the output when the liner thickness is 130 μm and comparing it with the reference point when the liner thickness is 50 μm.Next, move the probe 3 into the liner clad tube 1, which is the tube to be measured, and set the sensitivity. The probe 3 is moved while the cladding tube 1 is rotated. At this time, each of the reference points is subtracted from the output of the eddy current measuring device 5 for each frequency, and based on that value, the calculation device 6 calculates the liner thickness and the total wall thickness based on the sensitivity. The Zircaloy thickness is calculated by subtracting the liner thickness from the wall thickness, and these are displayed on the display 7.
to be displayed.

以上の方法で測定した結果を従来法の結果とと
もに第2図に示す。これは、ジルカロイ管を基準
点(零点)として従来法で90μmのライナ層を有
するライナ被覆管を数回測定した際の渦流測定器
の出力例と、本発明法によつて測定した結果を示
したものであり、従来法では厚みの正確な測定は
不可能であるが、本発明法によれば高精度な測定
が可能となつている。
The results measured by the above method are shown in FIG. 2 together with the results of the conventional method. This shows an example of the output of an eddy current measuring device when a liner-clad tube with a 90 μm liner layer was measured several times using the conventional method using the Zircaloy tube as the reference point (zero point), and the results measured using the method of the present invention. Although it is impossible to accurately measure the thickness using the conventional method, the method of the present invention allows highly accurate measurement.

又、上記方法でライナ被覆管1のライナ厚、全
肉厚及びジルカロイ厚を測定した結果の一例を第
3図〜第5図に示す。これらの結果から本発明法
によれば実測値と高精度に対応しており、正確な
測定が可能なことが認められる。
Furthermore, examples of the results of measuring the liner thickness, total wall thickness, and Zircaloy thickness of the liner cladding tube 1 using the above method are shown in FIGS. 3 to 5. From these results, it is recognized that the method of the present invention corresponds to the actual measured values with high precision and that accurate measurements are possible.

〔発明の効果〕〔Effect of the invention〕

本発明のライニング管の厚み測定法によれば、
以上のようにライニング管の厚みを、管内部に電
磁誘導試験用のコイルを挿入して渦電流法により
測定する際に、被測定ライニング管と同径でかつ
ライナ厚が既知で互いにその厚みが異なる2種の
標準ライニング管を回転させて得られた渦流測定
器の出力の一方の平均値を基準点とし、他方の平
均値との対比によつて感度を設定してライニング
管の厚みを算出するので、標準ライニング管を回
転させてリフトオフ量を平均化することができ、
その結果、基準点の再現性を良くするとともに、
同様に感度の再現性を良くすることができる。従
つて、本発明法によれば、渦電流法によつてライ
ニング管の厚みを極めて高精度に測定することが
可能となる。
According to the lining pipe thickness measurement method of the present invention,
As described above, when measuring the thickness of a lined pipe using the eddy current method by inserting a coil for electromagnetic induction testing inside the pipe, it is necessary to use a liner with the same diameter as the lined pipe to be measured and a known liner thickness. Using the average value of the output of the eddy current measuring device obtained by rotating two different types of standard lining tubes as a reference point, the thickness of the lining tube is calculated by setting the sensitivity by comparing it with the other average value. Therefore, the lift-off amount can be averaged by rotating the standard lining pipe,
As a result, the reproducibility of the reference point is improved, and
Similarly, the reproducibility of sensitivity can be improved. Therefore, according to the method of the present invention, it is possible to measure the thickness of a lining tube with extremely high accuracy using the eddy current method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第5図は本発明の一実施例を示し、第
1図aは本発明法を実施する装置の概略構成図、
同図bは同図aの−線断面図、同図cは同図
aの−線断面図、同図dは同図aの−線
断面図、第2図は本発明法と従来法によるライナ
厚の測定結果のばらつきを示すグラフ、第3図〜
第5図はそれぞれライナ厚、全肉厚及びジルカロ
イ厚の測定値と実測値の関係を示すグラフ、第6
図は基準試験管中でのコイルインピーダンスの変
化を正規化インピーダンス平面で示した図であ
る。 1はライナ被覆管、2は回転機、3はプロー
ブ、5は渦流測定器、6は演算装置、8は第1の
標準ライナ被覆管、9は第2の標準ライナ被覆管
である。
1 to 5 show an embodiment of the present invention, and FIG. 1a is a schematic configuration diagram of an apparatus for carrying out the method of the present invention,
Figure b is a cross-sectional view taken along the - line in figure a, figure c is a cross-sectional view taken along line - in figure a, figure d is a cross-sectional view taken in figure a along line -, and Figure 2 shows the results of the present invention and the conventional method. Graph showing variation in liner thickness measurement results, Figure 3~
Figure 5 is a graph showing the relationship between measured values and actual values of liner thickness, total wall thickness, and Zircaloy thickness, respectively.
The figure shows changes in coil impedance in a reference test tube on a normalized impedance plane. 1 is a liner cladding tube, 2 is a rotating machine, 3 is a probe, 5 is an eddy current measuring device, 6 is a calculation device, 8 is a first standard liner cladding tube, and 9 is a second standard liner cladding tube.

