JPH0451978B2 - - Google Patents

Info

Publication number
JPH0451978B2
JPH0451978B2 JP57227428A JP22742882A JPH0451978B2 JP H0451978 B2 JPH0451978 B2 JP H0451978B2 JP 57227428 A JP57227428 A JP 57227428A JP 22742882 A JP22742882 A JP 22742882A JP H0451978 B2 JPH0451978 B2 JP H0451978B2
Authority
JP
Japan
Prior art keywords
substrate
groove
mask
forming
mask material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57227428A
Other languages
Japanese (ja)
Other versions
JPS59121848A (en
Inventor
Ryozo Nakayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP22742882A priority Critical patent/JPS59121848A/en
Publication of JPS59121848A publication Critical patent/JPS59121848A/en
Publication of JPH0451978B2 publication Critical patent/JPH0451978B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • H01L21/76232Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials of trenches having a shape other than rectangular or V-shape, e.g. rounded corners, oblique or rounded trench walls

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Element Separation (AREA)

Description

【発明の詳細な説明】 [発明の属する技術分野] 本発明は、半導体装置の製造方法に係り、特に
半導体基板上の各素子間を電気的に絶縁分離する
ために、フイールド領域に絶縁膜を埋め込む半導
体装置の製造方法に関するものである。
Detailed Description of the Invention [Technical Field to which the Invention Pertains] The present invention relates to a method for manufacturing a semiconductor device, and in particular, to a method for manufacturing a semiconductor device, in particular, in order to electrically isolate each element on a semiconductor substrate, an insulating film is formed in a field region. The present invention relates to a method of manufacturing an embedded semiconductor device.

[従来技術とその問題点] 半導体としてシリコンを用いた半導体装置、特
にMOS型半導体装置においては寄生チヤネルに
よる絶縁不良をなくし、かつ寄生容量を小さくす
るために、素子間のいわゆるフイールド領域(素
子分離領域)に厚い酸化膜を形成する事が行われ
ている。
[Prior art and its problems] In semiconductor devices using silicon as a semiconductor, especially MOS type semiconductor devices, in order to eliminate insulation defects caused by parasitic channels and reduce parasitic capacitance, so-called field regions (element isolation In some cases, a thick oxide film is formed in the area.

従来、このような酸化膜を用いる素子間分離法
として、フイールド領域のシリコン基板を一部エ
ツチングして溝を形成し、ここにCVD技術を用
いてフイールド酸化膜を平坦になるように埋め込
む方法がある。この素子間分離法は、素子分離
後、基板表面がほぼ平坦になり、しかも分離領域
の寸法は正確に形成した溝の寸法で決められるた
め、高集積化された集積回路を製作する上で非常
に有効な素子分離技術である。
Conventionally, as a method for isolation between elements using such an oxide film, the silicon substrate in the field area is partially etched to form a groove, and the field oxide film is buried in the groove so as to be flat using CVD technology. be. This device isolation method is extremely useful for manufacturing highly integrated circuits because the substrate surface becomes almost flat after the devices are separated, and the dimensions of the isolation region are determined by the precisely formed trench dimensions. This is an effective element isolation technology.

第1図に従来法で形成されたMOSトランジス
タのトランジスタ幅W方向に切断した場合の断面
図を示す。すなわち、半導体基板11に、フイー
ルド酸化膜12とフイールド反転防止層13とゲ
ート絶縁膜14とゲート電極15が形成されてお
り、基板11上の素子分離領域のフイールド酸化
膜12の間隔がトランジスタ幅Wを表わしてい
る。この図で側面16においてはイオン注入がな
されてないため寄生チヤネルが形成されやすい。
即ちゲート電極15によつて、側面16の上部に
は、MOSトランジスタの本来の閾値電圧より低
いゲート電圧で寄生チヤネルが形成されてしま
う。この様子を示したのが第2図である。第2図
は試作したMOSトランジスタのサブ・スレシホ
ールド特性(10g ID−VG特性)を示したもの
で、本来の特性に上記溝部側面でできる寄生ト
ランジスタの特性が加算されるため、実線で示
すようなキンクを持つた特性が現われる。このよ
うに、従来法により、上記溝部側面にできる寄生
トランジスタは、OFF状態でのリーク電流の原
因となり素子特性を劣化させる事になる。
FIG. 1 shows a cross-sectional view of a MOS transistor formed by a conventional method, taken along the transistor width W direction. That is, a field oxide film 12, a field inversion prevention layer 13, a gate insulating film 14, and a gate electrode 15 are formed on the semiconductor substrate 11, and the interval between the field oxide films 12 in the element isolation region on the substrate 11 is equal to the transistor width W. It represents. In this figure, since ions are not implanted on the side surface 16, parasitic channels are likely to be formed.
That is, due to the gate electrode 15, a parasitic channel is formed in the upper part of the side surface 16 with a gate voltage lower than the original threshold voltage of the MOS transistor. Figure 2 shows this situation. Figure 2 shows the sub-threshold characteristics (10g I D - V G characteristics) of the prototype MOS transistor.The solid line A characteristic with a kink as shown in appears. As described above, the parasitic transistor formed on the side surface of the trench by the conventional method causes leakage current in the OFF state and deteriorates the device characteristics.

