JPH0452243A - Precision electrical resistance alloy having high electrical resistance and low temperature coefficient and its manufacture - Google Patents

Precision electrical resistance alloy having high electrical resistance and low temperature coefficient and its manufacture

Info

Publication number
JPH0452243A
JPH0452243A JP16001590A JP16001590A JPH0452243A JP H0452243 A JPH0452243 A JP H0452243A JP 16001590 A JP16001590 A JP 16001590A JP 16001590 A JP16001590 A JP 16001590A JP H0452243 A JPH0452243 A JP H0452243A
Authority
JP
Japan
Prior art keywords
electrical resistance
alloy
temperature
total
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16001590A
Other languages
Japanese (ja)
Other versions
JP2922989B2 (en
Inventor
Naoji Nakamura
直司 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute for Electromagnetic Materials
Original Assignee
Research Institute for Electromagnetic Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute for Electromagnetic Materials filed Critical Research Institute for Electromagnetic Materials
Priority to JP16001590A priority Critical patent/JP2922989B2/en
Publication of JPH0452243A publication Critical patent/JPH0452243A/en
Application granted granted Critical
Publication of JP2922989B2 publication Critical patent/JP2922989B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a precision electrical resistance alloy having good cold workability by adding specified amounts of Co, Mn, W or the like to an Ni-Cr-Cu-Al series alloy having a specified compsn. CONSTITUTION:An alloy constituted of, by weight, total 25 to 40% of 10 to 26% Cr, 2.5 to 15% Cu and 2.5 to 10% Al, 0.01 to 20% of one or more kinds among 0.01 to 20% Co, 0.01 to 15% Mn, 0.01 to 5% W, 0.01 to 5% Ti and 0.01 to 5% Si and the balance Ni is melted and cast. This alloy is inserted into a heat resistant container having an inside face slightly larger than the cross-sectional area of the alloy, is heated to 300 to 1200 deg.C for 1min to 50hr and is thereafter subjected to furnace cooling of 50 to 300 deg.C/hr, preferably by forced cooling of 300 to 2000 deg.C/hr. Next, this stock as in the container is subjected to cold working at 20 to 90% working ratio and is formed into a desired dimension. After the removal of the container, the stock is subjected to heat treatment of heating to 300 to l200 deg.C for 1min to 50hr and executing furnace cooling or air cooling. In this way, the precision electrical resistance allay in which the specific electrical resistance is regulated to >=130muOMEGA.cm and the temp. coefficient of the electrical resistance at about room temp. is regulated to +100X10<-6> to -100X10<-6> deg.C<-1> can be obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、精密抵抗合金に関し、さらに詳しくは高電気
抵抗と低温度係数を有するN1−Cr−Cu−Af系精
密抵抗合金に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to precision resistance alloys, and more particularly to N1-Cr-Cu-Af precision resistance alloys having high electrical resistance and low temperature coefficient. .

(従来の技術) 近年歪みセンサや温度センサ等の抵抗変化型機能素子の
開発がめざましいが、それらはかなり厳しい環境下で使
用される場合もある。これら機能素子の性能を十分に発
揮するためには、温度変化による出力ドリフトを極力抑
えることが重要である。その−船釣な方法としては、補
償抵抗や基準抵抗などの精密抵抗材料を回路に組み込ん
だハイブリッド化によって、高信顛性や高安定性を得て
いる。
(Prior Art) In recent years, the development of variable resistance functional elements such as strain sensors and temperature sensors has been remarkable, but these are sometimes used in quite harsh environments. In order to fully demonstrate the performance of these functional elements, it is important to suppress output drift due to temperature changes as much as possible. A more practical method is to achieve high reliability and stability by incorporating precision resistance materials such as compensation resistors and reference resistors into the circuit.

従来これらの精密抵抗材料としては電気抵抗の温度係数
が小さいCu−Mn系合金、N i −Cu系合金、N
i−Cr系合金やアモルファス合金の他にこれらの金属
箔膜抵抗等が使用されている。
Conventionally, these precision resistance materials include Cu-Mn alloys, Ni-Cu alloys, and N
In addition to i-Cr alloys and amorphous alloys, these metal foil film resistors are used.

(発明が解決しようとする課題) ところで、エレクトロニクスの発達した今日では各種デ
バイスは超精密、小型化および高性能化に向っており、
それに伴って精密抵抗材料もさらに優秀なものが求めら
れつつある。その要求条件として仲比電気抵抗が大きい
こと、電気抵抗の温度係数が小さいこと、細線化や薄板
化などの冷間加工が容易なこと、薄膜への成膜化が容易
なことならびに安価なこと等が挙げられる。
(Problem to be solved by the invention) Nowadays, with the development of electronics, various devices are becoming ultra-precise, smaller, and more sophisticated.
In line with this trend, there is a growing demand for even better precision resistance materials. The requirements are that the electrical resistance is large, the temperature coefficient of electrical resistance is small, that cold working such as thinning of wires and plates is easy, that it is easy to form thin films, and that it is inexpensive. etc.

前述したCu−Mn系合金やNi−Cu系合金は、電気
抵抗の温度係数が±20X10−6°c−1で極めて小
さく、加工性に冨みしかも安価であるが、比電気抵抗が
35〜50μΩ・camで小さいだけでなく、製造工程
が複雑である等の欠点を有する。
The aforementioned Cu-Mn-based alloys and Ni-Cu-based alloys have extremely small temperature coefficients of electrical resistance of ±20×10-6°c-1, are highly workable, and are inexpensive; Not only is it small (50 μΩ·cam), but it also has drawbacks such as a complicated manufacturing process.

またNi−Cu系合金は比電気抵抗が100〜130μ
Ω・csで大きいが、加工性がやや悪い欠点を有する。
In addition, Ni-Cu alloy has a specific electrical resistance of 100 to 130μ.
Although it has a large Ω·cs, it has the disadvantage of somewhat poor workability.

またアモルファス合金は、比電気抵抗が100〜180
μΩ・camと極めて大きく、かつその温度係数も±2
0X10−”℃−8の優秀な特性も得られているが、特
性の再現性が悪く、加工性が極めて困難でしかも加熱処
理によって結晶化が進み、特性が急激に悪化する欠点が
ある。
In addition, amorphous alloys have a specific electrical resistance of 100 to 180.
Extremely large μΩ・cam, and its temperature coefficient is also ±2
Although excellent properties of 0.times.10.degree. C.-8 have been obtained, the reproducibility of the properties is poor, workability is extremely difficult, and crystallization progresses during heat treatment, resulting in rapid deterioration of the properties.

さらにまた金属箔膜抵抗は比電気抵抗およびその温度係
数に関しては上記の合金素材より優れているが、高電圧
やサージ電圧などの変動に対する対応性が悪く、しかも
大電力用のものが製造できない欠点がある。
Furthermore, although metal foil film resistors are superior to the above-mentioned alloy materials in terms of specific electrical resistance and temperature coefficient, they have a disadvantage that they have poor response to fluctuations in high voltage and surge voltage, and cannot be manufactured for high power applications. There is.

以上述べたようにこれらの材料は一長一短があるために
、用途別に使い分けたり条件付きでの使用を余儀な(さ
れている。
As mentioned above, these materials have advantages and disadvantages, so they are forced to be used depending on their purpose or with conditions.