Claims (1)

【特許請求の範囲】[Claims] 1 ライニング管の厚みを、管内部に電磁誘導試
験用のコイルを挿入して渦電流法により測定する
際に、被測定ライニング管と同径でかつライナ厚
が既知で互いにその厚みが異なる2種の標準ライ
ニング管を回転させて得られた渦流測定器の出力
の一方の平均値を基準点とし、他方の平均値との
対比によつて感度を設定してライニング管の厚み
を算出することを特徴とするライニング管の厚み
測定法。
1. When measuring the thickness of a lined pipe using the eddy current method by inserting a coil for electromagnetic induction testing inside the pipe, two types of liners with the same diameter as the lined pipe to be measured, known liner thicknesses, and different thicknesses are used. The thickness of the lining pipe is calculated by setting the average value of one of the outputs of the eddy current measuring device obtained by rotating the standard lining pipe as a reference point, and setting the sensitivity by comparing it with the other average value. Features a method for measuring the thickness of lining pipes.
JP16093085A 1985-07-19 1985-07-19 Thickness measurement of lining tube Granted JPS6221004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16093085A JPS6221004A (en) 1985-07-19 1985-07-19 Thickness measurement of lining tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16093085A JPS6221004A (en) 1985-07-19 1985-07-19 Thickness measurement of lining tube

Publications (2)

Publication Number Publication Date
JPS6221004A JPS6221004A (en) 1987-01-29
JPH045323B2 true JPH045323B2 (en) 1992-01-31

Family

ID=15725325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16093085A Granted JPS6221004A (en) 1985-07-19 1985-07-19 Thickness measurement of lining tube

Country Status (1)

Country Link
JP (1) JPS6221004A (en)

Also Published As

Publication number Publication date
JPS6221004A (en) 1987-01-29

Similar Documents

Publication Publication Date Title
JPH0226721B2 (en)
CS173491A3 (en) Process and apparatus for measuring thickness of a layer and its cohesion on a surface of a double tube
US5418823A (en) Combined ultrasonic and eddy-current method and apparatus for non-destructive testing of tubular objects to determine thickness of metallic linings or coatings
JPH01123143A (en) Method and apparatus for detection of flaw by eddy current
JPH0771905A (en) Determination of thickness of ferromagnetic substance deposited on nuclear fuel rod
JPH02262026A (en) Method and apparatus for nondestructive inspection
CN113640369A (en) Alternating current electromagnetic field lift-off effect compensation method suitable for metal surface cracks
JPH045323B2 (en)
JPS6196401A (en) Method for measuring thickness of liner on the basis of two frequency
JPS6221003A (en) Thickness measurement of lining pipe
JPH0641938B2 (en) Nondestructive measurement method for zirconium alloy materials
JPS6221002A (en) Thickness measurement of linking pipe
JPS62235505A (en) Measurement of thickness of lined pipe
JPH0560522B2 (en)
JP4118487B2 (en) Steel pipe corrosion diagnosis method
Pavlyuchenko et al. Pulsed Magnetic Field near Metal Surface
Terekhin et al. Evaluating specific electrical conductivity of two-layered nonmagnetic objects by pulsed eddy-current method
JP2020139745A (en) Non-magnetic metal wall thickness measuring method and wall thickness measuring device
JPH0514165Y2 (en)
JPS58166203A (en) Method and device for measuring thickness of coating film on inside surface of coated pipe for nuclear fuel
JPH0470561A (en) Method and apparatus for detecting heterogeneous layer in metal
JPS6138404A (en) Measuring method of thickness of liner layer and thickness of zircalloy of liner coated pipe
JPH075408Y2 (en) Metal flaw detection probe
JPS58122404A (en) Measuring method of thickness of copper film on inside surface of clad pipe for nuclear fuel
JPS6367507A (en) Method and instrument for measuring internal coating film thickness of nuclear fuel tube