この寄生トランジスタを防止するためには側面
16での電界集中を少なくすれば良い。すなわ
ち、 側面16に反転防止として基板と同導電型の
不純物のイオン注入をする 拡散層の周辺部のゲート酸化膜を厚くする 〃 の基板にテーパーをつける 等である。
In order to prevent this parasitic transistor, it is sufficient to reduce the electric field concentration on the side surface 16. That is, ions of an impurity of the same conductivity type as the substrate are implanted into the side surface 16 to prevent inversion, the gate oxide film around the diffusion layer is made thicker, and the substrate is tapered.

第3図にの基板にテーパーをつけた時を示
す。この例では、基板21にSiO222をマスク
にアリカリ性エツチング液(KoH等)でエツチ
ングした時のものである。この時フイールド領域
の狭い所(Sの寸法)が、所望のエツチング深さ
Hより小さい場合、所望のエツチング深さより浅
くしかエツチング出来なくなり、製造上のバラツ
キと、電気的特性のバラツキが生じそのバラツキ
も大きく素子分離領域の微細化に限度が生じる。
The circuit board shown in FIG. 3 is shown when tapered. In this example, the substrate 21 is etched using an alkaline etching solution (KoH or the like) using SiO 2 22 as a mask. At this time, if the narrow part of the field area (dimension S) is smaller than the desired etching depth H, etching can only be performed shallower than the desired etching depth, resulting in variations in manufacturing and electrical characteristics. This also limits the miniaturization of element isolation regions.

また、エツチング深さが浅すぎると、フイール
ド酸化膜厚が薄くなるため配線と基板の容量が大
きくなり、半導体装置の動作速度が遅くなり、高
速性を実現出来なくなる。
On the other hand, if the etching depth is too shallow, the field oxide film will become thinner and the capacitance of the wiring and substrate will increase, which will slow down the operating speed of the semiconductor device and make it impossible to achieve high speed.

[発明の目的] 本発明は寄生トランジスタの発生を防止すると
ともに素子分離領域の面積を小さくし、かつ、配
線と基板間の浮遊容量を小さくし、半導体装置の
動作速度が速い半導体装置およびその製造方法を
提供するものである。
[Objective of the Invention] The present invention provides a semiconductor device that prevents the generation of parasitic transistors, reduces the area of the element isolation region, and reduces the stray capacitance between the wiring and the substrate, and increases the operating speed of the semiconductor device, and its manufacture. The present invention provides a method.

[発明の概要] 本発明は、素子分離領域の溝をマスク材をマス
クに基板に形成する際、溝側面が基板面に対して
所定の傾斜角をもつ斜面となるエツチングを行な
い、第1の溝を形成した後、マスク材の面積を増
加し、マスクとなる領域を広げ、この広くなつた
マスク材をマスクに第1の溝の内側に基板面とほ
ぼ垂直な第2の溝を形成した後、従来法と同様の
工程で、第1および第2の溝に絶縁膜を埋め込ん
で平坦化する。上記第1の溝側面の傾斜角は、埋
設する絶縁膜に巣が発生するのを防止し、かつ溝
にイオン注入する際に溝側面にも同時に必要なド
ーズ量でイオン注入して、側面における寄生チヤ
ネルの発生を防止するために、85度以下とするこ
とが必要であり、また微細加工による高集積化の
ために少くとも40度以上とすることが必要であ
る。
[Summary of the Invention] In the present invention, when forming a groove in a device isolation region on a substrate using a mask material, etching is performed so that the side surface of the groove becomes a slope having a predetermined inclination angle with respect to the substrate surface. After forming the grooves, the area of the mask material was increased to widen the area that would serve as a mask, and using this expanded mask material as a mask, a second groove was formed inside the first groove almost perpendicular to the substrate surface. After that, an insulating film is buried in the first and second trenches and planarized in the same process as in the conventional method. The inclination angle of the first groove side surface is determined to prevent the formation of cavities in the buried insulating film, and to simultaneously implant ions into the groove side surface at the required dose when implanting ions into the trench. In order to prevent the generation of parasitic channels, it is necessary to set the angle to 85 degrees or less, and to achieve high integration through microfabrication, it is necessary to set the angle to at least 40 degrees or more.