(課題を解決するための手段) 上記材料のうちで、N i −Cu系合金は比較的大き
な電気抵抗を有するだけでなく、電気的特性の安定性や
高温における耐酸化性などが優れている。この合金にC
uやA2等を数%添加して電気抵抗の温度係数を改善し
た合金が既に実用化されているが、反面比電気抵抗の最
高値は約130μΩ・cmで、これ以上高い!負抵抗は
現在得られていない。
(Means for solving the problem) Among the above materials, Ni-Cu alloys not only have relatively high electrical resistance, but also have excellent stability of electrical properties and oxidation resistance at high temperatures. . In this alloy, C
Alloys with improved temperature coefficients of electrical resistance by adding a few percent of u, A2, etc. have already been put into practical use, but on the other hand, the highest value of specific electrical resistance is about 130 μΩ・cm, which is even higher! Negative resistance is currently not available.

その理由としては、Aj2やCuの多量添加によって、
加工性が著しく悪化することならびに大気中熱処理によ
って酸化が著しいためである。したがって実用材料にお
いては、A2およびCuの最大含有量はいずれも約3%
である。
The reason is that by adding a large amount of Aj2 and Cu,
This is because workability is significantly deteriorated and oxidation is significant due to heat treatment in the atmosphere. Therefore, in practical materials, the maximum content of A2 and Cu is approximately 3%.
It is.

本発明の目的は、比電気抵抗およびその温度係数がそれ
ぞれ130μΩ・C11以上および±50X10−6°
cm1の電気的特性を有するNi −Cr −Cu−A
 l系合金を得ることおよび該合金の高温度における酸
化対策と良好な加工性を解決するための新規な製造法を
提供することを特徴とするものである。
The purpose of the present invention is to have a specific electrical resistance and a temperature coefficient of 130 μΩ・C11 or more and ±50×10−6°, respectively.
Ni-Cr-Cu-A with electrical properties of cm1
The present invention is characterized by providing a novel manufacturing method for obtaining an I-based alloy and for solving the problem of oxidation countermeasures and good workability at high temperatures of the alloy.

本発明は、これらの点に鑑みなされたものであって、多
くの実験と詳細な研究を鋭意進めた結果、クロム(Cr
 ) 10〜26%、銅(Cu ) 2.5〜15%、
アルミニウム(A f ) 2:5〜10%、コバルト
(Co )0.01〜20%、マンガン(Mn ) 0
.01〜15%、タングステン(W) 0.01〜5%
、チタン(Ti)0.01〜5%、シリコン(St)0
.01〜5%で、しかもCr、CuおよびAffiの合
計が25〜40%とCo 。
The present invention was made in view of these points, and as a result of many experiments and detailed research, chromium (Cr
) 10-26%, copper (Cu) 2.5-15%,
Aluminum (Af) 2: 5-10%, Cobalt (Co) 0.01-20%, Manganese (Mn) 0
.. 01-15%, tungsten (W) 0.01-5%
, titanium (Ti) 0.01-5%, silicon (St) 0
.. 01-5%, and the total of Cr, Cu and Affi is 25-40%.

Mn 、W、TiおよびSiの合計が0.01〜20%
、および残部が実質的にニッケル(Ni )からなる組
成において、130μΩ・cm以上の高い比電気抵抗と
±50X10−b″c−1の極めて低い電気抵抗の温度
係数を有するNi −Cr −Cu−A l系精密抵抗
合金が得られた。さらに該合金の加工法においてβCr
A1.、Ni3Af、AlzO*あるいはCrzO=等
の化合物を極力抑える新規の製造方法を見い出した。
Total of Mn, W, Ti and Si is 0.01-20%
, and the balance essentially consisting of nickel (Ni), has a high specific electrical resistance of 130 μΩ·cm or more and an extremely low temperature coefficient of electrical resistance of ±50×10-b″c-1. An Al-based precision resistance alloy was obtained. Furthermore, in the processing method of this alloy, βCr
A1. , Ni3Af, AlzO* or CrzO= as much as possible.

因に化合物βCrAf!およびN i 3 A lはそ
れぞれ室温から約860°Cおよび約1400°Cまで
安定状態にあり、極めて硬く脆いため加工は全て不可能
である。しかしできるだけ高温に加熱することによって
化合物は分解し母合金中に固溶して、加工が容易になる
性質がある。
Incidentally, the compound βCrAf! and N i 3 Al are stable from room temperature to about 860° C. and about 1400° C., respectively, and are extremely hard and brittle, making it impossible to process them at all. However, by heating to as high a temperature as possible, the compound decomposes and forms a solid solution in the mother alloy, making processing easier.

またA/!、0.やCrtO8等の化合物はN i 3
 A Qと同様に加工性を悪化させるが、高温での酸化
を防止する工夫によって加工が容易になる性質がある。
A/ again! ,0. Compounds such as and CrtO8 are N i 3
A Like Q, it deteriorates workability, but it has the property of being easier to work with by preventing oxidation at high temperatures.

そこで本発明合金の製造工程においては、上記の問題を
解決するための手段として、合金を加工率20%以上9
0%以下の冷間加工と300℃以上1200℃以下で1
分以上50時間以下の加熱後、50〜2000”C/h
rの炉冷あるいは強制冷却の熱処理とを交互に繰り返す
ことによって、βCrA j! 、 N i3A l 
Therefore, in the manufacturing process of the alloy of the present invention, as a means to solve the above problem, the alloy is processed at a processing rate of 20% or more.
1 at 0% or less cold working and 300°C or more and 1200°C or less
50-2000"C/h after heating for more than 50 hours
By alternately repeating heat treatment of furnace cooling or forced cooling of r, βCrA j! , N i3A l
.

/1.03あるいはCr z 03等の化合物生成が抑
制され、良好な加工性が達せられることを見いだした。
It was found that the formation of compounds such as /1.03 or Cr z 03 was suppressed and good processability was achieved.

ここで本発明合金の加工法としては全て冷間加工を採用
したが、その理由は大気中高温加熱処理や熱間加工は合
金内部深く酸化が浸透して加工が困難になるためである
Here, cold working was used as the processing method for the alloys of the present invention. The reason for this is that high-temperature heat treatment in the atmosphere or hot working causes oxidation to penetrate deep into the alloy, making processing difficult.

(作 用) 以下本発明について詳細に説明する。(for production) The present invention will be explained in detail below.

本発明合金を製造するには、重量比にてクロム10〜2
6%、銅2.5〜15%およびアルミニウム2.5〜1
0%の合計25〜40%、コバルト0.01〜20%、
マンガン0.01〜15%、タングステン0.01〜5
%、チタン0.01〜5%およびシリコン0.01〜5
%の内から選ばれた1種または2種以上の合計0.01
〜20%と残部が実質的にニッケルからなる合金を非酸
化性雰囲気中あるいは真空中において適当な溶解炉を用
いて溶解し、十分撹拌し均一な溶融合金にする。
In order to produce the alloy of the present invention, the weight ratio of chromium 10 to 2
6%, copper 2.5-15% and aluminum 2.5-1
0% total 25-40%, cobalt 0.01-20%,
Manganese 0.01-15%, Tungsten 0.01-5
%, titanium 0.01-5% and silicon 0.01-5%
Total of one or more types selected from %0.01
An alloy consisting of ~20% nickel and the remainder substantially nickel is melted in a non-oxidizing atmosphere or in a vacuum using a suitable melting furnace and thoroughly stirred to form a uniform molten alloy.

