JPH04504558A - 高臨界電流定方位粒化Y―Ba―Cu―O超電導体及びその製造方法 - Google Patents

高臨界電流定方位粒化Y―Ba―Cu―O超電導体及びその製造方法

Info

Publication number
JPH04504558A
JPH04504558A JP2505834A JP50583490A JPH04504558A JP H04504558 A JPH04504558 A JP H04504558A JP 2505834 A JP2505834 A JP 2505834A JP 50583490 A JP50583490 A JP 50583490A JP H04504558 A JPH04504558 A JP H04504558A
Authority
JP
Japan
Prior art keywords
temperature
composition
mass
approximately
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2505834A
Other languages
English (en)
Other versions
JP3110451B2 (ja
Inventor
サラマ,カメル
セルヴァマニッカム,ヴェンカタクリッシュナン
Original Assignee
ユニヴァーシティ オヴ ヒューストン・ユニヴァーシティ パーク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=23198002&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH04504558(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ユニヴァーシティ オヴ ヒューストン・ユニヴァーシティ パーク filed Critical ユニヴァーシティ オヴ ヒューストン・ユニヴァーシティ パーク
Publication of JPH04504558A publication Critical patent/JPH04504558A/ja
Application granted granted Critical
Publication of JP3110451B2 publication Critical patent/JP3110451B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/45Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
    • C04B35/4504Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides containing rare earth oxides
    • C04B35/4508Type 1-2-3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/653Processes involving a melting step
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/725Process of making or treating high tc, above 30 k, superconducting shaped material, article, or device
    • Y10S505/742Annealing