[発明の効果] 本発明を行なう事により、溝側面での寄生チヤ
ネルの発生を防止して素子特性の向上を図るとと
もに信頼性も向上出来る。またフイールド領域の
大小にかかわらず、溝の深さを一定にする事が出
来るため、n+−n+間リーク電流等の素子特性の
バラツキも無くなり、また埋め込み工程が、簡易
となるとともに均一になり微細化が出来るため高
集積化が出来る。さらに、フイールド絶縁膜が厚
く形成出来るため基板とゲート電極間と基板と配
線間の容量を減少させる事が出来るため素子ある
いは回路の動作速度を高速にする事が出来る。
[Effects of the Invention] By implementing the present invention, it is possible to prevent the generation of parasitic channels on the side surfaces of the groove, improve device characteristics, and improve reliability. In addition, since the depth of the groove can be made constant regardless of the size of the field area, variations in device characteristics such as leakage current between n + - n + are eliminated, and the embedding process is simple and uniform. Since it can be miniaturized, it can be highly integrated. Furthermore, since the field insulating film can be formed thickly, the capacitance between the substrate and the gate electrode and between the substrate and the wiring can be reduced, so that the operating speed of the element or circuit can be increased.

[発明の実施例] 本発明の一実施例について第4図を参照して詳
細に説明する。まず、例えば、比抵抗5〜10Ω−
cm程度のP(100)Si基板31を用意し、その上全
面に例えば熱酸化膜32を約200Å程度と例えば
リンを含むPoly−Si33を約5000Å程度積層す
る。その後、写真蝕刻法によりフイールド領域と
なる部分以外の所に選択的フオトレジストを設置
し、このフオトレジストをマスクに、RIE(リア
クテイブイオンエツチング)を用いて、前記
Poly−Si33と熱酸化膜32をエツチングした
後、フオトレジストを除去する。その後、例えば
800〜900℃のスチーム酸化を行なう。この時、露
出したSi基板表面よりもリンを含むPoly−Siの酸
化速度が約2〜4倍速くなる。すなわち、Si基板
より、リンを含むPoly−Siに形成される酸化膜
が厚い。よつてスチーム酸化した後に、Si基板に
形成した酸化膜をエツチング除去し、Poly−Si
33の周囲に約200Å程度のSiO2膜34を残置さ
せる。その後、前記熱酸化膜32およびSiO2
34をマスクに例えば、KOHを含むエツチング
液を用いてSi基板31を約57°のテーパエツチン
グして、約0.4μm程度エツチングする。その後
Poly−Si膜33をマスクにフイールド反転防止
のボロンのイオン注入を行ないフイールド反転層
35a,35bを形成する。ボロンのイオン注入
条件は、35aは25KeV,1×1013ion/cm2であ
り、35bは第2のSi基板エツチングで第2の溝
の底がRPとなるように加速電圧を決定する。例
えば、100KeV、1×1013/cm2である。(第4図a
参照) 次に例えば800〜900℃のスチーム酸化を行なう
事により、Poly−Si33周囲にSi基板よりも厚い
酸化膜を形成した後、Si基板上の酸化膜をエツチ
ング除去して、Poly−Si33周囲のみにSiO2
36を例えば3000Å程度形成させる。その後、前
記SiO2膜36をマスクに、例えばCF4ガスを50
c.c./minを含むガスを流し、圧力30mmTorr程度
の条件のRIEを行なう事により、Si基板31を垂
直にエツチングして約0.3μm程度の第2の溝を形
成する(第4図b)。第2の溝の基板面に対する
傾斜角は70度以上、好ましくは90度とする。
[Embodiment of the Invention] An embodiment of the present invention will be described in detail with reference to FIG. 4. First, for example, specific resistance 5~10Ω-
A P(100) Si substrate 31 with a thickness of about cm is prepared, and on the entire surface thereof, for example, a thermal oxide film 32 of about 200 Å and a poly-Si layer 33 containing phosphorus of about 5000 Å are laminated. Thereafter, a selective photoresist is placed in areas other than the field area by photolithography, and using this photoresist as a mask, RIE (reactive ion etching) is used to perform the above-mentioned
After etching the poly-Si 33 and thermal oxide film 32, the photoresist is removed. Then, for example
Perform steam oxidation at 800-900°C. At this time, the oxidation rate of the Poly-Si containing phosphorus becomes about 2 to 4 times faster than that of the exposed Si substrate surface. That is, the oxide film formed on the Poly-Si containing phosphorus is thicker than the Si substrate. After steam oxidation, the oxide film formed on the Si substrate is removed by etching, and the poly-Si
A SiO 2 film 34 of about 200 Å is left around the SiO 2 film 33. Thereafter, using the thermal oxide film 32 and the SiO 2 film 34 as a mask, the Si substrate 31 is taper-etched at an angle of about 57° using, for example, an etching solution containing KOH, thereby etching the Si substrate 31 by about 0.4 μm. after that
Using the poly-Si film 33 as a mask, boron ions are implanted to prevent field inversion to form field inversion layers 35a and 35b. The boron ion implantation conditions 35a are 25 KeV and 1×10 13 ion/cm 2 , and the acceleration voltage 35b is determined so that the bottom of the second groove becomes R P in etching the second Si substrate. For example, 100 KeV, 1×10 13 /cm 2 . (Figure 4a
(Reference) Next, for example, by performing steam oxidation at 800 to 900°C, an oxide film that is thicker than the Si substrate is formed around the Poly-Si 33, and then the oxide film on the Si substrate is removed by etching to remove the oxide film around the Poly-Si 33. For example, a SiO 2 film 36 of about 3000 Å is formed thereon. Thereafter, using the SiO 2 film 36 as a mask, for example, 50% of CF 4 gas is applied.
By flowing a gas containing cc/min and performing RIE at a pressure of about 30 mmTorr, the Si substrate 31 is vertically etched to form a second groove of about 0.3 μm (FIG. 4b). The angle of inclination of the second groove with respect to the substrate surface is 70 degrees or more, preferably 90 degrees.

次にSiO236、Poly−Si33、熱酸化膜32
を除去した後、例えばCVD法によりSiO2膜37
を約7000Å程度形成した後、例えば低粘度のフオ
トレジスト38を用いて表面をほぼ平坦にする。
(第4図c) その後例えばCF4ガスを用いたRIEを用いる事
によりSiO2膜37とフオトレジスト38のエツ
チング速度がほぼ等しいエツチング条件でエツチ
ングしてSi基板31が露出し、かつ、第1の溝と
第2の溝がSiO237で埋まり、その表面がSi基
板凸部とほぼ同じ高さになるようにするその後熱
処理を行なつて、35aと35bをつなげて、フ
イールド反転防止層35を形成する。(第4図d) その後、従来技術を用いてSi基板凸部表面を含
む所に半導体装置を形成させる。
Next, SiO 2 36, Poly-Si 33, thermal oxide film 32
After removing the SiO 2 film 37, for example, by CVD method.
After forming about 7000 Å, the surface is made substantially flat using, for example, a low-viscosity photoresist 38.
(FIG. 4c) Thereafter, for example, by using RIE using CF 4 gas, the SiO 2 film 37 and the photoresist 38 are etched under etching conditions where the etching speed is almost equal, so that the Si substrate 31 is exposed and the first The grooves 35a and 35b are filled with SiO 2 37 so that the surface thereof is approximately at the same height as the convex portion of the Si substrate. After that, heat treatment is performed to connect 35a and 35b and form the field inversion prevention layer 35. form. (FIG. 4d) Thereafter, a semiconductor device is formed on a portion including the surface of the convex portion of the Si substrate using a conventional technique.

この方法を用いると、第2の溝は、第1の溝に
自己整合で形成出来るので、微細化が容易であ
る。また、第2の溝の寸法は、Poly−Siの酸化
膜をマスクに用いているので、横方向の寸法制御
が精密に行なえる。すなわち10Å以下の精度で第
2の溝の寸法が形成出来るので、加工寸法のバラ
ツキの問題がない。
When this method is used, the second groove can be formed in self-alignment with the first groove, so miniaturization is easy. Moreover, since the poly-Si oxide film is used as a mask, the dimensions of the second trench can be precisely controlled in the lateral direction. That is, since the dimensions of the second groove can be formed with an accuracy of 10 Å or less, there is no problem of variations in processing dimensions.

[発明の他の実施例] 上記方法ではリンを含むPoly−Siを用いたが、
リンと別の不純物を含んだPoly−Siを用いても
よい。たとえばボロン、ヒ素等であるさらに、
Poly−Siと同様に、化学変化(酸化等)により
マスクの面積が増えればどんな材料でもよい。例
えば、Alの場合は陽極酸化法でAl2O3に変化させ
てもよい。
[Other Examples of the Invention] In the above method, Poly-Si containing phosphorus was used,
Poly-Si containing phosphorus and other impurities may also be used. For example, boron, arsenic, etc.
Like Poly-Si, any material can be used as long as the area of the mask increases due to chemical changes (oxidation, etc.). For example, in the case of Al, it may be changed to Al 2 O 3 by anodic oxidation.

また、第1の溝を形成する際、KOHの代わり
に、角度が自由に決定出来るRIEを用いてSiをエ
ツチングしても良い。また第5図に示すように、
フイールド領域の絶縁膜がSi基板表面よりも高く
形成されていても良い。この場合は、さらに寄生
チヤネル発生の防止には有効である。またPoly
−Si33の酸化の条件によつては、Si基板凸部の
表面は平坦でなく曲面になる事もある。また実施
例ではn−MOSについて記したがp−chの
MOS,CMOS、バイポーラ等に使用出来る事は
言うまでもない。
Furthermore, when forming the first groove, Si may be etched using RIE, which allows the angle to be freely determined, instead of KOH. Also, as shown in Figure 5,
The insulating film in the field region may be formed higher than the surface of the Si substrate. In this case, it is further effective in preventing the generation of parasitic channels. Also Poly
-Depending on the conditions of oxidation of Si33, the surface of the convex portion of the Si substrate may not be flat but curved. In addition, although n-MOS was described in the example, p-ch
Needless to say, it can be used for MOS, CMOS, bipolar, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の方法で形成した素子のW方向で
の断面図、第2図は第1図の素子のID−Vg特性を
示す特性図、第3図はテーパエツチングのみを用
いた場合を示す断面図、第4図a〜dは本発明の
一実施例の工程の断面図、第5図は他の実施例を
示す断面図である。 図において、11,21,31……Si基板、1
2,14,32,34,36,37……SiO2膜、
13,35a,35b,35……フイールド反転
防止層、15,33……Poly−Si、38……フ
オトレジスト。
Figure 1 is a cross-sectional view in the W direction of an element formed using the conventional method, Figure 2 is a characteristic diagram showing the I D -V g characteristics of the element in Figure 1, and Figure 3 is a cross-sectional view of the element formed using the conventional method. FIGS. 4a to 4d are sectional views showing steps of one embodiment of the present invention, and FIG. 5 is a sectional view showing another embodiment. In the figure, 11, 21, 31...Si substrate, 1
2, 14, 32, 34, 36, 37...SiO 2 film,
13, 35a, 35b, 35... Field inversion prevention layer, 15, 33... Poly-Si, 38... Photoresist.

Claims (1)