つぎにこれを適当な形および大きさの鋳型に注入して、
健全な鋳塊を得る。この鋳塊の表面の疵を丁寧に取り除
き、加工率20以上90%以下の冷間加工を施した後、
素材を容器に密封するかあるいは任意の方法により素材
の酸化を防止して、300〜1200°Cで1分以上5
0時間以下加熱する。その後50〜300°C/hrの
炉冷、好ましくは300〜2000“C/hrで強制冷
却する。これらの操作を繰り返して、目的の形状のもの
、例えば線材、板材や箔材等が得られる。これらの成形
品についてさらに上記と同じ温度(300°C以上12
00°C以下)および時間(1分以上50時間)にて加
熱し、炉冷するかあるいは空冷する熱処理を施すことに
よって、比電気抵抗が130μΩ・cmおよび室温付近
における電気抵抗の温度係数が+100 ×10−”c
m’乃至一100XIO−6℃−1以上の特性が得られ
る。
Next, pour this into a mold of an appropriate shape and size,
Obtain a healthy ingot. After carefully removing the scratches on the surface of this ingot and performing cold working at a processing rate of 20 to 90%,
Seal the material in a container or use any method to prevent oxidation of the material, and heat at 300 to 1200°C for 1 minute or more.
Heat for 0 hours or less. Thereafter, it is forcedly cooled at 50 to 300°C/hr, preferably 300 to 2000"C/hr. By repeating these operations, the desired shape, such as wire rod, plate material, foil material, etc., can be obtained. These molded products are further heated at the same temperature as above (300°C or above 12°C).
00°C or less) and time (1 minute to 50 hours), followed by furnace cooling or air cooling, the specific electrical resistance is 130 μΩ・cm and the temperature coefficient of electrical resistance near room temperature is +100 ×10-”c
Characteristics of m' to 1100XIO-6°C-1 or more can be obtained.

なおまた本発明は、重量比にて、クロム10〜26%、
銅4〜15%およびアルミニウム2.5〜9%の合計3
0〜35%、さらにコバルト0.01〜20%、マンガ
ン0.01〜15%、タングステン0.01〜5%、チ
タン0.01〜5%およびシリコン0.01〜5%の内
から選ばれた1種あるいは2種以上の合計0.01〜2
0%と残部が実質的にニッケルからなる合金を上述した
加工法および熱処理法によって、比電気抵抗が130μ
Ω・cm以上および電気抵抗の温度係数が+50X10
−’°c −1乃至−50X 10−6°c−1の極め
て優れた特性が得られる。
Furthermore, in the present invention, chromium 10 to 26% by weight,
4-15% copper and 2.5-9% aluminum total 3
0-35%, further selected from 0.01-20% cobalt, 0.01-15% manganese, 0.01-5% tungsten, 0.01-5% titanium and 0.01-5% silicon. Total of 1 or 2 or more types: 0.01 to 2
By processing and heat treating an alloy consisting of 0% nickel and the remainder substantially nickel, the specific electrical resistance was reduced to 130μ.
Ω・cm or more and the temperature coefficient of electrical resistance is +50X10
Extremely excellent characteristics of -'°c-1 to -50X 10-6°c-1 can be obtained.

本発明合金の製造法において、合金に含まれる主成分の
CuやAfの含有量が多くなると大気中高温加熱による
耐酸化性を損なうので、通常の熱間加工は不可能である
In the method for manufacturing the alloy of the present invention, if the content of the main components Cu and Af in the alloy increases, the oxidation resistance due to high temperature heating in the atmosphere will be impaired, so normal hot working is impossible.

そこで成形加工は全て冷間加工のみとしたが、当然歪み
取り焼鈍が必要である。しかし従来のNi−Cr系合金
で行なわれている一般的な熱処理法を本発明合金に採用
した場合には、合金素材が酸化したり金属間化合物が生
成して加工性を悪化させることになる。これらの諸問題
を解決する方法としては、加工性を向上するための熱処
理および成形のための冷間加工、最後に所望の特性を得
るための熱処理などの工程が必要である。つぎには各工
程の内で重要な2種類の熱処理方法について詳細に説明
する。
Therefore, all forming processing was done only by cold working, but of course strain relief annealing is required. However, if the general heat treatment method used for conventional Ni-Cr alloys is applied to the alloy of the present invention, the alloy material will be oxidized and intermetallic compounds will be formed, resulting in poor workability. . Methods to solve these problems require steps such as heat treatment to improve workability, cold working for molding, and finally heat treatment to obtain desired properties. Next, two important types of heat treatment methods in each process will be explained in detail.

4Pパ法A 本発明合金を適当な溶解炉にて溶解し、鋳造後インゴッ
ト表面の疵等を除去して、さらに表面を丁寧に研磨する
。つぎに該合金の断面積より若干大きい断面積を有する
適当な耐熱性容器に挿入して、この容器全体を電気炉を
使用して300〜1200°Cの温度で1分以上50時
間以下加熱後、50〜300”C/hrで炉冷するかあ
るいは300〜b強制冷却する。つぎに容器から出した
素材をスウェージングあるいは線引機等により加工率2
0%以上90%以下の冷間加工を施し、所望の寸法に成
形する。加工方法としては、この他にも合金素材と容器
を一体として加工し、所望の寸法に成形後容器を取り除
き、最後に成形された線材や板材等を連続加熱炉中に通
し、上記の熱処理条件にて熱処理を施す。
4P Process A The alloy of the present invention is melted in a suitable melting furnace, and after casting, scratches and the like on the ingot surface are removed, and the surface is further carefully polished. Next, the alloy is inserted into a suitable heat-resistant container having a cross-sectional area slightly larger than the cross-sectional area of the alloy, and the entire container is heated in an electric furnace at a temperature of 300 to 1200°C for 1 minute to 50 hours. , furnace cooling at 50 to 300"C/hr or forced cooling at 300 to 300"C/hr. Next, the material taken out from the container is processed by swaging or a wire drawing machine to a processing rate of 2.
It is subjected to cold working of 0% or more and 90% or less and molded into desired dimensions. Other processing methods include processing the alloy material and the container as one body, removing the container after forming it to the desired dimensions, and finally passing the formed wire rod, plate, etc. into a continuous heating furnace, and subjecting it to the heat treatment conditions described above. Heat treatment is performed.

−B 本発明合金を適当な溶解炉にて溶解し、鋳造後インゴッ
ト表面の疵等を除去して、さらに表面を丁寧に研磨する
。つぎに該合金を適当な電気炉を使用して、真空中ある
いは不活性ガス雰囲気中若しくはスポンジチタン等のガ
ス吸収材で合金を包み込み300〜1200°Cの温度
で1分以上50時間以下加熱後、50〜300°C/h
rの炉冷好ましくは300〜b ングあるいは線引機等により加工率20%以上90%以
下の冷間加工を施し所望の寸法に成形する。成形された
線材や板材等には、さらに真空中あるいは不活性ガス雰
囲気中若しくはスポンジチタン等のガス吸収材で成形品
を包み込み、最後に上記と同様の熱処理を施す。
-B The alloy of the present invention is melted in a suitable melting furnace, and after casting, flaws etc. on the ingot surface are removed, and the surface is further carefully polished. Next, the alloy is heated in a suitable electric furnace in a vacuum, in an inert gas atmosphere, or wrapped in a gas absorbing material such as titanium sponge at a temperature of 300 to 1200°C for 1 minute to 50 hours. , 50-300°C/h
The material is cooled in a furnace at a temperature of 300 to 300 mm, preferably cold-worked using a wire drawing machine or the like at a processing rate of 20% to 90% to form desired dimensions. The formed wire rod, plate material, etc. are further wrapped in a vacuum, an inert gas atmosphere, or a gas absorbing material such as titanium sponge, and finally subjected to the same heat treatment as described above.