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。

Description

【発明の詳細な説明】 高臨界電流定方位粒化Y−Ba−Cu−0超電導体及びその製造方法 発明の経緯 超電導材料の最も顕著な特性は臨界温度又は臨界温度以下において超電導材料に より電気抵抗が全体的にほぼ0になることである。
この臨界温度は超電導材料の特性であり、超電導材料の超電導転位温度Tcと称 している。
特定の材料の超電導性に関する研究の歴史は水銀が約4″にの転位温度にて超電 導状態になる1911年の発見から始った。1920年代に入ってNbCが高温 度、即ち10.5’に迄で超電導になることが発見された。この時以来、超電導 材料の極めて低い転移温度が原因で商業化出来なかった超電導の現象に対する多 くの適用例が思い付かれている。
高温で一層実際的な温度において超電導になる化合物を発見する努力の中で多く の材料の検査が行なわれたが、1986年頃迄公知の最も高い温度の超電導体は 臨界温度Tcが約23.3’にのNbs G eであった。N b 3G e以 前の超電導体を採用したデバイスの986年にベッドノルズとミューラー両氏は La−Ba−Cu −0の一部の混合相組成物が約30°Kにて超電導性を示す ことを開示した。そのシステムの調査の結果、超電導性をもたらす結晶相はに2 NIF4 (214)の如き結晶構造を有していることが判明した。
214型結晶構造の超電導体に対する開始時点の温度限界値Tc。
は約48@にであることが判明した。
214結晶性構造のこうした希土類アルカリ土類酸化銅系における超電導性の発 見に引続いて、77°Kを越える温度にて超電導を呈した新しい種類の希土類ア ルカリ酸化銅類が発見された。「123」高温超電導体として一般に称している 希土類アルカリ土類酸化銅のこの新しいクラスはペロブスカイト関連の結晶構造 を備えている。ユニット・セルはa軸に沿って相互の上に重ねられた3個のサブ ・セルから成っている。X線による結晶学的及び中性子パウダー回折研究では酸 素欠乏になる構造が示され、基礎面内の酸素の順序が超電導性を呈する酸化物に とって重要であることが示されている。
C・プール等、酸化銅製超電導体(ジジン・ワイリー・アンドサンズ1988) 参照。1. 2.3化合物のユニット・セル公式はLIM2Cua o6+δ( δ−0,1〜1.0、好適には約1.0)で、ここでLはスカンジウム、イツト リウム、ランタン、セリウム、プラセオジウム、ネオジミウム、サマリウム、ユ ーロピウム、ガドリニウム、テルリウム、ジスプロシウム、ホルミウム、エルビ ウム、ツリウム、イッテルビウム及びルテシウムであり、Mはバリウム、ストロ ンチウム又はこれらの混合物である。研究ではδが約0.1〜0.5の間にある 際生成された1、2. 3化合物が四辺形ユニット・セルの結晶学的対称性を呈 し、超電導性でないことが示されている。このユニット・セルにおいて、a軸の 格子寸法は大略11゜94オングストロームであり、a軸及びb軸は大略3.9 オングストロームである。δが0.5〜1.0の値である場合、生成された1、 2.3化合物は斜方晶ユニット・セルの結晶学的対称性を有し、超電導性である 。ユニット・セル内の酸素原子の向きでセルはa軸に沿って僅かに圧縮され、従 ってa軸の格子寸法はb軸の格子寸法以下である。斜方晶ユニット・セルに対し て格子定数a−3,80b−3,86及びc−11,55が報告されている。
高温超電導組成物の123クラスの発見と併せて液体ヘリウムによる冷却が要求 された商業的に不可能であった超電導現象の従前の多くの考えられた適用例を経 済的に追求することが可能になっている。これらの組成物は77’に以上の温度 で超電導になるので高温超電導体の新しいr123Jクラスは実際的な適用例で は一層経済的に実行可能な冷媒である液体窒素で冷却出来る。その結果、高価な ヘリウム冷媒を無駄にすることを回避する目的から慣用的な超電導体で採用され た幾分複雑な断熱性及びヘリウム・リサイクル系が放棄され、かくして商業的な 超電導体を著しく単純化するとともにその信頼性を高めている。
然し乍ら、今日迄の高温超電導体は(1)強磁場内で高電流負荷を有すること、 (2)強磁場をとらえること及び(3)低い高周波数表面抵抗を呈することとい った能力がないことから多くの適用例では実際的ではなかった。その結果、磁石 、磁気分離装置、輸送ライン、高周波発生器及び磁気的に浮上する列車(■eg lav)といった多くの適用例における123超電導体の使用に対する著しい商 業上の障害が存在している。
例えば、磁気的分離装置においては超電導体は2及び3Tの間の磁場において約 33,000及び66.0OOA/c−の間の電流密度を有することが要求され る。送信ラインと高周波発生器において商業的に実際的なものになるよう超電導 材料はその臨界温度以下において極めて小さい高周波数表面抵抗を呈しなければ ならない。磁石において実際的になるには超電導材料は軽量なことに加えてその 結晶構造内に高い磁場を捕獲出来なければならない。[低いT。の超電導材料は 22,400ガウス程度の高い磁場を捕獲出来るものとして報告されているが、 (例えばM、ダビンナウイツチ、E、L。