【特許請求の範囲】[Claims] 1 半導体基板上にマスク材を形成する工程と、
このマスク材をマスクとして前記半導体基板の
内、マスクの辺を境界としてマスクから露出する
面のみをエツチングする異方性エツチング法で半
導体基板の素子分離領域をエツチングして、基板
面に対する傾斜角が40〜85度の範囲の側面をもつ
第1の溝を形成する工程と、この第1の溝の傾斜
側面及び底面に基板と同導電型のイオン注入を行
う工程と、高加速のイオン注入を行うことにより
前記第1の溝から離れた基板深部に第1の溝表面
と相似形状の基板と同導電型の椀状断面のイオン
注入層を形成する工程と、前記マスク材を酸化す
ることによりマスク材の面積を大きくする工程
と、この拡大されたマスク材をマスクとして前記
第1の溝内に、前記椀状のイオン注入層に達し、
かつ基板面に対する傾斜角がほぼ垂直な側面をも
つ第2の溝を形成する工程と、熱処理を行うこと
により第1の溝表面に形成したイオン注入層と基
板深部に形成した椀状のイオン注入層とをつなげ
る工程と、前記第1の溝と第2の溝を埋め込む如
く絶縁膜を形成する工程と、素子領域の基板に素
子を形成する工程とを備えた事を特徴とする半導
体装置の製造方法。
1. A step of forming a mask material on a semiconductor substrate,
Using this mask material as a mask, the element isolation region of the semiconductor substrate is etched using an anisotropic etching method in which only the surface of the semiconductor substrate that is exposed from the mask with the sides of the mask as boundaries is etched, so that the inclination angle with respect to the substrate surface is adjusted. A step of forming a first groove with side surfaces in the range of 40 to 85 degrees, a step of implanting ions of the same conductivity type as the substrate into the inclined side surfaces and bottom of the first groove, and a step of implanting ions at high acceleration. forming an ion-implanted layer with a bowl-shaped cross section of the same conductivity type as the substrate and having a similar shape to the surface of the first groove in a deep part of the substrate away from the first groove; and oxidizing the mask material. a step of enlarging the area of a mask material, using the enlarged mask material as a mask to reach the bowl-shaped ion implantation layer within the first groove;
and a step of forming a second groove having side surfaces whose angle of inclination to the substrate surface is almost perpendicular, and an ion implantation layer formed on the surface of the first groove by heat treatment and a bowl-shaped ion implantation formed deep in the substrate. A semiconductor device comprising: a step of connecting layers; a step of forming an insulating film to fill the first trench and the second trench; and a step of forming an element on a substrate in an element region. Production method.
JP22742882A 1982-12-28 1982-12-28 Semiconductor device and manufacture thereof Granted JPS59121848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22742882A JPS59121848A (en) 1982-12-28 1982-12-28 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22742882A JPS59121848A (en) 1982-12-28 1982-12-28 Semiconductor device and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS59121848A JPS59121848A (en) 1984-07-14
JPH0451978B2 true JPH0451978B2 (en) 1992-08-20

Family

ID=16860692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22742882A Granted JPS59121848A (en) 1982-12-28 1982-12-28 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS59121848A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4721682A (en) * 1985-09-25 1988-01-26 Monolithic Memories, Inc. Isolation and substrate connection for a bipolar integrated circuit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57149750A (en) * 1981-03-12 1982-09-16 Nippon Telegr & Teleph Corp <Ntt> Element isolating method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57149750A (en) * 1981-03-12 1982-09-16 Nippon Telegr & Teleph Corp <Ntt> Element isolating method

Also Published As

Publication number Publication date
JPS59121848A (en) 1984-07-14

Similar Documents

Publication Publication Date Title
KR920006260B1 (en) Dynamic type semiconductor device and its manufacturing method
KR100227766B1 (en) Semiconductor device and the manufacturing method thereof
KR870006676A (en) Process for fabricating bipolar transistors and complementary MOS transistors on shared substrates
US5726476A (en) Semiconductor device having a particular CMOS structure
KR20000017361A (en) Method for producing semiconductor-insulator layer and semiconductor component having the semiconductor-insulator layer
JPH0351108B2 (en)
JPH05152516A (en) Semiconductor device and manufacture thereof
EP0412263B1 (en) Method of forming a contact hole in semiconductor integrated circuit
JPH0451978B2 (en)
US6127719A (en) Subfield conductive layer and method of manufacture
JPS5846648A (en) Manufacture of semiconductor device
JPS6160589B2 (en)
JPH09139382A (en) Manufacture of semiconductor device
JPS59124142A (en) Manufacture of semiconductor device
JP2790167B2 (en) Semiconductor device and manufacturing method thereof
JP2783200B2 (en) Method for manufacturing semiconductor device
JPH0481339B2 (en)
JPH0334655B2 (en)
JPH04102356A (en) Semiconductor integrated circuit and manufacture thereof
JPH05166919A (en) Semiconductor device and manufacture thereof
JP2674568B2 (en) Method for manufacturing semiconductor device
JPH0837230A (en) Semiconductor integrated circuit device and manufacture thereof
JP3123598B2 (en) LSI and manufacturing method thereof
JPS6045037A (en) Substrate structure of semiconductor device and manufacture thereof
JPH03157972A (en) Manufacture of semiconductor device