かくして上記2種類の熱処理によって、素材は金属光沢
を有しかつ結晶粒径も極めて小さく、さらに悪性金属間
化合物がほとんど生成されず、しかも延性があり良好な
加工性を発揮した。例えば、線径0.06mm以下の極
細線加工も容易であった。
Thus, as a result of the above two types of heat treatment, the material had metallic luster and extremely small grain size, hardly any malignant intermetallic compounds were produced, and was ductile and exhibited good workability. For example, it was easy to process ultrafine wires with a wire diameter of 0.06 mm or less.

したがって本発明の製造法は本発明合金ばかりでなく、
銅やアルミニウム等が多量に含有した合金の場合にも適
用可能であり、工業上剥するところが多大である。
Therefore, the manufacturing method of the present invention not only produces the alloy of the present invention, but also
It can also be applied to alloys containing a large amount of copper, aluminum, etc., and is often removed industrially.

上記の新規な製造法により得られた本発明合金は、比電
気抵抗が130μΩ・0111以上および室温付近にお
ける電気抵抗の温度係数が+50X10−6°c−1乃
至−50X 10−6°c−1の優れた特性を示す。
The alloy of the present invention obtained by the above-mentioned novel manufacturing method has a specific electrical resistance of 130 μΩ·0111 or more and a temperature coefficient of electrical resistance near room temperature of +50×10−6°c−1 to −50×10−6°c−1 Shows excellent properties.

第1図、第2図および第3図は、Ni−0〜30%Cr
−0〜20%Cu−0〜10%A1合金を工000°C
で1時間加熱後300°C/hrで冷却した場合のそれ
ぞれCr量、Cu量およびAf量に対する20°Cにお
ける比電気抵抗ρと0〜50°Cにおける電気抵抗の平
均温度係数TCRの変化を示す。また第4図および第5
図は、Ni−20%Cr−10%Cu−5Aj!合金に
Co25%以下、Mn15%以下、W5%以下、Ti 
5%以下あるいはSi 5%以下を添加した場合のそれ
ぞれCO量あるいはMn量およびW量、Ti量あるいは
Si量に対するρおよび TCRの変化を示す。
Figures 1, 2 and 3 show Ni-0~30%Cr
Processing -0~20%Cu-0~10%A1 alloy at 000°C
Changes in specific electrical resistance ρ at 20°C and average temperature coefficient TCR of electrical resistance from 0 to 50°C with respect to Cr content, Cu content, and Af content when cooling at 300°C/hr after heating for 1 hour at show. Also, Figures 4 and 5
The figure shows Ni-20%Cr-10%Cu-5Aj! The alloy contains Co25% or less, Mn15% or less, W5% or less, Ti
Changes in ρ and TCR with respect to the amount of CO, the amount of Mn, and the amount of W, the amount of Ti, or the amount of Si are shown when 5% or less of Si or 5% or less of Si is added.

原料は純度99.9%以上の電解ニッケルと電解クロム
、純度99.99%以上の無酸素銅と電解アルミニウム
を用いた。
The raw materials used were electrolytic nickel and electrolytic chromium with a purity of 99.9% or higher, and oxygen-free copper and electrolytic aluminum with a purity of 99.99% or higher.

試料を造るには、全重量Logの原料を坩堝に入れ高周
波誘導電気炉を用いて真空中で溶解した。
To prepare the sample, raw materials having a total weight of Log were placed in a crucible and melted in a vacuum using a high frequency induction electric furnace.

その後よく撹拌して均質な溶融合金とした。つぎにこれ
を内径10+++a+、高さ120 asの鉄則に鋳込
み健全な鋳塊を得た。この鋳塊表面の疵などを旋盤によ
り丁寧に削り取り、直径約9IllI11の丸棒にした
Thereafter, the mixture was thoroughly stirred to obtain a homogeneous molten alloy. Next, this was cast according to the iron rule that the inner diameter was 10+++a+ and the height was 120 as to obtain a sound ingot. Scratches on the surface of this ingot were carefully removed using a lathe, and a round bar with a diameter of about 9IllI11 was made.

この丸棒をスェージング機により直径5Il1mまで冷
間加工(加工率69%)して原試料とした。
This round bar was cold worked (processing rate: 69%) to a diameter of 5Il1m using a swaging machine to obtain an original sample.

この原試料について、加工を容易にするための熱処理(
工程I)、各種形状に成形するための冷間加工(工程■
)および要求特性を得るための熱処理(工程■)等の各
種工程を組み合わることによって所望の試料を作製した
This original sample was subjected to heat treatment (
Process I), Cold processing to form into various shapes (Process ■
) and heat treatment to obtain the required characteristics (step ①).

ここで工程■において、本実験では冷間加工のみとした
理由は、本発明合金の場合高温で熱処理すると酸化が合
金内部に深く浸透して脆くなり、熱間加工が困難となる
からである。
The reason why only cold working was performed in this experiment in step (3) is that when the alloy of the present invention is heat treated at high temperatures, oxidation penetrates deeply into the alloy, making it brittle and making hot working difficult.

つぎにこれら製造工程について説明する。Next, these manufacturing steps will be explained.

ニー捏上 5mn+の丸棒を、その断面積より若干大きめの乾燥し
た石英管(内径6mm)に封入して、これを電気炉(内
径3抛m、長さ1m)に入れる。そして予め300〜1
200°Cの各種の温度にセットした電気炉(内径30
mm、長さ1m)に入れ大気中にて2分、1時間および
10時間加熱した後、電気炉を任意の速度50〜300
℃/hrで冷却する炉冷方式と電気炉をファン等を使用
したりあるいは電気炉内石英管を移動して300〜50
00°C/hrで冷却する強制冷却方式で室温まで冷却
する。以上の方法で熱処理後、丸棒を石英管から取り出
した結果、すべて金属光沢が認められた。ここで明らか
になったことは、比較的低温でしかも長時間加熱したり
、あるいは極めてゆっくり冷却すると、合金の加工性が
悪化することである。
A round bar with a knee size of 5 mm+ is enclosed in a dry quartz tube (inner diameter 6 mm) slightly larger than its cross-sectional area, and this is placed in an electric furnace (inner diameter 3 m, length 1 m). And 300-1 in advance
Electric furnace (inner diameter 30°C) set at various temperatures of 200°C
mm, length 1 m) and heated in the atmosphere for 2 minutes, 1 hour, and 10 hours, then the electric furnace was heated at an arbitrary speed of 50 to 300.
By using a furnace cooling method that cools at ℃/hr, using an electric furnace with a fan, or by moving the quartz tube inside the electric furnace,
Cool to room temperature using a forced cooling method that cools at 00°C/hr. After heat treatment using the method described above, the round bars were removed from the quartz tube, and as a result, metallic luster was observed in all of them. What has become clear is that the processability of the alloy deteriorates when heated at relatively low temperatures and for long periods of time, or when cooled very slowly.