ガーウィン及びり、J、フランケル、レター・アル・ノボシメント7.1. ( 1973);E、L、ガーウィン1M、ラビノウイツツ及びり、J、フランケル 、応用物理レター、ス旦、599 (1973);M、 ラビノウィッツ、H, W、アロースミス及びS、D、ダールグレン、応用物理レター、30,607  (1977);及びM。
ラビノウィッツ、IEEE磁気学、11,548 (1975))こつした超電 導体は高い電流負荷を有することが出来ないことと同様、その低いTcが原因で 磁石に使用することが受入れられない。
発明の要約 本発明は0磁場と77″″に1;おいて約30,000ないし約85゜000A /c−の電流密度Jを有する123高温超電導材料を含む。
こうした超電導材料は少なくとも77’にのT を特徴とし且つ少なくとも80 0ガウスの8000ガウスの外部磁場内に設置された際磁場Btを捕獲出来る。
60”Kにおいて、本発明の超電導材料は約6ミリΩ以下の98GHzにてa− b結晶面内の表面抵抗により定められる。好適な123超電導体はLをイツトリ ウムとするLI B 82 Cu 30 e+6である。こうした超電導体は、 塊状生成物たるL IB a 2 Cu 30を突固め次にその生成物をその融 点を下田わる約り0℃〜約90℃の間の温度、即ち、YIBa2Cu306+6 に対しては大略940℃の温度にて焼結することを含む液相処理で生成される。
次に、この組成物は1,2.8超電導体の融点を越える大略80℃〜190℃に 維持された予熱室内でその組成物が分解して部分的に溶融する迄全体的に約り0 90℃〜約1200℃(YlB a Z Cu a Oe+6に対しては大略1 100℃)迄加熱し、次に、融点を越える約り0℃〜約30℃の温度性即ちY  1B a 2 Cu306+δに対しては約1030℃の温度に急冷し、次に、 その生成物がその融点を下田わる大略20℃〜40℃の温度即ちY I B a 2 Cu 30 e+δに対しては約980℃の温度になる迄1℃/時の制御割 合にて冷却される。この処理中、材料を含む粒状物が形成され、長さにして大略 10,000〜15,000μm成長される。
材料は次に再固化処理を完了する目的で少なくとも8時間、980℃にて安定保 持される。次に、材料は融点を下田わる大略400℃の温度(Y I B a  2 Cu 306+δに対しては大略600℃の温度)に冷却される。次に材料 は約200℃だけ緩漫に冷却され、酸素内で焼鈍される。
図面の簡単な説明 第1図は実施例1に従って準備された本発明のYlB a 2 Cu a06+ 6組成物の上表面の走査電子顕微鏡写真の300倍の拡大写真である。
第2図は実施例1に従って準備されたYIBa2Cu306+δ組成物の走査電 子顕微鏡写真の150倍の拡大写真である。
第3図は実施例1に従って準備された本発明のy、Ba2 Cu306+6組成 物の40倍の光学顕微鏡写真である。
第4図は実施例4で述べた配向粒状サンプル内に流れるrf誘因電流の構成を示 す。
第5図はa−C面及びa−b面における98GHzにおける温度(X軸)で、本 発明の粒状配向された超電導体の表面インピーダンス(y軸)を示す。
好適実施態様の詳細な説明 本発明の超電導組成物は公式 %式% で定められる酸化物複合体から成り、ここでLは希土類元素、即ちスカンジウム 、イツトリウム、ランタン、セリウム、ブラシオジウム、ネオジウム、サマリウ ム、ユーロピウム、ガドリウム、テルビューム、ジスプロシウム、ホロニウム、 エルビュウム、ツリウム、イッテルビウム及びルテシウムであり、δは約0.1 〜約1.0の数値である。好適にはLはイツトリウムである。更に好適には、δ は約0.5〜約1.0の間である。こうした組成物は遷移温度Tている。本発明 の方法に従って準備された場合、こうした酸化物複合体は77°Kにおける0磁 場内でJ (材料のIC−の横断面積で支承される電流の量として定義付けする )が約30,000〜約85゜00OA/cjを呈する。一般に、本発明の酸化 物複合体のJは70゜00OA/cj以上である。77°K及び0.6Tの適用 された磁場において、本発明の組成物は37.0OOA/c−を越えるJを呈し ている。更に、77”K及び0磁場において、本発明の組成物は18.50OA /cdを越えるり、C,電流密度を呈している。
本発明の酸化物複合体は長さが大略10鰭〜15■■で:平均幅が約5+sw〜 約10+mで:平均厚さが約16μm〜約20μmの間の板状粒状物から成って いる。こうした板状粒状物は超電導体のa−b結晶学的基礎面内で相互に平行に 積み重ね可能である。積み重ねられた板状粒状物の厚さは全体的に2龍〜3關で ある。粒状物の形状、長さ及び向きは酸化物の密な構造とその高められた導電率 に対して適合している。
高い電流密度を呈するのに加えて、本発明の酸化物複合体は更に先行技術の高温 超電導体で捕獲されたものより大きさの高い磁場を捕獲出来る。その結果、本発 明の超電導体は磁石として特に適用可能である。1000を越え、更に1200 をも越え、1280ガウス程度の高い磁場Btが酸化物複合体に対する大略8, 000ガウスの外部から与えられる磁場の適用に引続き本発明の配向された粒状 酸化物複合体内に捕獲された。本発明の酸化物複合体は77°Kにおいで307  (300,000ガウス)を越える外部磁場に露出される際超電導特性を維持 出来る。従って、こうした酸化物は特に磁石の生産に有用である。