ニー程↓ 工程■の熱処理を施した丸棒をミゾロール、スェ−ジン
グ機あるいは伸線機等により、冷間加工を施して線径2
■の線材を得る。この場合の加工率は84%である。つ
ぎに工程■と同様の熱処理と本工程とを繰り返して、最
終的には線径0.5 m+11の細線を得る。この間の
加工率は20%、50%、75%、80%および93%
の5種類であった。しかし本発明合金の製造法において
、加工率93%での加工は加工硬化が極端に進行して困
難であった。したがって加工率の限界値は約90%であ
ることが分かった。
Knee degree ↓ The round bar that has been heat treated in step
■ Obtain the wire rod. The processing rate in this case is 84%. Next, heat treatment similar to step (2) and this step are repeated to finally obtain a thin wire with a wire diameter of 0.5 m+11. Processing rates during this period are 20%, 50%, 75%, 80% and 93%
There were five types. However, in the method for manufacturing the alloy of the present invention, processing at a processing rate of 93% was difficult due to extremely advanced work hardening. Therefore, it was found that the limit value of the processing rate was about 90%.

ニー程l 工程■で得られた線径0.51の細線から長さ100 
amに切断して、直線状とした後内径1mm以下の石英
管に入れ真空封入して上記の製造工程Iと同様の加熱温
度および時間にて種々の熱処理を施した後、種々の速度
で冷却する。また800°C以下における熱処理の場合
では、試料全体をスポンジチタン等で包み込み、さらに
ガスを排気することによって超真空の場合と同様に酸化
がみられず、極めて有効であることがわかった。以上の
工程により所望の細線試料が得られる。
Knee distance l Length 100 from the fine wire with a wire diameter of 0.51 obtained in step ①
After cutting the tube into a straight line, it was placed in a quartz tube with an inner diameter of 1 mm or less, sealed in vacuum, and subjected to various heat treatments at the same heating temperature and time as in manufacturing process I above, and then cooled at various speeds. do. Furthermore, in the case of heat treatment at temperatures below 800°C, by wrapping the entire sample in a titanium sponge or the like and then evacuating the gas, no oxidation was observed as in the case of ultra-vacuum, and it was found to be extremely effective. Through the above steps, a desired thin wire sample can be obtained.

上述した方法により得られた種々の試料について、20
℃における比電気抵抗ρ、0〜50°Cにおける電気抵
抗の平均温度係数TCR(−ΔR/R,/ΔT)および
組織等について評価を行った。ここでΔR=R3゜−R
oおよびΔT=50である。
For various samples obtained by the above-mentioned method, 20
Specific electrical resistance ρ at °C, average temperature coefficient of electrical resistance TCR (-ΔR/R, /ΔT) at 0 to 50 °C, structure, etc. were evaluated. Here, ΔR=R3゜−R
o and ΔT=50.

第6図および第7図は、ρとTCPのそれぞれ加熱温度
および加熱時間に対する変化を示す、第8図は、冷却速
度および加熱温度に対する加工性あるいは電気的特性の
評価を示す、第1図かられかるようにρは加熱時間が2
分の場合では1200℃以上また1時間の場合では30
0℃以上でそれぞれ130μΩ・cat以上の高い値が
得られるが、比較合金A(点線)の場合は600℃で極
大値128μΩ・cmを示す、またTCRはいずれの加
熱時間の場合においても±50XIQ−”℃−1以下の
低い値が得られ、特に800°C以上においては極めて
低いことがわかる。したがって300°C以上の温度で
加熱することによッテ、130μΩ・am以上のρと+
50X10−”cm’以下のTCRを得ることができる
Figures 6 and 7 show changes in ρ and TCP with respect to heating temperature and heating time, respectively. Figure 8 shows evaluation of workability or electrical properties with respect to cooling rate and heating temperature. From Figure 1. As you can see, ρ is the heating time of 2
1200℃ or higher for minutes or 30℃ for 1 hour
High values of 130 μΩ・cat or more are obtained at temperatures above 0°C, but in the case of comparative alloy A (dotted line), the maximum value is 128 μΩ・cm at 600°C, and the TCR is ±50XIQ at any heating time. It can be seen that a low value of 130μΩ・am or higher can be obtained by heating at a temperature of 300℃ or higher.
A TCR of less than 50×10 cm′ can be obtained.

なお試料の熱処理条件に対応した特性は第1表の通りで
ある。
The characteristics corresponding to the heat treatment conditions of the samples are shown in Table 1.

第1表 実】l辻1 原料は実施例1と同じ純度のものを用た。試料の製造方
法は全重量10gを高純度アルミナ坩堝(SSA−H,
T−2)に入れ、酸化を防ぐために金属表面に高純度ア
ルゴンガスを吹きつけながらタンマン炉によって溶かし
、よく撹拌して均質な溶融合金とした。つぎにこれを内
径3.6 amの石英管に吸い上げて、均質化処理のた
めに試料の直径より若干太い内径を有する一端封止の石
英管に挿入して1000°C温度で10分加熱後炉外に
取り出して空冷する。つぎに種々の加工率になるように
上記の熱処理を施して線径0.5 +amの細線を得る
。最後にこの細線に300°C以上1200°C以下の
種々の温度で1分以上50時間以下の加熱後、種々の冷
却速度で冷却して試料を作製する。実験方法は実施例1
と同様であった。試料の熱処理条件とそれに対応した特
性は第2表の通りである。
Table 1] Tsuji 1 Raw materials of the same purity as in Example 1 were used. The sample manufacturing method involved placing a total weight of 10 g in a high-purity alumina crucible (SSA-H,
T-2) and melted in a Tammann furnace while blowing high-purity argon gas onto the metal surface to prevent oxidation, and stirred well to obtain a homogeneous molten alloy. Next, this was sucked up into a quartz tube with an inner diameter of 3.6 am, and for homogenization treatment, it was inserted into a quartz tube sealed at one end with an inner diameter slightly larger than the diameter of the sample, and heated at 1000°C for 10 minutes. Take it out of the furnace and cool it in the air. Next, the above-mentioned heat treatment is performed to obtain various processing rates to obtain fine wires having a wire diameter of 0.5 + am. Finally, the thin wire is heated at various temperatures of 300° C. or more and 1200° C. or less for 1 minute or more and 50 hours or less, and then cooled at various cooling rates to prepare samples. The experimental method is Example 1
It was the same. The heat treatment conditions of the samples and the corresponding properties are shown in Table 2.

第2表 第3表 原料は実施例2と同じ純度のものを用いたが、シリコン
は純度99.99%以上であった。試料の製造法および
実験方法は実施例2と同様であった。
Table 2 Table 3 The raw materials used had the same purity as in Example 2, but the purity of silicon was 99.99% or higher. The sample manufacturing method and experimental method were the same as in Example 2.

試料の熱処理条件とそれに対応した特性は第3表の通り
である。
The heat treatment conditions of the samples and the corresponding properties are shown in Table 3.

なお本発明合金領域に属する代表的な合金と比較合金A
、 B、 CおよびDについて1000”Cで1時間加
熱後、300°C/hrで炉冷した場合の特性値を示す
と第4表および第5表の通りである。
In addition, representative alloys belonging to the alloy area of the present invention and comparative alloy A
, B, C, and D are shown in Tables 4 and 5 when they are heated at 1000''C for 1 hour and then cooled in a furnace at 300°C/hr.