本発明の酸化物が内径2cl11のシリンダーに作成され、大略8,000ガウ スの如き外部磁場が適用されると、大略6,000ガウスの捕獲された磁場を得 ることが出来る。
磁場は各種方法により本発明の超電導材料内で捕獲出来る。磁場冷却と称してい る成る方法では超電導材料が遷移温度T を越える温度にて現存する磁場内に設 置される。室温は充分な温度である。
次に、そのサンプルをその遷移温度迄冷却する。0磁場冷却と称している他の方 法ではサンプルを最初にその遷移温度迄冷却する。酸化物に対する低い臨界場H と等しいか又は僅かにこれを越える値の磁場を次に適用する。サンプル内側に捕 獲された状態にとどまつている磁場の該当部分Btは固有の微視的渦流により超 電導材料内に維持される。サンプル内の捕獲された磁場はサンプルに隣接するか 又はサンプルの中心に不連続的に設置されるホール探り針により測定される。
これらの方法は本明細書で説明する作成されたシリンダーと同様配向された粒状 塊材料で使用可能である。
本発明の配向された粒状酸化物は更に先行技術の超電導体より小さいマイクロ波 表面インピーダンスを特徴としている。表面インピーダンスは研磨したサンプル をTEo11モード・シリンダー共振空洞の底部で締付け、空洞モードの幅に対 する温度依存性を測定することにより決定可能である。測定は銅製端板で繰返さ れ、銅のインピーダンスに対して表面インピーダンスが報告されている。こうし た測定は高周波表面抵抗を示すと共に高周波数通信産業における本発明の超電導 体の有用性を示す。
98GHzにおける本発明の整合された配向酸化物粒状物のa−b基礎面内での 表面抵抗の測定は60”K又は60°に以下において大略5〜6ミリΩである。
この値は先行技術の焼結123材料に対する同じ周波数と温度において約2.O OOミリΩと対比される。
この値は77@K及び10GHzにおいて行なわれた測定から補作法で得られた 。W、ケネディ等の「セラミックYIBa2Cu3089年参照。
本発明は又、超電導性酸化物複合体を製造する方法も擺供する。
超電導性をもたらすのに充分な量のり、Ba、Cu及びOを含有する塊状サンプ ルを準備する方法は当技術において良く知られている。
こうした方法には限定はされないがソリッド・ステートの共沈及びゾル−ゲル技 法が含まれる。例えば、ソリッド・ステート法においてはバリウム、銅、酸素及 び好適にはイツトリウムを含有するソリッド粉体化合物の選択された量が完全に 混合され、ソリッド・ステート反応を完了する目的で加熱される。所望の複合体 が例えばY1Ba2Cu306+δ製である場合、この複合体は15重量%のY 2O3,53重量%のB a CO3,32重量%のCuOから得ることが出来 る。ソリド粉体化合物は好適にはジャー・ミル、更に好適にはバー・ミルといっ た強力なミキサー内で混合される。混合物は次に固体状態で混合物を反応させる のに充分な時間にわたり約り20℃〜約960℃の間の温度にて空気中で加熱さ れる。前掲の123組成式におけるrLJがイツトリウムである場合、組成物は 好適には大略920℃〜940℃に加熱される。通常、混合物はこの目標温度に おいて大略24時間保たれる。サンプルが次に好適には空気中又は不活性ガス雰 囲気内で大略室温迄急速に冷却することで冷却される。
本発明の方法において、(式LIBa2Cu306+δの化合物をもたらすのに 充分な量の)L、Ba、Cu及び0を含む塊状質量体が最初にサンプルに圧力を 与えることで圧縮される。通常、粒状物が共に保持されて塊状材料を形成する迄 一般に約630kg/cj(9,000psj)〜約770kg/cj (11 ,000psi)の圧力が要求される。Lがイツトリウムの場合、この圧力は大 略700kg/cj(10,000psl)である。突固め方法は好適には寸法 が大略6〜24 mm X 4〜16+nX3Q〜65mmの棒を作り出す。こ うした棒は複合体内での熱の一層均一な分布を確実にすると共に粒状物の所望の 長さの達成を助ける。
突固められた粉体は次に好適には空気中において約0〜約2キロ・バールの圧力 にてその融点を下田わる大略50℃〜約90℃の温度にて焼結される。例えば、 Lがイツトリウムの場合、この質量体は大略24時間にわたり約り20℃〜約9 60℃に加熱される。
好適の棒は好適には加熱前に大略1.25m+s〜約2.5+imの厚さに部分 的にスライスされる。こうしたスライス作用は好適にはダイアモンド・ソーで行 なえる。
焼結された生成物は次に固体生成物の融点を上田わる大略80℃〜約190℃の 温度に予め加熱された室内において全体的に約1090℃〜1200℃に大略6 分〜約12分の適切な時間にわたり加熱することで分解される。包晶点を越えて サンプル(約10秒間)を急速加熱することにより低温共晶の形成が回避される 。酸化物がYIBa2Cu306+6の場合、質量体は大略8〜12分、最も好 適には10分間、大略1.100℃の温度にて加熱され、この場合、123相が 不調和的にY B a Cu O5及び液相にて溶ける。
サンプルは次に2つの異なる相で冷却される。第1相において、組成物全体は一 般に約り010℃〜約1040℃の間の材料の融点を大略20℃〜40℃を上田 わる温度に急冷される。Lがイツトリウムの場合、溶融した組成物は約5分以内 にて1030℃に急冷される。第2相において、この組成物は大略20℃〜約4 0℃の安定状態温度が酸化物の融点を下田わって達成される迄大略毎時1℃の割 合にて包晶片体を受けるようゆっくり冷却される。安定状態の温度は一般に約り 60℃〜約1000℃の間である。包晶温度を通じてゆっくり冷却される間に、 その分解された相が反応して1−2−3相を形成する。この方法においてはサン プル内に温度勾配が存在せず、サンプル全体は包晶点を通じて遅い割合にて均一 に固化する。
Lがイツトリウムの場合、その組成物は約り030℃〜約980℃へ50時間以 上にわたり毎時大略1℃にて冷却される。こう]また冷冷却金は通常相互に平行 になっている超電導粒状物の形成と位置付けに対して主として適合している。こ の冷却中に、粒状物は大略10000〜約15000μmの長さに成長する。試 料が固化方法完了に充分な時間にわたり安定状態温度にて維持される。Y1Ba 2Cu306+δの酸化物複合体に対し、サンプルは同化完了に対して大略8時 間にわたり980℃に保持される。
次に、サンプルはマイクロ・クラックの形成が最低になるような割合にて更に冷 却される。これは一般に毎時あたり50℃の割合にて融点を下潮わる大略400 ℃に空気中の粒状物を冷却することで達成される。例えば、Y1Ba2Cu30 6+δの組成物においては、試料は大略5,5〜約6.5時間にわたり大略55 0℃〜約650℃の温度迄980℃から冷却される。こうした勾配付き冷却は粒 状物のほぼ平行な向きに対して破壊をたとえあったとしても生ぜしめない。
非超電導状態から結晶格子の斜方晶が最大にされる超電導状態への複合体と結晶 格子の変態は空気中の複合体を引続きその融点を下潮わる大略600℃の温度に 冷却することで達成される。冷却割合は大略毎時あたり30℃である。Y1Ba 2Cu306+δ組成において、複合体は大略6時間半にて大略550℃から約 650℃へ約380℃ないし約420℃に冷却することによりその超電導状態に 変態化される。
LIBa2Cu306+δの式を得る酸素の必要量が次に充分な時間にわたり酸 素含有雰囲気内にてそれを焼鈍することにより斜方品粒状物内に拡散される。結 果的に生ずる結晶がペロブスカイト構造を有する。
好適には本発明の方法の焼結段階は3個の別々の段階から成っている。全ての段 階は酸素の存在下で行なわれる。第1段階においては、サンプルは大略580℃ 〜大略620℃の温度にて大略11〜13時間加熱される。第2段階において、 サンプルは第1段階より大略1.00℃低い温度即ち大略480℃〜大略520 ℃において同一時間にわたり焼鈍される。最後の段階においてサンプルは大略3 80℃〜大略420℃の温度において大略11〜13時間にわたり焼鈍される。
こうした3段階の焼鈍段階により複合体内での酸素の拡散が高められ、かくして 斜方晶状態の形成が高められる。
本発明の方法では先行技術の方法で生産された生成物より著しく高い寸法と容積 寸法を備えた超電導材料の製造が可能である。更に本発明の方法においては先行 技術の方法における場合より僅かの時間で所定容積寸法の超電導酸化物が生産さ れる。例えば、本発明の好適実施態様においては、6500關3を越える容積を 備えた超電導材料を大略130時間で準備出来る。
第1図及び第2図に各々δを0.7〜1.0とした本発明に従って準備されたY 1Ba2Cu306+6酸化物組成物の300倍と150倍で各々表わした走査 電子顕微鏡写真を示す。本発明に従って準備された酸化物は長さが典型的には1 0,000〜大略15,000μmの間で幅が約20μmの長い板状粒状物から 成っている。板の軸線は斜方晶相の超電導層内でa−b方向と一致する。ms3 図は40倍の光学顕微鏡写真から見た同じ組成を示している。平行板は大略10 ,000〜15000μmの長さが特徴となっている。粒状物の長さは電流の導 電率を著しく高める。本発明の酸化物の長くされた粒状物とこの酸化物の超電導 方向に沿った粒状物の結晶学的整合は超電導流に対して極めて有利であり、かく して先行技術の超電導体より超電導体に対して高いJ値を可能にする。
実施例1 ジャー・ミル内で15重量%のY2O3,53重量%のBaCO3及び32重量 %のCuOが混合された。その混合物が包囲された白金製容器内に入れられ、こ れが次に940℃の温度が得られる迄空気中で部分的7℃の割合にて加熱された 。この混合物はこの温度において約24時間反応可能とされた。700kg/e シ(10,000psl)の適用された圧力にて酸化物混合体を(室温にて)冷 間圧延することにより12.7閣霞x7,6+u+X63.5龍の寸法の棒サン プルが得られた。次に、この棒が厚さ2.5關の部分に部分的にスライスされた 。次に、サンプルが1100℃に維持された予め加熱しであるオーブン内で10 分間加熱された。