以上本発明は、第1図乃至第8図、実施例1乃至実施例
3、第4表および第5表からもわかるようにCr10〜
26%、Cu 2.5〜15%およびAl22.5〜1
0%の合計25〜40%、Co O,01〜20%、M
n O,01〜15%、W 0.01〜5%、Ti 0
.01〜5%およびSi 0.01〜5%から選ばれた
1種あるいは2種以上の合計0.01〜20%および残
部が実質的にNiからなる合金である。
As can be seen from FIGS. 1 to 8, Examples 1 to 3, and Tables 4 and 5, the present invention has a
26%, Cu 2.5-15% and Al22.5-1
0% total 25-40%, Co O, 01-20%, M
n O, 01-15%, W 0.01-5%, Ti 0
.. The alloy is composed of one or more selected from 0.01 to 5% Si and 0.01 to 5% Si, with a total of 0.01 to 20%, and the balance substantially consisting of Ni.

また本発明は、上記合金を適当な雰囲気遮断法または雰
囲気処理法にて300°C以上1200℃以下で1分以
上50時間以下加熱後、50〜300°C/hrの炉冷
、好ましくは300〜2000°C/hrの強制冷却を
施し、さらに加工率20%以上90%以下の冷間加工に
より所望の寸法に成形する製造法を提供するものである
In addition, the present invention provides a method for heating the above-mentioned alloy at 300°C or more and 1200°C or less for 1 minute or more and 50 hours or less using an appropriate atmosphere blocking method or atmosphere treatment method, followed by furnace cooling at 50 to 300°C/hr, preferably 300°C or less. The present invention provides a manufacturing method in which forced cooling is performed at ~2000°C/hr and further cold working is performed at a working rate of 20% or more and 90% or less to form desired dimensions.

さらにまた本発明は、上記製造法により得られた合金を
300°C以上1200°C以下で1分以上50時間以
下加熱後、炉冷するかあるいは空冷する熱処理を施すこ
とによって、比電気抵抗が130μΩ・cm以上および
室温付近における電気抵抗の温度係数が+100 ×1
0−1乃至−1乃至−100×10−6°c−’、若し
くは+50X10−”cm’乃至一50XlO−6°c
−’ノ優レタ特長を有する。
Furthermore, the present invention provides a heat treatment in which the alloy obtained by the above manufacturing method is heated at 300°C or more and 1200°C or less for 1 minute or more and 50 hours or less, and then furnace-cooled or air-cooled. The temperature coefficient of electrical resistance at 130 μΩ・cm or more and around room temperature is +100 × 1
0-1 to -1 to -100×10-6°c-', or +50X10-"cm' to 150XlO-6°c
- Has excellent letter features.

つぎに本発明合金の組成、熱処理および加工率等の数値
を限定した理由について述べる。まず合金組成をCr 
10〜24%、Cu 2.5〜15%、A12.5〜1
0およびCr、CuとANの合計25〜40%。
Next, the reasons for limiting the numerical values of the composition, heat treatment, processing rate, etc. of the alloy of the present invention will be described. First, the alloy composition is Cr
10-24%, Cu 2.5-15%, A12.5-1
0 and a total of 25-40% of Cr, Cu and AN.

Co 0.01〜20%、 Mn 0.01〜15%、
 W 0.01〜5%、 Ti 0.01〜5%および
Si0.01〜5%から選ばれた1種あるいは2種以上
の合計0.01〜20%および残部Ni と限定した理
由は、第1図乃至第3図、各実施例および第4表からも
明らかなように、それらの組成範囲からはずれると比電
気抵抗ρが130μΩ・CII+以下になり、電気抵抗
の温度係数TCRが+100 ×10−’°c−1乃至
−100×10−”cm’の範囲からはずれ、加工性が
悪化する他結晶粒が粗大成長するなど所期の要求条件を
満足できないので、精密抵抗合金としては不適当となる
からである。なお第6表および第7表に組成と緒特性と
の関係を示す。
Co 0.01-20%, Mn 0.01-15%,
The reason for limiting the total amount to 0.01 to 20% of one or more selected from W 0.01 to 5%, Ti 0.01 to 5%, and Si 0.01 to 5%, and the balance Ni is as follows. As is clear from FIGS. 1 to 3, each example, and Table 4, when the composition is outside these ranges, the specific electrical resistance ρ becomes 130 μΩ・CII+ or less, and the temperature coefficient of electrical resistance TCR becomes +100 × 10 -'°c-1 to -100 x 10-"cm' range, workability deteriorates, crystal grains grow coarsely, and other requirements cannot be met, making it unsuitable as a precision resistance alloy. This is because Tables 6 and 7 show the relationship between the composition and the properties.

第6表 第7表 ◎:良化 ○:やや良化 △:やや悪化 ×:悪化 ◎:良化 O:やや良化 Δ:やや悪化 ×:悪化 −
:変化なしまた本発明合金の製造法において、加熱温度
を300°C以上工200°C以下、加熱時間を1分以
上50時間以下、冷却速度を50〜300°C/hrの
炉冷、若しくは300〜2000°C/hrの強制冷却
および加工率を20%以上90%以下と限定した理由は
、上記の各々の範囲からはずれると、第6図乃至第8図
および各実施例からも明らかなようにそれぞれ耐酸化性
、加工性や電気的特性の他にも製造コストに大きな問題
が生じるので、精密抵抗合金の製造法としては不適当と
なるからである。
Table 6 Table 7 ◎: Improved ○: Slightly improved △: Slightly worse ×: Worsened ◎: Improved O: Slightly improved Δ: Slightly worse ×: Worsened -
: No change In addition, in the method for producing the alloy of the present invention, the heating temperature is 300°C or more and the heating time is 1 minute or more and 50 hours or less, and the cooling rate is furnace cooling at 50 to 300°C/hr, or The reason why we limited the forced cooling at 300 to 2000°C/hr and the processing rate to 20% or more and 90% or less is that if it deviates from each of the above ranges, it is clear from Figures 6 to 8 and each example. This is because, in addition to oxidation resistance, workability, and electrical properties, these methods also pose major problems in manufacturing cost, making them inappropriate as a method for manufacturing precision resistance alloys.

(発明の効果) 本発明によれば、Ni−10〜26%Cr−2,5〜1
5%Cu−2,5〜10%A f −0,01〜20%
Co−0,01〜15%Mn−0,01〜5%W−0,
01〜5%Ti−0,01〜5%Si合金は、比電気抵
抗が130μΩ・C11以上で高く、しかも室温付近に
おける電気抵抗の温度係数が±50X10−6℃−1で
極めて小さい特性を有するので、本発明合金を使用した
エレクトロニクス関連の各デバイスは一層小型化が進み
、しかも高安定、高性能化に貢献することは明らかであ
る。
(Effect of the invention) According to the invention, Ni-10-26% Cr-2,5-1
5%Cu-2,5~10%A f -0,01~20%
Co-0,01~15%Mn-0,01~5%W-0,
The 01-5% Ti-0,01-5% Si alloy has a high specific electrical resistance of 130 μΩ・C11 or more, and has an extremely small temperature coefficient of electrical resistance of ±50×10−6°C−1 near room temperature. Therefore, it is clear that electronics-related devices using the alloy of the present invention will be further miniaturized, and will also contribute to high stability and high performance.

すなわち本発明合金を使用することによって、厳しい温
度環境下においてデバイスの温度ドリフトと発熱を極力
抑制する効果があるだけでなく、大きな電圧変動に対し
ても素子の破壊を防止する効果がある。
That is, by using the alloy of the present invention, it is possible to not only suppress the temperature drift and heat generation of the device under severe temperature environments as much as possible, but also to prevent the destruction of the device even under large voltage fluctuations.

さらに本発明合金の製造法によれば、Co 。Furthermore, according to the method for producing the alloy of the present invention, Co.

Mn 、W、TiおよびSiの添加によって電気的特性
が向上するだけでなく、再結晶の粗大化を抑えさらに新
規な熱処理法において悪性化合物がほとんど生成されず
、しかも酸化が内部に浸透しないので、加工性が向上す
る効果もある。
The addition of Mn, W, Ti, and Si not only improves electrical properties, but also suppresses the coarsening of recrystallization.Furthermore, the new heat treatment method produces almost no malignant compounds, and oxidation does not penetrate inside. It also has the effect of improving workability.

本発明製造法は本発明合金だけでなく、Cr。The manufacturing method of the present invention not only produces the alloy of the present invention but also Cr.

Cu9A/!等の高含有合金にも十分適用できるので、
工業玉料するところか多大である。
Cu9A/! It is fully applicable to high content alloys such as
It costs a lot of money for industrial production.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図および第3図は、1000°Cで1時間
加熱後300°C/hrで冷却したNi−0〜30%C
r−0〜20%Cu−0〜10%A!合金のそれぞれC
r量、Cu量およびAl量に対する20°Cにおける比
電気抵抗ρと0〜50°Cにおける電気抵抗の平均温度
係数TCRの変化を示す特性図、第4図および第5図は
、Ni−20%Cr−10%Cu−5%A1合金にCo
 、Mn 、W、TiあるいはStを添加した場合のそ
れぞれCo量あるいはMn量、およびW量、Ti量ある
いはSi量に対するρおよびTCRの変化を示す特性図
、第6図は、1時間で加熱した比較合金Aおよび合金番
号14の本発明合金のρおよびTCPについて、2分、
1時間あるいは10時間で加熱した場合の加熱温度に対
する変化を示す特性図、第7図は、合金番号14のρお
よびTCRについて、600℃、800℃あるいは10
00°Cで加熱した場合の加熱時間に対する変化を示す
特性図、および第8図は、合金番号14の加工性および
特性と加熱温度あるいは冷却速度との関係を示す特性図
である。 第1図 (:ry”A へ 第2図 第4図 品又tt Mn /’1 第3図
Figures 1, 2, and 3 show Ni-0 to 30%C heated at 1000°C for 1 hour and then cooled at 300°C/hr.
r-0~20%Cu-0~10%A! Each of the alloys C
Characteristic diagrams 4 and 5 showing changes in the specific electrical resistance ρ at 20°C and the average temperature coefficient TCR of the electrical resistance from 0 to 50°C with respect to the amount of Ni-20 %Cr-10%Cu-5%A1 alloy with Co
, a characteristic diagram showing the changes in ρ and TCR with respect to the amount of Co or Mn, and the amount of W, Ti or Si when , Mn, W, Ti or St was added. For ρ and TCP of Comparative Alloy A and Invention Alloy No. 14, 2 minutes;
Figure 7 is a characteristic diagram showing changes in heating temperature when heated for 1 hour or 10 hours.
FIG. 8 is a characteristic diagram showing the change in heating time when heated at 00° C., and FIG. 8 is a characteristic diagram showing the relationship between the workability and characteristics of Alloy No. 14 and the heating temperature or cooling rate. Figure 1 (:ry”A to Figure 2, Figure 4, or tt Mn /'1 Figure 3

Claims (1)

【特許請求の範囲】 1、重量比にて、クロム10〜26%、銅2.5〜15
%およびアルミニウム2.5〜10%の合計25〜40
%、コバルト0.01〜20%、マンガン0.01〜1
5%、タングステン0.01〜5%、チタン0.01〜
5%およびシリコン0.01〜5%から選ばれた1種あ
るいは2種以上の合計0.01〜20%およびニッケル
残余からなり、比電気抵抗が 130μΩ・cm以上および室温付近における電気抵抗
の温度係数が+100×10^−^6℃^−^1乃至−
100×10^−^6℃^−^1を有することを特徴と
する精密抵抗合金。 2、重量比にて、クロム10〜26%、銅4〜15%お
よびアルミニウム2.5〜9%の合計30〜35%、コ
バルト0.01〜20%、マンガン0.01〜15%、
タングステン0.01〜5%、チタン0.01〜5%お
よびシリコン0.01〜5%の内から選ばれた1種ある
いは2種以上の合計0.01〜20%およびニッケル残
余からなり、比電気抵抗が130μΩ・cm以上および
室温付近における電気抵抗の温度係数が+50×10^
−^6℃^−^1乃至−50×10^−^6℃^−^1
を有することを特徴とする精密抵抗合金。 3、重量比にて、クロム10〜26%、銅3.5〜15
%およびアルミニウム2.5〜10%の合計25〜40
%、コバルト0.01〜20%、マンガン0.01〜1
5%、タングステン0.01〜5%、チタン0.01〜
5%およびシリコン0.01〜5%の内から選ばれた1
種あるいは2種以上の合計0.01〜20%からなる合
金を、溶解鋳造し、合金の断面積より若干大きい内面を
有する耐熱性容器に挿入し、300℃以上1200℃以
下で1分以上50時間以下加熱後、50〜300℃/h
rの炉冷、好ましくは300〜2000℃/hrの強制
冷却を施し、素材と容器一体で加工率20%以上90%
以下の冷間加工により所望の寸法に成形し、適当な寸法
により該容器を取り除き、その後300℃以上1200
℃以下の温度および1分以上50時間加熱し、炉冷する
かあるいは空冷する熱処理を施すことによって、比電気
抵抗が130″Ω・cm以上および室温付近における電
気抵抗の温度係数が+100×10^−^5℃^−^1
乃至−100×10^−^6℃^−^1若しくは+50
×10^−^6℃^−^1乃至−50×10^−^6℃
^−^1を得ることを特徴とする精密抵抗合金の製造方
法。 4、重量比にて、クロム10〜26%、銅2.5〜15
%およびアルミニウム2.5〜10%の合計25〜40
%、コバルト0.01〜20%、マンガン0.01〜1
5%、タングステン0.01〜5%、チタン0.01〜
5%およびシリコン0.01〜5%の内から選ばれた1
種あるいは2種以上の合計0.01〜20%およびニッ
ケル残余からなる合金を、溶解鋳造し、真空中、あるい
は不活性ガス雰囲気中若しくはスポンジチタンやニッケ
ル板等で成形品を包み込み300℃以上1200℃以下
で1分以上50時間以下加熱後、50〜300℃/hr
の炉冷、又は300〜2000℃/hrの強制冷却を行
なった後、加工率20%以上90%以下の冷間加工を施
し所望の寸法に成形し、さらにこの成形品を300℃以
上1200℃以下の温度および1分以上50時間にて加
熱し、炉冷するかあるいは空冷する熱処理を施すことに
よって、比電気抵抗が130μΩ・cm以上および室温
付近における電気抵抗の温度係数が+100×10^−
^6℃^−^1乃至−100×10^−^6℃^−^1
若しくは+50×10^−^6℃^−^1乃至−50×
10^−^6℃^−^1を得ることを特徴とする精密抵
抗合金の製造方法。
[Claims] 1. Chromium 10-26%, copper 2.5-15% by weight
% and aluminum 2.5-10% total 25-40
%, cobalt 0.01-20%, manganese 0.01-1
5%, tungsten 0.01~5%, titanium 0.01~
5% and one or more selected from 0.01 to 5% silicon and a total of 0.01 to 20% of nickel, with a specific electrical resistance of 130 μΩ・cm or more and a temperature of electrical resistance near room temperature. The coefficient is +100×10^-^6℃^-^1 to -
A precision resistance alloy characterized by having a temperature of 100×10^-^6℃^-^1. 2. By weight, a total of 30-35% of chromium 10-26%, copper 4-15% and aluminum 2.5-9%, cobalt 0.01-20%, manganese 0.01-15%,
Consists of a total of 0.01 to 20% of one or more selected from 0.01 to 5% of tungsten, 0.01 to 5% of titanium, and 0.01 to 5% of silicon, and the remainder of nickel. The electrical resistance is 130μΩ・cm or more and the temperature coefficient of electrical resistance near room temperature is +50×10^
-^6℃^-^1~-50×10^-^6℃^-^1
A precision resistance alloy characterized by having. 3. Chromium 10-26%, copper 3.5-15% by weight
% and aluminum 2.5-10% total 25-40
%, cobalt 0.01-20%, manganese 0.01-1
5%, tungsten 0.01~5%, titanium 0.01~
1 selected from 5% and silicon 0.01-5%
An alloy consisting of a total of 0.01% to 20% of two or more species is melted and cast, inserted into a heat-resistant container with an inner surface slightly larger than the cross-sectional area of the alloy, and heated at 300°C to 1200°C for 1 minute to 50°C. After heating for less than 50 to 300℃/h
Furnace cooling at R, preferably forced cooling at 300-2000°C/hr, to achieve a processing rate of 20% or more of 90% for the raw material and container.
The container is molded to the desired size by the following cold working, and the container is removed according to the appropriate size.
By applying heat treatment to a temperature of 1 minute or more and 50 hours at a temperature of 1 minute or more, followed by furnace cooling or air cooling, a specific electrical resistance of 130"Ω・cm or more and a temperature coefficient of electrical resistance near room temperature of +100 x 10^ -^5℃^-^1
~-100×10^-^6℃^-^1 or +50
×10^-^6℃^-^1~-50×10^-^6℃
A method for producing a precision resistance alloy characterized by obtaining ^-^1. 4. Chromium 10-26%, copper 2.5-15% by weight
% and aluminum 2.5-10% total 25-40
%, cobalt 0.01-20%, manganese 0.01-1
5%, tungsten 0.01~5%, titanium 0.01~
1 selected from 5% and silicon 0.01-5%
An alloy consisting of a total of 0.01 to 20% of a seed or two or more types and a residual nickel is melted and cast, and the molded product is wrapped in a vacuum, in an inert gas atmosphere, or with a sponge titanium or nickel plate, and then heated at 300°C or more at 1200°C. After heating for 1 minute or more and 50 hours or less at ℃ or below, 50-300℃/hr
After furnace cooling or forced cooling at 300 to 2000°C/hr, cold working is performed at a working rate of 20% to 90% to form the desired dimensions, and the molded product is further heated at 300°C to 1200°C. By performing heat treatment at the following temperature and for 1 minute or more for 50 hours, followed by furnace cooling or air cooling, the specific electrical resistance will be 130 μΩ・cm or more and the temperature coefficient of electrical resistance near room temperature will be +100×10^-
^6℃^-^1~-100×10^-^6℃^-^1
Or +50×10^-^6℃^-^1 to -50×
A method for producing a precision resistance alloy characterized by obtaining a temperature of 10^-^6°C^-^1.
JP16001590A 1990-06-20 1990-06-20 Precision resistance alloy having high electric resistance and low temperature coefficient and method for producing the same Expired - Lifetime JP2922989B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16001590A JP2922989B2 (en) 1990-06-20 1990-06-20 Precision resistance alloy having high electric resistance and low temperature coefficient and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16001590A JP2922989B2 (en) 1990-06-20 1990-06-20 Precision resistance alloy having high electric resistance and low temperature coefficient and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0452243A true JPH0452243A (en) 1992-02-20
JP2922989B2 JP2922989B2 (en) 1999-07-26

Family

ID=15706137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16001590A Expired - Lifetime JP2922989B2 (en) 1990-06-20 1990-06-20 Precision resistance alloy having high electric resistance and low temperature coefficient and method for producing the same

Country Status (1)

Country Link
JP (1) JP2922989B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1013781A2 (en) * 1998-12-23 2000-06-28 United Technologies Corporation Die cast nickel base superalloy articles
JP2009299083A (en) * 2008-06-10 2009-12-24 Neomax Material:Kk Resistance alloy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1013781A2 (en) * 1998-12-23 2000-06-28 United Technologies Corporation Die cast nickel base superalloy articles
EP1013781A3 (en) * 1998-12-23 2000-07-05 United Technologies Corporation Die cast nickel base superalloy articles
JP2009299083A (en) * 2008-06-10 2009-12-24 Neomax Material:Kk Resistance alloy

Also Published As

Publication number Publication date
JP2922989B2 (en) 1999-07-26

Similar Documents

Publication Publication Date Title
JP5354906B2 (en) Nickel-based semi-finished product having a cubic texture and its manufacturing method
US3986898A (en) Method for strengthening metallic materials liable to be subjected to internal oxidation
JPH0158261B2 (en)
JP5074375B2 (en) Method for producing and using nickel-based semi-finished product with recrystallized cubic texture
JP4886514B2 (en) Nickel-based semi-finished product having a cubic recrystallized texture, its production method and use
JPH0452243A (en) Precision electrical resistance alloy having high electrical resistance and low temperature coefficient and its manufacture
JPH0790430A (en) Copper wire for extra fine wire and its production
JPS5947017B2 (en) Magnetic alloy for magnetic recording and playback heads and its manufacturing method
JPH04235262A (en) Manufacture of ti-al intermetallic compound-series ti alloy excellent in strength and ductility
JPH10265873A (en) Copper alloy for electrical/electronic parts and its production
JPH0427286B2 (en)
JP2796966B2 (en) Ultra-low thermal expansion alloy and manufacturing method
JPS63149356A (en) Soft magnetic alloy for reed chip, manufacture thereof and reed switch
JPS6286151A (en) Manufacture of wire rod for lead for pin grid array ic
JPS6326192B2 (en)
JP3407527B2 (en) Copper alloy materials for electronic equipment
WO2022210428A1 (en) Cr-si film
JPH0253502B2 (en)
JPS6218619B2 (en)
JP2659716B2 (en) Alloy having low temperature coefficient of electric resistance and low melting point, method for producing the same, and highly stable electric resistor or eddy current displacement sensor using the same
JPS5814499B2 (en) Kakugata Hysteresis Jisei Gokin Oyobi Sonoseizouhouhou
JPS6017039A (en) Copper alloy with superior heat resistance, mechanical characteristic, workability and electric conductivity
JPS6345339A (en) Copper alloy for high electrical conduction having low softening temperature
JP2991319B2 (en) High strength and high conductivity copper alloy and manufacturing method (2)
JPS61119637A (en) Temperature sensor element material, its production and temperature sensor