次に、このサンプルは迅速に1030℃に冷却され、次に、毎時1℃の割合にて 980℃迄冷却された。サンプルは980℃にて8時間保持され、次に、毎時大 略60℃の割合にて600℃迄冷却された。次に、このサンプルが更にゆっくり 大略毎時30℃の割合にて400℃迄冷却された。次に、サンプルは各々600 ℃、500℃及び400℃にて12時間酸素内で焼鈍された。
77”Kにおける電流密度Jが試験された。定格値120AのDC電源(H−P 型式6011A)及びグースレー181ナノ電圧計を使用して電流の測定が行な われた。パルス源で制御される一連のパワー・トランジスターにより120A迄 のパルス電流が発生された。1ミリ秒のパルスにおいてJは0磁場において75 ,0OOA/cjであり、Jは0.6T磁場において37.0OOA/cj以上 であった。DC電流に対してJが77”K及び0磁場において18゜500A/ cdを越える値が測定された。
実施例2 実質的に実施例1で説明した如く準備されたサンプルがa−b面に沿って0,4 關xQ、2−0.4+l1lX10關の寸法に切断された。
実施例1で説明した如く、連続電流(H−P・型式6011A)及びパルスDC 電流の両者を使って77’にで測定が行なわれた。接触加熱の効果を最低にし、 これらのサンプルの真の電流保持容量を与える目的でパルス電流密度測定が行な われた。1〜10IISにわたるパルス幅がこれらの測定で使用された。これら の測定では銀製接点と銀製リード線が使用され、サンプルは接点と共に500℃ にて酸素内で焼鈍された。77”Kにおけるこれらの接点の抵抗率は約1μΩc jであった。これらのサンプルは150秒迄0変動する時間に対して30A迄保 持することが出来た。これらの電流においてサンプル前後の電圧降下は1μV/ (7)内で一定であった。
電流及びサンプル前後の電圧降下がディジタル・オンロスコープにコレット、型 式2090)を使用して測定された。これらの測定では110A迄の電流が使用 された。サンプル前後の電圧降下信号のノイズ・レベルは大略50μVであり、 これは試料を通る電流の存在とは無関係に無変化のままであった。これらのサン プルで繰返し呈示された測定結果を表Iに示す。
表1 パルス幅(ms) 磁場(G) [流密度(A / cd )1 0 75.0 00 10 0 62.000 I 60口0 37,000 ■(da) 0 18.500 表■から理解される如く、磁場が無い場合、サンプルは1011sパルスで検査 した場合、62,0OOA/cjを越え、11Isパルスが使用された場合は7 5,0OOA/cjを越える電流密度を呈している。
6000Gの磁場で検査されたサンプルはlll5パルスで37,000A/c シを越える電流密度を呈した。これら全ての検査においてサンプルは測定終了迄 超電導状態にとどまり、通常の状態には変換されなかった。
実施例3 実質的に実施例1で述べた如く準備されたサンプルが5關×5龍×2■−の寸法 に切断された。サンプルは大略77°Kに冷却され、ガラス円板上に設置された 。次にサンプルは大略1分間大略8000ガウスの磁場に露呈された。ホール探 針をサンプルの中心附近に設置することで決定された1、280ガウスの捕獲さ れた磁場が記録された。
実施例4 実質的に実施11111で記載した如く準備されたサンプルの薄い板上で測定が 行なわれた。薄い板が切断され、0.3μのサンド・ベーパーで研磨された。C 軸が表面に垂直の状態で1つのサンプル(4X5mm2の面積を有する厚さ1n u+)が切断された。このサンプルはC軸直角サンプルと称する。このサンプル において、rf誘因電流はa、 −b面内にある。第4図はrfq流に対する粒 状物配向サンブルの向きを模式的に表わす。第2サンプル(10X5+mm2の 厚さ1mm)はa−C面に直角のC軸を備えていた。このサンプルは以後C軸平 行サンプルと称する。このサンプルに対して、誘因された「f電流はa−b面に 対して直角の面内に存在している。
表面インピーダンス測定はり、カジエセッツ、E、J、ホアン。
マイクロ波理論と技術に関するI EEE会報、Mtt−32巻、666 (1 984)に従い実施例1の超電導材料の端板を有するTE。1、モード円筒状共 振銅空洞内で行なわれた。空洞体の側部を通じて孔連結が使用された。空洞冷却 は15°K及び300”Kの間で動作するヘリウム閉サイクル冷却装置で行なわ れた。
空洞の無負荷品質因子は75−100GHz試験設定によるHP8510ネット ワーク・アナライザーに対して適合されたシントンのインピーダンス法により測 定された。(E、S、シントンrマイクロ波測定」マツフグロー・ヒル(195 7)参照)第5図は98GHzにおける両方のサンプルの向きに対する表面抵抗 対温度も示している。77°Kにおいて、C軸平行サンプルに対する98GHz での表面抵抗は120mΩ程度に高く、一方、a−b面に対しての表面抵抗は6 0mΩに過ぎない。大略60”Kにおいて又はそれ以下において、a−b面内の 表面積抵抗は大略5mΩである。
前掲の説明から容易に明らかな如く、当技術の熟知者には付加的利点及び改変が 容易に生じよう。従って、広い範囲における本発明は図示の及び説明された特定 の事例に限定されない。従って、本発明の開示された一般的技術思想又はその範 囲から逸脱せずに実施例に示された詳細な内容から改変が可能である。
C軸 第4図 第5図

Claims (1)

  1. 【特許請求の範囲】 1.式L1Ba2Cu3O6+δの粒状物から成り、Lを希土類元素とし、δを 約0.1〜約1.0の数値とし、更に77°Kにおいて組成物の電流密度をO磁 場において70,000A/cm2以上とし、電流密度を0.6T磁場の下で3 7,000A/cm2以上とした超電導組成物。 2.前記希土類元素がイットリウムである請求の範囲1項記載の組成物。 3.前記組成物が更に77°K及びO磁場において18,500A/ cm2以 上のDC電流密度を有する請求の範囲1項記載の組成物。 4.前記組成物が更に77°K及びO磁場において18,500A/cm2以上 のDC電流密度を有する請求の範囲2項記載の組成物。 5.大略8,000ガウスの外部適用磁場内に設置された際前記組成物のBtが 1,000ガウス以上である請求の範囲1項記載の組成物。 6.前記希土類元素がイツトリウムである請求の範囲5項記載の組成物。 7.前記Btが1200ガウス以上である請求の範囲6項記載の組成物。 8.前記Btが大略1280ガウスである請求の範囲7項記載の組成物。 9.98GHzにおいて大略60°K以下における前記組成物のa−b結晶学的 基礎面内の表面抵抗が6mΩ以下である請求の範囲1項記載の組成物。 10.前記希土類金属がイツトリウムである請求の範囲9項記載の組成物。 11.前記粒状物のa−b基礎面が相互に格対的に平行になっている請求の範囲 2項記載の組成物。 12.超電導性金属酸化物複合体を準備する方法であって:(a)約920℃〜 約960℃の間の温度においてL,Ba,Cu及びOを含有する化合物から得ら れた突固められたソリッド質量体を焼結し、LをL1Ba2Cu3O6+δの式 を生ずるのに適した量である希土類元素とし、δが約0.1〜約1.0の数値で ある段階; (b)予め加熱された室内のソリッド質量体を前記質量体を部分的に溶融し分解 するのに充分な時間にわたり約1090℃〜1200℃の温度に加熱する段階; (c)質量体を約1020℃〜1040℃の温度に急冷し、次に大略1℃/時の 割合にて融点を下廻わる約20℃〜40℃の間の安定温度に冷却する段階; (d)全体の質量体を再固化するのに充分な時間にわたり質量体を前記安定温度 に維持する段階;及び (e)所要量の酸素を質量体内に拡散させるのに充分な時間にわたり再固化質量 体を酸素含有雰囲気内にて焼鈍する段階から成る方法。 13.前記突固められたソリッド質量体が、(1)式L1Ba2Cu3O6+δ を生成するのに充分な量のL,Ba,Cu及びOを含む固体化合物を混合し、δ が約0.1〜1.0数値を有し; (2)ソリッド状態の化合物を反応させるのに充分な時間にわたり、ソリッド化 合物を約920℃〜960℃の温度に加熱し;(3)ソリッド状態の反応生成物 を周囲温度に冷却し;及び(4)混合物を圧力の適用によりソリッド質量体に突 固めることにより得られる請求の範囲12項記載の方法。 14.段階(b)の再固化質量体が最初に毎時大略60℃の割合にて前記安定温 度から大略550℃〜650℃に冷却され;次に、大略毎時30℃の割合にて付 加的に約380℃〜約420℃に冷却される請求の範囲12項記載の方法。 15.前記突固められたソリッド質量体が6−24mm×4−16mm×33− 130mmの寸法を有する棒である請求の範囲12項記載の方法。 16.階段(b)での加熱前に前記棒が部分的に約1.25mm〜約2.5mm の間の厚さにスライスされる請求の範囲15項記載の方法。 17.段階(e)でのソリッド質量体の加熱が約0〜約2キロ・バールの間の圧 力にて行なわれる請求の範囲12項記載の方法。 18.前記再固化質量体が3個の別々の分離した温度帯域内で帯域あたり11〜 13時間にわたり酸素内で焼鈍される請求の範囲12項記載の方法。 19.第1温度帯域が約580℃〜約620℃の間にあり、第2温度帯域が約4 80℃〜約520℃の間にあり、第3温度帯域が約380℃〜約420℃の間に ある請求の範囲18項記載の方法。 20.しがイツトリウムである請求の範囲12項記載の方法。 21.式L1Ba2Cu3O6+δの粒状物から成り、しが希土類元素であり、 δが約0.1〜約1.0の数値であり;(a)約920℃〜約960℃の間の温 度にてδが約0.1〜約1.0の数値を有する式L1Ba2Cu3O6+δを生 成するのに充分な量のL,Ba,Cu及びOを含有する化合物から得られた突固 められたソリッド質量体を焼結する段階;(b)予め加熱された室内のソリッド 質量体を前記質量体を部分的に溶融し分解するのに充分な時間にわたり約109 0℃〜1200℃の温度に加熱する段階; (c)質量体を約1020℃〜約1040℃の間の温度に急冷し次に大略1℃/ 時の割合にて質量体の融点を下廻わる約20℃〜40℃の間の安定温度に冷却す る段階; (d)質量体全体が固化するのに充分な時間にわたり再固化質量体を前記安定温 度に維持する段階;及び(e)所要量の酸素を質量体内に拡散させるのに充分な 時間にわたりその冷却された再固化質量体を酸素を含有する雰囲気内で焼鈍する 段階 から成る方法で生産される超電導組成物。 22.前記突固められたソリッド質量体が、(1)δを約0.1−約1.0の数 値とした式L1Ba2CU3O6+δを生ずるのに充分な量のL,Ba,Cu及 びOを含有するソリッド化合物を混合し; (2)ソリッド状態の化合物を反応させるのに充分な時間にわたりソリッド化合 物を約920℃〜約960Cの間の温度に加熱し;(3)ソリッド状態の反応生 成物を周囲温度に冷却し;及び(4)圧力を与えることにより混合物をソリッド 質量体に突固める ことにより得られる請求の範囲21項記載の方法。 23.段階(d)の再固化質量体が最初に前記安定温度から大略毎時60℃の割 合にて大略550℃〜650℃に冷却され:次に、付加的に毎時大略30℃の割 合にて約380℃〜約420℃に冷却される請求の範囲21項記載の方法。 24.前記再固化質量体が帯域あたり11時間〜13時間にわたり3個の別々の 分離した温度帯域内の酸素内で焼鈍される請求の範囲21項記載の方法。 25.前記再固化質量体の焼鈍が最初に約580℃〜約620℃の間の温度帯域 内で質量体を焼鈍し、第2に質量体を約480℃〜約520℃の間の温度帯域内 で焼鈍し、第3に質量体を約380℃〜約420℃の間の温度帯域内で焼鈍する ことを含む請求の範囲24項記載の組成物。 26.前記組成物の電流密度が77°K及びO磁場において単位cm2あたり7 0,000Aより大である請求の範囲21項記載の組成物。 27.Lをイツトリウムとする請求の範囲26項記載の組成物。 28.77°Kにおける前記組成物の電流密度が0.6T磁場の下で単位cm2 あたり37,000Aより大になっている請求の範囲21項記載の組成物。 29.大略8,000ガウスの外部適用磁場内に設置された際前記組成物のBt が1,000ガウス以上である請求の範囲21項記載の組成物。 30.Lをイツトリウムとする請求の範囲29項記載の組成物。 31.前記Btが1,200ガウス以上である請求の範囲30項記載の組成物。 32.前記Btが大略1,280ガウスである請求の範囲31項記載の組成物。 33.98GHzにおける大略60°K以下での前記組成物のa−b結晶学的基 礎面内の表面抵抗が6mΩ以下である請求の範囲21項記載の組成物。 34.Lをイツトリウムとする請求の範囲33項記載の組成物。 35.電気的抵抗ロスを伴なわずに導電体材料内に電流を導通する方法であって 、導電体材料として式L1Ba2Cu3O6+δの金属酸化物複合体を利用し、 Lを希土類元素とし、δが約0.1〜約1.0の数値を有し、更に、77°Kに おいて、前記組成物の電流密度がO磁場において70,000A/cm2より大 であり、電流密度が0.6T磁場の下で37,000A/cm2より大である段 階;前記金属酸化物複合体を前記金属酸化物複合体が超電導状態になる温度以下 の温度に冷却する段階; 前記金属酸化物複合体を超電導状態になる温度以下に維持する間前記金属酸化物 複合体内で電流を流し始める段階から成る方法。
JP02505834A 1989-02-10 1990-02-08 高臨界電流定方位粒化Y―Ba―Cu―O超電導体及びその製造方法 Expired - Fee Related JP3110451B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US309,382 1989-02-10
US07/309,382 US4956336A (en) 1989-02-10 1989-02-10 Oriented grained Y-Ba-Cu-O superconductors having high critical currents and method for producing same

Publications (2)

Publication Number Publication Date
JPH04504558A true JPH04504558A (ja) 1992-08-13
JP3110451B2 JP3110451B2 (ja) 2000-11-20

Family

ID=23198002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02505834A Expired - Fee Related JP3110451B2 (ja) 1989-02-10 1990-02-08 高臨界電流定方位粒化Y―Ba―Cu―O超電導体及びその製造方法

Country Status (8)

Country Link
US (1) US4956336A (ja)
EP (1) EP0457851B1 (ja)
JP (1) JP3110451B2 (ja)
AT (1) ATE132122T1 (ja)
AU (1) AU5417790A (ja)
CA (1) CA2048622A1 (ja)
DE (1) DE69024484T2 (ja)
WO (1) WO1990009344A1 (ja)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2651481B2 (ja) * 1987-09-21 1997-09-10 株式会社 半導体エネルギー研究所 超伝導材料の作製方法
US5278137A (en) * 1988-06-06 1994-01-11 Nippon Steel Corporation YBa2 Cu3 O7-y type oxide superconductive material containing dispersed Y2 BaCuO5 phase and having high critical current density
US5084436A (en) * 1989-01-31 1992-01-28 Asahi Glass Company Ltd. Oriented superconductor containing a dispersed non-superconducting phase
EP0385485A3 (en) * 1989-03-03 1991-01-16 Hitachi, Ltd. Oxide superconductor, superconducting wire and coil using the same, and method of production thereof
US5262391A (en) * 1989-05-02 1993-11-16 Nippon Steel Corporation Oxide superconductor and process for preparation thereof
DE3923845A1 (de) * 1989-07-19 1991-01-31 Hoechst Ag Dichte, supraleitende koerper mit textur
US5340794A (en) * 1989-08-02 1994-08-23 Her Majesty The Queen In Right Of New Zealand Flux pinning in superconducting cuprates
US7667562B1 (en) * 1990-02-20 2010-02-23 Roy Weinstein Magnetic field replicator and method
CA2038975C (en) * 1990-03-26 1997-01-07 Yasuko Torii Thallium oxide superconductor and method of preparing the same
US5077272A (en) * 1990-04-27 1991-12-31 Industrial Technology Research Institute Preparation method of bulk Y--Ba--Cu--O superconductors with high transport critical current density
JP2688455B2 (ja) * 1990-12-20 1997-12-10 財団法人国際超電導産業技術研究センター 希土類系酸化物超電導体及びその製造方法
JP2871258B2 (ja) * 1991-01-18 1999-03-17 日本碍子株式会社 酸化物超電導体及びその製造方法
KR100209580B1 (ko) * 1991-08-31 1999-07-15 이형도 이트륨계 초전도체의 제조방법
DE69224605T2 (de) * 1991-11-28 1998-11-05 Kyocera Corp Kupferoxid-Supraleiter, Verfahren zu seiner Herstellung und dabei verwendete Kupferverbindung
US5306700A (en) * 1992-09-01 1994-04-26 The Catholic University Of America Dense melt-based ceramic superconductors
DE4322533A1 (de) * 1993-07-07 1995-01-12 Leybold Durferrit Gmbh Verfahren zur Herstellung supraleitender Keramiken und die Kermiken selbst
DE4420322C2 (de) * 1994-06-13 1997-02-27 Dresden Ev Inst Festkoerper YBa¶2¶Cu¶3¶O¶X¶-Hochtemperatur-Supraleiter und Verfahren zu dessen Herstellung
US5776864A (en) * 1995-01-12 1998-07-07 The University Of Chicago Large single domain 123 material produced by seeding with single crystal rare earth barium copper oxide single crystals
US5747426A (en) * 1995-06-07 1998-05-05 Commonwealth Research Corporation High performance magnetic bearing systems using high temperature superconductors
US5846912A (en) * 1996-01-04 1998-12-08 Lockheed Martin Energy Systems, Inc. Method for preparation of textured YBa2 Cu3 Ox superconductor
US5885379A (en) * 1997-03-28 1999-03-23 The Landover Company Tempered powdered metallurgical construct and method
US6361598B1 (en) 2000-07-20 2002-03-26 The University Of Chicago Method for preparing high temperature superconductor
US6410487B1 (en) 2000-07-20 2002-06-25 The University Of Chicago Large area bulk superconductors
US7608785B2 (en) * 2004-04-27 2009-10-27 Superpower, Inc. System for transmitting current including magnetically decoupled superconducting conductors

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5157017A (en) * 1987-06-12 1992-10-20 At&T Bell Laboratories Method of fabricating a superconductive body
US4892861A (en) * 1987-08-14 1990-01-09 Aluminum Company Of America Liquid phase sintered superconducting cermet
AU598692B2 (en) * 1987-08-21 1990-06-28 Furukawa Electric Co. Ltd., The Method of manufacturing superconductive products
US4824826A (en) * 1987-09-10 1989-04-25 Iowa State University Research Foundation, Inc. Millimeter size single crystals of superconducting YBa2 Cu3 O.sub.
EP0310332A3 (en) * 1987-09-28 1990-11-14 Arch Development Corporation Preferential orientation of metal oxide superconducting materials
JP2822451B2 (ja) * 1988-06-02 1998-11-11 住友電気工業株式会社 超電導体の製造方法

Also Published As

Publication number Publication date
EP0457851A4 (en) 1991-12-27
ATE132122T1 (de) 1996-01-15
EP0457851A1 (en) 1991-11-27
DE69024484D1 (de) 1996-02-08
JP3110451B2 (ja) 2000-11-20
DE69024484T2 (de) 1996-07-25
CA2048622A1 (en) 1990-08-11
EP0457851B1 (en) 1995-12-27
WO1990009344A1 (en) 1990-08-23
AU5417790A (en) 1990-09-05
US4956336A (en) 1990-09-11

Similar Documents

Publication Publication Date Title
JPH04504558A (ja) 高臨界電流定方位粒化Y―Ba―Cu―O超電導体及びその製造方法
US5306697A (en) Oriented grained Y-Ba-Cu-O superconductors having high critical currents and method for producing same
EP0374263B1 (en) Oxide superconductive material and process for its production
JPH02133367A (ja) 配向した多結晶質超伝導体
US5306700A (en) Dense melt-based ceramic superconductors
US5508253A (en) REBa2 Cu3 O7-y type oxide superconductive material having high critical current density and process for preparation thereof
Chevalier et al. Superconducting and magnetic properties of ternary silicides in some rare earth-noble metal (Rh or Ir)-silicon systems
US5470821A (en) Superconductors having continuous ceramic and elemental metal matrices
US5270292A (en) Method for the formation of high temperature semiconductors
JPH06219736A (ja) 超電導体
JPH07115924B2 (ja) 酸化物超電導体の製造方法
US5981442A (en) Neodymium-barium-copper-oxide bulk superconductor and process for producing the same
US5736489A (en) Method of producing melt-processed polycrystalline YBa2 Cu3 O.sub.
JPH0751463B2 (ja) 酸化物超電導体の製造方法
US5401717A (en) Elongate bismuth system superconductor having aligned 2212 phase
JP3283691B2 (ja) 高ダンピング酸化物超伝導材料およびその製造方法
US5200387A (en) Superconducting materials of high density and crystalline structure produced from a mixture of YBa2 Cu3 O7-x and CuO
JP3159764B2 (ja) 希土類系超電導体の製造方法
JPH05503068A (ja) バナジウムをベースとした超伝導金属酸化物
JP2931446B2 (ja) 希土類系酸化物超電導体の製造方法
WO2003049208A2 (en) Magnesium diboride superconductors
Lanagan et al. SUPERCONDUCTING MATERIALS
JPH06183730A (ja) 酸化物超電導バルク材料の製造方法
Wu Some recent developments in high-temperature superconducting oxides: a work review
JPH05286718A (ja) 希土類元素を含む酸化物超電導体およびその製造方法

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees