JPH0448894B2 - - Google Patents

Info

Publication number
JPH0448894B2
JPH0448894B2 JP25636289A JP25636289A JPH0448894B2 JP H0448894 B2 JPH0448894 B2 JP H0448894B2 JP 25636289 A JP25636289 A JP 25636289A JP 25636289 A JP25636289 A JP 25636289A JP H0448894 B2 JPH0448894 B2 JP H0448894B2
Authority
JP
Japan
Prior art keywords
hardening material
unhardened
jet
retaining wall
injection pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP25636289A
Other languages
Japanese (ja)
Other versions
JPH03119219A (en
Inventor
Juji Kaneko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP25636289A priority Critical patent/JPH03119219A/en
Publication of JPH03119219A publication Critical patent/JPH03119219A/en
Publication of JPH0448894B2 publication Critical patent/JPH0448894B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、開削工事、シールド工事、建造物基
礎等に適用されるジエツトグラウト式地中擁壁造
成方法に関し、特に、施工断面積を減少させて、
工期の短縮と硬化材使用量の減少を図れるととも
に、硬化させた擁壁の一部分を掘削面に沿つては
つり取るはつり作業を省略できるようにしたジエ
ツトグラウト式地中擁壁造成方法に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for constructing a jet grout type underground retaining wall that is applied to excavation work, shield work, building foundations, etc. decrease,
This invention relates to a method for constructing a jet grout type underground retaining wall that can shorten the construction period and reduce the amount of hardened material used, as well as omit the chisel work of removing a part of the hardened retaining wall along the excavation surface.

<従来の技術> 一般に、砂質土、砂礫土、粘性土等の軟弱地盤
における基礎工事、掘削工事等に際しては、止水
や地盤強化をするため、土中に硬化材を注入して
硬化させる地盤改良が行われる。ジエツトグラウ
ト式地中擁壁造成方法は、このような地盤改良の
工法の一つであり、地中に円柱状の未硬化柱を連
続して造成することにより未硬化の擁壁を形成
し、この未硬化の擁壁を硬化させることにより地
中に擁壁を造成する工法であり、その代表的な工
法としてはJSG工法とコラムジエツト工法とが挙
げられる。
<Conventional technology> Generally, when performing foundation work or excavation work on soft ground such as sandy soil, gravelly soil, or clay soil, hardening materials are injected into the soil and hardened in order to stop water and strengthen the ground. Ground improvement will be carried out. The jet grout underground retaining wall construction method is one of these ground improvement methods, and it forms an unhardened retaining wall by continuously constructing unhardened cylindrical columns underground. , is a method of constructing a retaining wall underground by hardening this unhardened retaining wall, and representative construction methods include the JSG construction method and the column jet construction method.

JSG工法では、地上に注入管旋回・引上げ駆動
装置と硬化材超高圧供給装置とを設置し、硬化材
注入管の先端から超高圧水を噴射して縦穴を穿孔
しながら硬化材注入管を地中の目標深さまで挿入
し、硬化材超高圧供給装置お作動させて硬化材を
超高圧で硬化材注入管の管上部の硬化材入口から
圧入し、管下部の硬化材ノズルから管半径方向外
向きに吐出圧力が大気圧の200倍ないし700倍程度
の超高圧で連続的に噴出させるとともに、上記注
入管旋回・引上げ駆動装置を作動させて硬化材注
入管を一方向に旋回させながら引上げるという手
順が採られる。これにより、超高圧の硬化材によ
り構成されるジエツト噴流のエネルギーで地盤を
破壊して土中に空間を形成すると当時に、この空
間に地盤を改良するセメントミルク等の硬化材を
充填して未硬化柱が造成される。そして、多数の
未硬化柱を次々に横に連続させて形成することに
より地中に未硬化の擁壁が造成され、この未硬化
の擁壁を硬化させることにより地中に擁壁が構成
される。
In the JSG method, an injection pipe turning/lifting drive device and an ultra-high-pressure hardening material supply device are installed on the ground, and ultra-high pressure water is injected from the tip of the hardening material injection pipe to drill a vertical hole while moving the hardening material injection pipe to the ground. Insert the hardening material into the tube to the target depth, activate the hardening material ultra-high pressure supply device, press the hardening material into the hardening material injection pipe from the hardening material inlet at the upper part of the pipe, and force the hardening material into the hardening material injection pipe from the hardening material nozzle at the bottom of the pipe in the radial direction of the pipe. At the same time, the hardening material injection pipe is pulled up while being turned in one direction by continuously ejecting it at an extremely high pressure of about 200 to 700 times the atmospheric pressure, and the above-mentioned injection pipe turning/lifting drive device is activated. This procedure is adopted. This creates a space in the soil by destroying the ground with the energy of the jet stream made up of ultra-high pressure hardening material. At that time, this space is filled with hardening material such as cement milk to improve the ground. A hardened column is created. Then, an unhardened retaining wall is created underground by forming a large number of unhardened pillars horizontally one after another, and by hardening this unhardened retaining wall, an underground retaining wall is constructed. Ru.

コラムジエツトグラウト工法では、予めボーリ
ングマシン等によつて硬化材注入管を挿入する縦
穴を穿孔し、地上に注入管旋回・引上げ駆動装置
と硬化材超高圧供給装置とを設置した後、硬化材
注入管を縦穴に吊り下げて地中の目標深さまで挿
入し、超高圧水を硬化材注入管の管上部の超高圧
水入口から圧入し、管下部の超高圧水ノズルから
管半径方向外向きに連続的に噴出させるととも
に、硬化材を超高圧で硬化材注入管の管上部の硬
化材入口から圧入し、管下部の高圧水ノズルより
も下方に設けた硬化材ノズルから管半径方向へ連
続的に噴出させる一方、上記硬化材注入管を旋回
させながら引上げるという手順が採られる。これ
により、超高圧水ノズルから地中に硬化材注入管
の径方向外向きに超高圧で連続的に超高圧水が噴
出され、超高圧水噴流が旋回しながら引上げられ
て行くにつれて、超高圧水噴流の噴出力で硬化材
注入管の周囲の地盤をほぼ円筒形に切削して空間
が形成されるとともに、硬化材を硬化材ノズルか
ら管半径方向外向きへ連続的に噴出させてその空
間に充填して未硬化柱が造成される。そして、多
数の未硬化柱を次々に横に連続させて形成するこ
とにより地中に未硬化の擁壁が造成され、この未
硬化の擁壁を硬化させることにより地中に擁壁が
構成される。
In the column jet grouting method, a vertical hole is drilled in advance using a boring machine or the like into which a hardening material injection pipe is inserted, and a driving device for turning and lifting the injection pipe and a hardening material ultra-high pressure supply device are installed on the ground. The injection pipe is suspended in a vertical hole and inserted to the target depth underground, and ultra-high pressure water is injected from the ultra-high pressure water inlet at the top of the hardening material injection pipe, and from the ultra-high pressure water nozzle at the bottom of the pipe, the water is directed outward in the radial direction of the pipe. At the same time, the hardening material is injected under ultra-high pressure from the hardening material inlet at the top of the hardening material injection pipe, and continuously in the radial direction of the pipe from the hardening material nozzle located below the high-pressure water nozzle at the bottom of the pipe. A procedure is adopted in which the hardening material injection tube is pulled up while being spun while the hardening material is spouted out. As a result, ultra-high pressure water is continuously jetted from the ultra-high pressure water nozzle into the ground in the radial direction outward of the hardening material injection pipe, and as the ultra-high pressure water jet is drawn up while swirling, the ultra-high pressure The jet force of the water jet cuts the ground around the hardening material injection pipe into a nearly cylindrical shape to form a space, and the hardening material is continuously jetted outward in the radial direction of the pipe from the hardening material nozzle to create the space. An unhardened column is created by filling the column. An unhardened retaining wall is created underground by forming a large number of unhardened pillars horizontally one after another, and a retaining wall is constructed underground by hardening this unhardened retaining wall. Ru.

<発明が解決しようとする課題> これらの従来のジエツトグラウト式地中擁壁造
成方法では、各未硬化柱は縦軸の円柱形に形成さ
れるので、その直径を必要とする平均擁壁厚さよ
りも大きく設定する必要がある。このため、施工
断面積が大きくなつて、工期が長くなり、また、
硬化材の使用量も多くなるという問題が生じる。
<Problems to be Solved by the Invention> In these conventional jet grouting underground retaining wall construction methods, each unhardened column is formed into a cylindrical shape with a vertical axis. It needs to be set larger than the thickness. For this reason, the construction cross-sectional area becomes larger, the construction period becomes longer, and
A problem arises in that the amount of hardening material used also increases.

また、例えば深礎の補強擁壁を形成する場合に
は、第4図に仮想線で示すように、硬化材注入管
を地中に打ち込む位置を結ぶピツチ円P1の直径
D1を深礎の直径Dよりも大きくする必要がある
ので、硬化材注入管を深礎の周面に沿つて硬化材
注入管が挿入される場合に比べるとより多数の未
硬化柱を造成する必要が生じ、工期が一層長くな
り、硬化材使用量が一層多くなるという問題が生
じる。
For example, when forming a reinforced retaining wall for a deep foundation, the diameter of the pitch circle P1 connecting the position where the hardening material injection pipe is driven into the ground, as shown by the imaginary line in Figure 4, is
Since D1 needs to be larger than the diameter D of the deep foundation, a larger number of unhardened columns are created compared to the case where the hardening material injection pipe is inserted along the circumference of the deep foundation. This creates the problem that the construction period becomes longer and the amount of hardening material used increases.

また、未硬化柱13′の直径d1を必要とする平
均擁壁圧さよりも大きく設定する必要があるた
め、擁壁を隣地との境界一杯まで造成する場合に
は、擁壁の内法線が境界から大きく内側に設定さ
れ、建造物の建坪が狭く制限されるという問題も
ある。
In addition, since the diameter d1 of the unhardened columns 13' needs to be set larger than the required average retaining wall pressure, if the retaining wall is built all the way to the boundary with the adjacent land, the inner normal of the retaining wall There is also the problem that the building is set far inward from the boundary, which limits the building's floor space.

また、建造物の建坪を広く取るために、硬化後
に、擁壁を掘削面まではつり取る場合には、この
はつり作業のために多大の労力と時間を費やす必
要があり、工期の短縮及びコストダウンを図る上
で一層不利になるという問題もある。
In addition, in order to increase the floor space of a building, when the retaining wall is lifted up to the excavation surface after hardening, it is necessary to spend a great deal of labor and time on this lifting work, which shortens the construction period and reduces costs. There is also the problem that it becomes even more disadvantageous when trying to achieve this goal.

更に、特にJSG工法においては、硬化材ジエツ
トの噴出反力によつて地中で硬化材注入管が撓ん
で硬化材ジエツトの噴出方向が地中の深ければ深
いほど大きく傾斜し、未硬化柱が下端に近付く程
小径に造成されるという問題もある。
Furthermore, especially in the JSG method, the hardened material injection pipe is bent underground due to the reaction force of the jet of hardened material, and the jetting direction of the hardened material becomes more inclined as it goes deeper into the ground, causing the unhardened pillars to become more inclined. Another problem is that the closer you get to the bottom, the smaller the diameter is.

加えて、特にJSG工法においては、硬化材ジエ
ツトの噴出反力によつて地中で硬化材注入管が撓
み、その回転抵抗が増大して駆動効率が低下する
という問題もある。
In addition, particularly in the JSG method, there is a problem in that the hardening material injection pipe is bent underground due to the reaction force of the jet of hardening material, increasing its rotational resistance and reducing drive efficiency.

本発明は、上記の事情を考慮してなされたもの
であり、擁壁施工断面積を半減して、工期の短縮
と硬化材の使用量の減少を図ることができ、ま
た、深礎補強工等の閉じられた擁壁を形成する場
合には造成される未硬化柱の本数を減少させて一
層工期の短縮と硬化材の使用量の減少を図ること
ができ、更に、形成された擁壁の厚さを薄くして
建坪を大きくとれ、しかも、形成された擁壁の少
なくとも片面をほぼ平面あるいは掘削面に沿う屈
曲面に形成してはつり作業を省略できるようにし
た、ジエツトグラウト式地中擁壁造成方法を提供
することを目的とする。
The present invention has been made in consideration of the above circumstances, and it is possible to reduce the construction cross-sectional area of retaining walls by half, shorten the construction period and reduce the amount of hardened material used. When forming closed retaining walls such as A jet grout type site that allows for a large floor area by reducing the thickness of the retaining wall, and also makes it possible to omit chisel work by forming at least one side of the formed retaining wall into a substantially flat surface or a curved surface along the excavation surface. The purpose of this paper is to provide a method for constructing a retaining wall.

<課題を解決するための手段> 本発明は、例えば第1図aないしe、あるい
は、第7図aないしfに示すように、地上に注入
管旋回・引上げ駆動装置1と硬化材超高圧供給装
置2とを設置し、 硬化剤注入管5を地表GLから地中の目標深さ
まで挿入し、 硬化材超高圧供給装置2を作動させて、硬化材
Gを超高圧で硬化材注入管5の管上部の硬化材入
口6aから圧入し、管下部の硬化材ノズル7eか
ら管半径方向へ連続的に噴出させるとともに、 注入管旋回・引上げ駆動装置1を作動させて、
硬化材注入管5を旋回駆動しながら引上げ駆動す
ることにより地中で硬化材ノズル7eから管半径
方向へ超高圧で連続的に噴出する硬化材噴流12
を旋回させながら引上げて行き、硬化材噴流12
の噴出力でその周囲の地盤を切削するとともに、
その切削領域11に硬化材Gを注入してその切削
領域11に未硬化柱13を造成し、 多数本の未硬化柱13を互いに横に並べて連続
させて未硬化の擁壁14を造成し、 未硬化の擁壁14が硬化することにより地中に
擁壁14を造成するという手順からなるジエツト
グラウト式地中擁壁造成方法を前提として、上記
の目的を達成するため、次のような手段を構じて
いる。
<Means for Solving the Problems> As shown in FIGS. 1a to 1e or 7a to 7f, for example, the present invention provides an injection tube turning/pulling drive device 1 and an ultra-high pressure supply of hardening material on the ground. The hardening agent injection pipe 5 is inserted from the ground surface GL to the target depth underground, and the hardening material ultra-high pressure supply device 2 is activated to feed the hardening material G into the hardening material injection pipe 5 at ultra-high pressure. The hardening material is press-fitted from the hardening material inlet 6a at the top of the pipe, and is continuously ejected from the hardening material nozzle 7e at the bottom of the pipe in the radial direction of the pipe, and the injection pipe turning/lifting drive device 1 is operated.
By pulling up the hardening material injection pipe 5 while rotating it, a hardening material jet stream 12 is continuously ejected underground from the hardening material nozzle 7e in the radial direction of the pipe at an extremely high pressure.
is pulled up while swirling, and the hardening material jet 12
In addition to cutting the surrounding ground with the jet force of
A hardening material G is injected into the cutting area 11 to create unhardened pillars 13 in the cutting area 11, and a large number of unhardened pillars 13 are arranged side by side and continuous to create an unhardened retaining wall 14. In order to achieve the above objective, the following steps are taken as a premise of the jet grout type underground retaining wall construction method, which consists of the steps of constructing the retaining wall 14 underground by hardening the unhardened retaining wall 14. I have the means.

すなわち、注入管旋回・引上げ駆動装置1で硬
化剤注入管5を旋回駆動しながら引上げ駆動する
管旋回引上げ工程において、硬化剤注入管5が約
半回転の角度範囲を往復して旋回駆動されること
を繰り返すことにより切削領域11に造成される
未硬化柱13の断面形状をほぼ半月形に形成し、 多数本の未硬化柱13を互いに横に並べて連続
させて未硬化の擁壁14を造成して行く未硬化擁
壁造成工程において、断面ほぼ半月形の多数本の
未硬化柱13は、その断面形状の長手方向を未硬
化柱13が連続する方向にほぼ沿わせて造成す
る。
That is, in the tube turning and pulling process in which the injection tube turning and lifting drive device 1 drives and pulls up the hardening agent injection tube 5, the hardening agent injection tube 5 is driven to turn back and forth through an angular range of approximately half a rotation. By repeating this, the cross-sectional shape of the unhardened pillars 13 created in the cutting area 11 is formed into a substantially half-moon shape, and the unhardened retaining wall 14 is created by arranging a large number of unhardened pillars 13 horizontally and consecutively. In the unhardened retaining wall construction process, a large number of unhardened pillars 13 having a substantially half-moon cross section are created so that the longitudinal direction of the cross-sectional shape is substantially along the direction in which the unhardened pillars 13 continue.

<作用> 本発明においては、管旋回引上げ工程におい
て、硬化材注入管5を約半回転の角度範囲を往復
して旋回させることを繰り返すことにより切削領
域11に造成される未硬化柱13の断面形状をほ
ぼ半円形に形成するので、断面形状が円形の従来
例に比べると施工断面積を最大限半分に減少させ
ることができる。また、未硬化柱13の断面形状
がほぼ半円形に形成され、未硬化柱13が、その
断面形状の長手方向を未硬化柱13が連続する方
向にほぼ沿わせて造成されるので、擁壁14の厚
さを薄くすることができる。更に、未硬化柱13
のほぼ平面の部分を未硬化柱13が連続する方向
に沿うように配置することより、擁壁14の少な
くとも片面をほぼ平面に形成することができる。
<Function> In the present invention, in the tube turning and pulling process, the cross section of the unhardened column 13 created in the cutting area 11 is improved by repeatedly turning the hardening material injection tube 5 back and forth through an angular range of approximately half a rotation. Since the shape is formed into a substantially semicircular shape, the construction cross-sectional area can be reduced to half as much as possible compared to the conventional example where the cross-sectional shape is circular. Further, since the cross-sectional shape of the unhardened pillars 13 is formed into a substantially semicircular shape, and the unhardened pillars 13 are constructed with the longitudinal direction of the cross-sectional shape substantially along the direction in which the unhardened pillars 13 continue, the retaining wall 14 can be made thinner. Furthermore, unhardened pillar 13
By arranging the substantially planar portion of the retaining wall 14 along the direction in which the uncured pillars 13 continue, at least one side of the retaining wall 14 can be formed into a substantially planar surface.

<実施例> 以下、本発明の実施例を図面に基づき説明す
る。
<Example> Hereinafter, an example of the present invention will be described based on the drawings.

第1図aないしeは本発明の一実施例に係る深
礎補強擁壁の未硬化柱の造成方法の手順を順に示
す説明図である。
FIGS. 1A to 1E are explanatory diagrams sequentially showing the steps of a method for creating unhardened columns of a deep foundation reinforced retaining wall according to an embodiment of the present invention.

この実施例では、同図aに示す据付工程、同図
bに示す穿孔工程、同図cに示すテスト工程、同
図dに示す造成工程および同図eに示す引き抜き
洗浄工程が順に行われる。
In this embodiment, the installation process shown in FIG. 1A, the drilling process shown in FIG. 1B, the test process shown in FIG.

まず、据付工程では、第1図aに示すように、
所定の施工位置にジエツトグラウト式地中擁壁造
成装置Mが設置される。
First, in the installation process, as shown in Figure 1a,
A jet grout underground retaining wall construction device M is installed at a predetermined construction location.

このジエツトグラウト式地中擁壁造成装置M
は、注入管旋回・昇降駆動装置1、硬化材超高圧
供給装置2、超高圧水供給装置3及び圧縮空気供
給装置4と、注入管旋回・昇降駆動装置1に支持
させた二重管からなる硬化剤注入管5とを備え
る。また、硬化材注入管5の上端部には硬化材超
高圧供給装置2、超高圧水供給装置3及び圧縮空
気供給装置4と硬化剤注入管5とを接続するスイ
ベル6が接続され、下端部にはモニター機構7が
接続される。
This jet grout type underground retaining wall construction device M
consists of an injection tube rotation/elevating drive device 1, a curing material ultra-high pressure supply device 2, an ultra-high pressure water supply device 3, a compressed air supply device 4, and a double pipe supported by the injection tube rotation/elevation drive device 1. A curing agent injection pipe 5 is provided. A swivel 6 is connected to the upper end of the hardening material injection pipe 5 and connects the hardening material injection pipe 5 with the hardening material ultra-high pressure supply device 2, ultra-high pressure water supply device 3, and compressed air supply device 4. A monitor mechanism 7 is connected to.

第2図に示すように、上記スイベル6は、その
上部の周面に開口したジエツト入口6aと、ジエ
ツト入口6aから中心部に延び、更に軸心に沿つ
て下端面まで連通するジエツト通路6bと、中間
高さ部の周面に開口したエア入口6cと、エア通
路6dとを備えている。このエア通路6dは、上
端部でエア入口6cに連通され、ジエツト通路6
bの軸心に沿う部分の周囲にジエツト通路6bか
ら独立した同心環状に形成される。
As shown in FIG. 2, the swivel 6 has a jet inlet 6a that opens on its upper circumferential surface, and a jet passage 6b that extends from the jet inlet 6a to the center and communicates with the lower end surface along the axis. , an air inlet 6c opened on the circumferential surface of the intermediate height portion, and an air passage 6d. This air passage 6d is communicated with the air inlet 6c at the upper end, and is connected to the air inlet 6c at the upper end.
It is formed in a concentric ring shape independent from the jet passage 6b around a portion along the axis of the jet passage 6b.

第3図に示すように、上記モニター機構7は、
中心部を上下に貫通するジエツト通路7aと、ジ
エツト通路7aの下端部に形成した超高圧水ノズ
ル7b、超高圧水ノズル7bの入口に設けた逆止
弁7c及びその上流側のボール弁座7dと、ジエ
ツト通路7aの中間部に接続され、径方向外向き
に開口する硬化材ノズル7eと、硬化材ノズル7
eの周囲から径方向外向きにエアを噴出するエア
ノズル7fと、ジエツト通路7aの周囲に形成さ
れ、モニター機構7の上端からエアノズル7fに
連通するエア通路7gとを備えている。また、モ
ニター機構7の外周面には硬化剤ノズル7e及び
エアノズル7fよりも下方で外径方向に噴射状に
突出する羽根ビツト8が設けられる。
As shown in FIG. 3, the monitor mechanism 7 includes:
A jet passage 7a passing through the center vertically, an ultra-high pressure water nozzle 7b formed at the lower end of the jet passage 7a, a check valve 7c provided at the entrance of the ultra-high pressure water nozzle 7b, and a ball valve seat 7d on the upstream side thereof. , a hardening material nozzle 7e connected to an intermediate portion of the jet passage 7a and opening radially outward; and a hardening material nozzle 7e.
The monitor mechanism 7 includes an air nozzle 7f that spouts air radially outward from the periphery of the monitor mechanism 7, and an air passage 7g that is formed around the jet passage 7a and communicates with the air nozzle 7f from the upper end of the monitor mechanism 7. Further, on the outer circumferential surface of the monitor mechanism 7, a blade bit 8 is provided which projects downwardly from the curing agent nozzle 7e and the air nozzle 7f in a jet shape in the outer radial direction.

次の穿孔工程では、縦孔掘削工程と注入管挿入
工程とが並行して行われる。即ち、第1図bに示
すように、所定の施工位置(ここでは、ほぼ深礎
の周縁上)に硬化材注入管5を垂直に立て、スイ
ベル6のジエツト入口6aに超高圧水供給装置3
を接続し、約200〜400気圧の超高圧水噴流Wをモ
ニター機構7の超高圧水ノズル7bから下向きに
噴出して地山に穴を明けながら、注入管旋回・昇
降駆動装置1で注入管旋回・昇降駆動装置1を作
動させて硬化剤注入管5を地質条件に応じて選定
された回転速度で旋回させながら地質条件に応じ
て選定されたストローク速度で下降させて縦孔9
を削孔するとともに、硬化材注入管5を地中の所
定の深さまで挿入する。
In the next drilling process, a vertical hole drilling process and an injection pipe insertion process are performed in parallel. That is, as shown in FIG. 1b, the hardening material injection pipe 5 is vertically erected at a predetermined construction position (here, approximately on the periphery of the deep foundation), and the ultra-high pressure water supply device 3 is connected to the jet inlet 6a of the swivel 6.
is connected, and an ultra-high pressure water jet W of about 200 to 400 atmospheres is ejected downward from the ultra-high pressure water nozzle 7b of the monitor mechanism 7 to make a hole in the ground, while the injection tube is rotated by the injection tube turning/lifting drive device 1. The turning/elevating drive device 1 is operated to rotate the curing agent injection pipe 5 at a rotation speed selected according to the geological conditions and lower it at a stroke speed selected according to the geological conditions.
At the same time, the hardening material injection pipe 5 is inserted into the ground to a predetermined depth.

計画深度まで縦孔9が削孔され、硬化材注入管
5が地中の所の深さまで挿入されると、噴射テス
ト工程が行われる。噴射テスト工程では、まず、
ジエツト入口6aからスチールボール10を投入
して、ボール弁座7dを閉じる(第3図参照)。
When the vertical hole 9 is drilled to the planned depth and the hardening material injection pipe 5 is inserted to the depth underground, an injection test process is performed. In the injection test process, first,
A steel ball 10 is introduced through the jet inlet 6a, and the ball valve seat 7d is closed (see FIG. 3).

この後、第1図cに示すように、スイベル6の
ジエツト入口6aに硬化材超高圧供給装置2を接
続するとともに、エア入口6cに圧縮空気供給装
置4を接続し、注入管旋回・昇降駆動装置1を作
動させて、硬化剤注入管5を試行的に設定された
回転速度で、深礎の周縁の接線から外側で約半回
転の角度範囲を往復して旋回駆動することを繰り
返すとともに、試行的に設定された上昇ストロー
ク速度で上昇させて噴射テストを行う。
After that, as shown in FIG. 1c, the hardening material ultra-high pressure supply device 2 is connected to the jet inlet 6a of the swivel 6, and the compressed air supply device 4 is connected to the air inlet 6c, and the injection tube is rotated and raised/lowered. Activate the device 1 and repeat driving the curing agent injection pipe 5 in a reciprocating manner at a trially set rotational speed through an angular range of approximately half a rotation outward from the tangent to the periphery of the deep foundation; Perform an injection test by increasing the rising stroke speed set on a trial basis.

噴射テスト工程においては、縦孔9の上端から
排出される排泥量によつて所定の切削領域11を
形成するに必要な範囲にわたつて切削が行われて
いるか否かを判定し、最適の旋回速度とストロー
ク速度とが設定される。
In the injection test process, it is determined based on the amount of sludge discharged from the upper end of the vertical hole 9 whether cutting has been performed over the range necessary to form the predetermined cutting area 11, and the optimum cutting area is determined. A turning speed and a stroke speed are set.

噴射テスト工程において、最適の旋回速度とス
トローク速度とが設定されると、造成工程に移行
する。
In the injection test process, when the optimum rotation speed and stroke speed are set, the process moves to the creation process.

造成工程は、モニター機構7の硬化材ノズル7
eから硬化材を超高圧で噴出して地山を所定の切
削領域11にわたつて粉砕するとともに、その切
削領域11に硬化材を充填する硬化材噴出工程
と、硬化材注入管5を設定された旋回速度で旋回
させながら引き上げる旋回引上げ工程とが並行し
て行われる。
In the creation process, the hardening material nozzle 7 of the monitor mechanism 7
A hardening material injection step is set in which hardening material is jetted out at ultra-high pressure from e to crush the ground over a predetermined cutting area 11, and the hardening material is filled into the cutting area 11, and a hardening material injection pipe 5 is set. A turning and pulling-up process is performed in parallel, in which the object is pulled up while being turned at a turning speed.

即ち、第1図dに示すように、硬化材噴出工程
では、硬化材超高圧供給装置2から例えば200〜
400気圧の高圧で硬化材Gをジエツト入口6aに
供給し、硬化材ノズル7eから土中に径方向外向
きに噴出させるとともに、圧縮空気供給装置4か
らエア入口6cに超高圧空気を供給し、エアノズ
ル7fから硬化材ジエツト12の周囲に径方向外
向きに噴出させる。ここで、超高圧空気の噴出は
本発明に必須のことではないが、硬化材の周囲か
ら同時に超高圧空気を噴出させることにより、硬
化材の到達距離が飛躍的に大きくなることが知ら
れている。
That is, as shown in FIG. 1d, in the hardening material jetting step, for example, 20
The hardening material G is supplied to the jet inlet 6a at a high pressure of 400 atmospheres, and is jetted radially outward into the soil from the hardening material nozzle 7e, while ultra-high pressure air is supplied from the compressed air supply device 4 to the air inlet 6c, The hardening material is jetted radially outward around the hardening material jet 12 from the air nozzle 7f. Although jetting out ultra-high pressure air is not essential to the present invention, it is known that by jetting out ultra-high pressure air from around the hardening material at the same time, the reach of the hardening material can be dramatically increased. There is.

この硬化材噴出工程を行いながら、注入管旋
回・昇降駆動装置1を作動させることにより硬化
剤注入管5を所定の旋回速度で、深礎の周縁の接
線から外側で約半回転の角度範囲を往復して旋回
させることを繰り返し、かつ、所定のストローク
速度で引上げる。これにより、硬化材注入管5か
ら噴出される硬化材噴流12が、約半回転の角度
範囲を往復して旋回しながら引き上げられ、第4
図に示すように、モニター機構7の周囲の地山を
深礎の周縁に平面部が外接する半円筒状の所定の
切削領域11にわたつて破砕し、かつ、その切削
領域11に硬化材Gが充填される。破砕された地
山の泥醤は硬化剤ノズル7eから噴出する硬化材
によつて縦孔9を通つて地上に押し出される。そ
して、この切削領域11に硬化材Gが充填される
ことにより、土中に未硬化柱13が造成される。
While performing this hardening material spouting process, the hardening agent injection pipe 5 is rotated at a predetermined turning speed by operating the injection pipe turning/elevating drive device 1 to rotate the hardening agent injection pipe 5 in an angular range of approximately half a turn outward from the tangent to the periphery of the deep foundation. Repeat reciprocating and turning, and pull up at a predetermined stroke speed. As a result, the hardening material jet 12 ejected from the hardening material injection pipe 5 is pulled up while reciprocating in an angular range of approximately half a rotation, and the fourth
As shown in the figure, the ground around the monitor mechanism 7 is crushed over a predetermined semi-cylindrical cutting area 11 whose plane part circumscribes the periphery of the deep foundation, and hardened material G is applied to the cutting area 11. is filled. The mud from the crushed earth is pushed out to the ground through the vertical hole 9 by the hardening material jetted from the hardening agent nozzle 7e. Then, by filling the cutting region 11 with the hardening material G, unhardened pillars 13 are created in the soil.

1つの未硬化柱13の造成が完了すると第1図
eに示すように、引き抜き洗浄工程が行われ、硬
化剤注入管5を地上に引き抜き、管内を清水で洗
浄する。この後、次の造成地点に移動し、同様の
手順で土中にほぼ円柱形の未硬化柱13を造成す
る。
When the construction of one unhardened column 13 is completed, as shown in FIG. 1e, a pulling and cleaning step is performed, in which the hardening agent injection pipe 5 is pulled out above ground and the inside of the pipe is washed with fresh water. Thereafter, move to the next creation point and create approximately cylindrical unhardened pillars 13 in the soil using the same procedure.

造成地点は、第4図に示すように、深礎16の
外周円P上で、土中に形成した多数本の未硬化柱
13の一部分どうしが順に互いにオーバラツプす
るように横に並べて連続するように設定される。
各未硬化柱13は、深礎の周縁に平面部が外接す
る半円筒状に形成されているので、この連続する
未硬化柱13によつて形成される未硬化の擁壁1
4は、内周面が深礎16に接する多角形状に屈曲
する筒状に造成される。そして、この未硬化の擁
壁14を硬化させることにより地中に擁壁14が
造成され、この後、擁壁14の内側の地山が掘削
される。
As shown in Fig. 4, the construction point is such that on the outer circumferential circle P of the deep foundation 16, parts of a large number of unhardened pillars 13 formed in the soil are successively arranged horizontally so as to overlap with each other. is set to
Since each unhardened pillar 13 is formed in a semi-cylindrical shape with a flat part circumscribing the periphery of the deep foundation, the unhardened retaining wall 1 formed by the continuous unhardened pillars 13
4 is formed into a cylindrical shape whose inner peripheral surface is bent into a polygonal shape and is in contact with the deep foundation 16. Then, the retaining wall 14 is created underground by hardening this unhardened retaining wall 14, and then the ground inside the retaining wall 14 is excavated.

この実施例においては、各未硬化柱13の断面
形状がほぼ半円形に形成されるので、断面形状が
円形の従来例に比べると施工断面積を半分に減少
させることができ、工期を短縮できるとともに、
硬化材Gの使用量を半減させることができる。
In this embodiment, since the cross-sectional shape of each uncured column 13 is formed into a substantially semicircular shape, the construction cross-sectional area can be reduced by half compared to the conventional example where the cross-sectional shape is circular, and the construction period can be shortened. With,
The amount of hardening material G used can be halved.

また、各未硬化柱13の造成に当たり、硬化材
柱入管5の挿入地点がほぼ深礎16の周縁上に設
定されるので、第4図に仮想線で示された円柱状
の未硬化柱13′を造成する場合に比べると硬化
材注入管5の挿入地点を結ぶピツチ中心円Pの径
及び周長が短くなり、未硬化柱13の造成本数を
少なくできる。したがつて、一層工期を短縮でき
るとともに、一層硬化材Gの使用量を減少させる
ことができる。
In addition, when creating each unhardened column 13, the insertion point of the hardened material column entry pipe 5 is set approximately on the periphery of the deep foundation 16, so that the cylindrical unhardened column 13 shown by the imaginary line in FIG. The diameter and circumference of the pitch center circle P connecting the insertion points of the hardening material injection pipes 5 are shorter than in the case where the hardening material injection pipe 5 is inserted, and the number of unhardened pillars 13 to be created can be reduced. Therefore, the construction period can be further shortened, and the amount of hardening material G used can be further reduced.

また、断面形状がほぼ半円形に形成され、未硬
化柱13が、その断面形状の長手方向を未硬化柱
13が連続する方向にほぼ沿わせて造成されるの
で、擁壁14の厚さを薄くすることができ、擁壁
14の造成用地内に形成される深礎16の断面積
を大きくすることができ、用地をより有効に利用
できる。
In addition, since the cross-sectional shape is approximately semicircular and the unhardened pillars 13 are constructed with the longitudinal direction of the cross-sectional shape substantially along the direction in which the unhardened pillars 13 continue, the thickness of the retaining wall 14 can be reduced. It can be made thinner, the cross-sectional area of the deep foundation 16 formed within the land for constructing the retaining wall 14 can be increased, and the land can be used more effectively.

更に、未硬化柱13のほぼ平面の部分を未硬化
柱13が連続する方向、すなわち、深礎16の周
縁に沿うように配置することにより、擁壁14の
内周面をほぼ平面が多角形状に順に接続した形状
に形成され、しかも、地層の変化や吐出圧の変動
により凹凸が生じる未硬化柱13の外周部が擁壁
14の内周面では互いに隣接する未硬化柱13の
外周部とオーバーラツプしているので、造成され
た擁壁14の内周面をはつり取る必要がなくな
る。この結果、はつり作業を省略して大幅に工期
を短縮できるとともに、多大の労力を節約するこ
とができる。
Furthermore, by arranging the substantially flat portions of the unhardened pillars 13 in the direction in which the unhardened pillars 13 continue, that is, along the periphery of the deep foundation 16, the inner circumferential surface of the retaining wall 14 has a substantially planar polygonal shape. In addition, the outer periphery of each unhardened column 13 is connected to the outer periphery of the adjacent unhardened columns 13 on the inner peripheral surface of the retaining wall 14, and the outer periphery of each unhardened column 13 is formed in a shape connected to the other unhardened columns 13 in order, and is uneven due to changes in the strata or fluctuations in discharge pressure. Since they overlap, there is no need to cut out the inner peripheral surface of the constructed retaining wall 14. As a result, the chisel work can be omitted, significantly shortening the construction period, and a great deal of labor can be saved.

本発明は例えば親杭横矢板補強用擁壁の造成に
も適応することができる。この場合、例えば第5
図に示すように、多数本の未硬化柱13のうちの
隣合う各未硬化柱13の断面の向きが同じ向きに
なるように造成することも可能であり、また、例
えば第6図に示すように、多数本の未硬化柱13
のうちの隣合う各未硬化柱13の断面の向きが互
いに逆向きになるように造成することも可能であ
る。
The present invention can be applied, for example, to the construction of retaining walls for reinforcing main pile side piles. In this case, for example, the fifth
As shown in the figure, it is also possible to create a structure in which the cross-sectional directions of adjacent unhardened pillars 13 out of a large number of unhardened pillars 13 are in the same direction, and for example, as shown in FIG. As shown, a large number of unhardened columns 13
It is also possible to create such that the cross-sectional directions of adjacent uncured pillars 13 are opposite to each other.

第7図aないしeは本発明の他の実施例に係る
深礎補強擁壁の未硬化柱の造成方法の手順を順に
示す説明図である。。
FIGS. 7a to 7e are explanatory diagrams sequentially showing the steps of a method for creating unhardened columns of a deep foundation reinforced retaining wall according to another embodiment of the present invention. .

この実施例において使用される硬化材注入管5
は第10図に示すように3重管で構成され、その
上端に接続されるスイベル6は、第8図に示すよ
その上部の周面に開口した超高圧水・硬化材兼用
のジエツト入口6aと、ジエツト入口6aから中
心部に延び、更に軸心に沿つて下端面まで連通す
るジエツト通路6bと、下部の周面に開口したエ
ア入口6cと、中間高さ部の周面に形成した超高
圧水入口6eと、超高圧水通路6fと、エア通路
6dとを備えている。超高圧水通路6fは、ジエ
ツト通路6bの周囲にこれから独立して形成され
た環状の通路であり、その上端部は超高圧水入口
6eに連通される。また、エア通路6dは、超高
圧水通路6fの更に外側にジエツト通路6b及び
超高圧水通路6fとは独立した環状の通路として
形成され、その上端部でエア入口6cに連通され
ている。
Hardening material injection pipe 5 used in this example
As shown in FIG. 10, the swivel 6 is composed of a triple pipe, and the swivel 6 connected to the upper end is connected to a jet inlet 6a for both ultra-high pressure water and curing material, which is opened on the upper circumferential surface as shown in FIG. A jet passage 6b extends from the jet inlet 6a to the center and communicates with the lower end surface along the axis, an air inlet 6c opens on the lower circumferential surface, and an air inlet 6c formed on the circumferential surface of the intermediate height section. It includes a high-pressure water inlet 6e, an ultra-high-pressure water passage 6f, and an air passage 6d. The ultra-high pressure water passage 6f is an annular passage formed around and independently of the jet passage 6b, and its upper end communicates with the ultra-high pressure water inlet 6e. The air passage 6d is formed further outside the ultra-high pressure water passage 6f as an annular passage independent of the jet passage 6b and the ultra-high pressure water passage 6f, and communicates with the air inlet 6c at its upper end.

また、硬化材注入管5の下端に接続されるモニ
ター機構7は、例えば第9図に示すように、中心
部を上下に貫通する超高圧水・硬化材兼用のジエ
ツト通路7aと、ジエツト通路7aの下端部に形
成した超高圧水ノズル7b、超高圧水ノズル7b
の入口に設けた逆止弁7c及びその上流側のボー
ル弁座7dと、モニター機構7の下部の周面に径
方向外向きに開口され、ジエツト通路7aにボー
ル弁座7dよりも上流側で連通する硬化材ノズル
7eと、硬化材ノズル7eの周囲から径方向外向
きにエアを噴出するエアノズル7fと、硬化材ノ
ズル7eよりも高位置で、モニター機構7の下部
の周面に硬化材ノズル7eの開口方向と反対向き
に開口された超高圧水用のジエツトノズル7h
と、ジエツト通路7aの周囲にこれとは独立の環
状通路として形成され、下端でジエツトノズル7
hに連通させた超高圧水通路7iと、ジエツト通
路7a及び超高圧水通路7iの周囲にこれらとは
独立の環状の通路として形成され、その下端部が
エアノズル7fに連通するエア通路7gとを備え
ている。なお、上記スイベル6、硬化材注入管5
及びモニター機構7は、その回転位相を確認し易
くするため、例えば第10図に示す硬化材注入管
5のように、その横断面の輪郭を多角形(ここで
は6角形)に形成してある。第10図において、
5aは超高圧水・硬化材兼用のジエツト通路、5
bは内周壁、5cは超高圧水通路、5dは中間
壁、5eはエア通路、5fは外周壁である。
In addition, the monitor mechanism 7 connected to the lower end of the hardening material injection pipe 5 has a jet passage 7a for both ultra-high pressure water and hardening material that passes vertically through the center, and a jet passage 7a, as shown in FIG. Ultra-high pressure water nozzle 7b formed at the lower end of the ultra-high pressure water nozzle 7b
The check valve 7c provided at the inlet of the check valve 7c and the ball valve seat 7d on the upstream side thereof, and the check valve 7c provided on the lower circumferential surface of the monitor mechanism 7 radially outward and provided in the jet passage 7a on the upstream side of the ball valve seat 7d. A hardening material nozzle 7e that communicates with the hardening material nozzle 7e, an air nozzle 7f that jets air radially outward from around the hardening material nozzle 7e, and a hardening material nozzle on the lower peripheral surface of the monitor mechanism 7 at a higher position than the hardening material nozzle 7e. Jet nozzle 7h for ultra-high pressure water that opens in the opposite direction to the opening direction of 7e.
The jet nozzle 7 is formed around the jet passage 7a as an annular passage independent from this, and the jet nozzle 7 is formed at the lower end.
h, and an air passage 7g formed around the jet passage 7a and the ultra-high pressure water passage 7i as an independent annular passage, the lower end of which communicates with the air nozzle 7f. We are prepared. In addition, the swivel 6 and the hardening material injection pipe 5
In order to easily check the rotational phase of the monitor mechanism 7, the cross-sectional profile of the monitor mechanism 7 is formed into a polygon (here, a hexagon), as in the case of the hardening material injection pipe 5 shown in FIG. 10, for example. . In Figure 10,
5a is a jet passage for both ultra-high pressure water and hardening material;
b is an inner circumferential wall, 5c is an ultra-high pressure water passage, 5d is an intermediate wall, 5e is an air passage, and 5f is an outer circumferential wall.

この実施例では、第7図a及び同図bに示すよ
うに、上記の一実施例と同様にして据付工程及び
穿孔工程が行われる。
In this embodiment, as shown in FIGS. 7a and 7b, the installation process and the drilling process are performed in the same manner as in the above embodiment.

そして、計画深度まで縦孔9が穿孔され、硬化
材注入管5が地中の所定の深さまで挿入される
と、噴射テスト工程が行われる。
Then, when the vertical hole 9 is drilled to the planned depth and the hardening material injection pipe 5 is inserted into the ground to a predetermined depth, an injection test process is performed.

噴射テスト工程では、まず、ジエツト入口6a
からスチールボール10を投入して、ボール弁座
7dを閉じさせる。この後、第7図cに示すよう
に、スイベル6のジエツト入口6aに硬化材超高
圧供給装置2を、超高圧水入口6eに超高圧水供
給装置3を、エア入口6cに圧縮空気供給装置4
をそれぞれ接続し、注入管旋回・昇降駆動装置1
を作動させて、硬化剤注入管5を試行的に設定さ
れた回転速度で、深礎の周縁の接線から外側で約
半回転の角度範囲を往復して旋回駆動することを
繰り返すとともに、試行的に設定された上昇スト
ローク速度で上昇させる。噴射テスト工程におい
ては、ジエツトノズル7hから噴出される超高圧
水噴流Wと、硬化剤ノズル7eから噴出する硬化
剤噴流12によつて硬化剤注入管5の周囲の地山
が破砕され、超高圧水噴流W及び硬化剤噴流12
により排除される排泥は縦孔9を通つて地上に排
出される。したがつて、縦孔9の上端から排出さ
れる排泥量によつて所定の切削領域11を形成す
るに必要な範囲にわたつて最適の切削が行われて
いるか否かを判定することができる。そして、次
の造成工程における硬化材注入管5の旋回速度及
び上昇ストローク速度を、所定の切削領域11を
形成するに必要な範囲にわたつて最適の切削が行
われる旋回速度及び上昇ストローク速度に設定さ
れる。
In the injection test process, first, the jet inlet 6a
A steel ball 10 is thrown in to close the ball valve seat 7d. After this, as shown in FIG. 7c, the hardening material ultra-high pressure supply device 2 is connected to the jet inlet 6a of the swivel 6, the ultra-high pressure water supply device 3 is connected to the ultra-high pressure water inlet 6e, and the compressed air supply device is connected to the air inlet 6c. 4
Connect each to the injection pipe turning/lifting drive device 1.
, the curing agent injection pipe 5 is repeatedly driven to swing back and forth in an angular range of about half a rotation outward from the tangent to the periphery of the deep foundation at a trially set rotation speed, and at the same time Raise at the rising stroke speed set to . In the injection test process, the ground around the curing agent injection pipe 5 is crushed by the ultra-high pressure water jet W ejected from the jet nozzle 7h and the curing agent jet 12 ejected from the curing agent nozzle 7e, and the ultra-high pressure water Jet stream W and curing agent jet stream 12
The sludge removed is discharged to the ground through the vertical hole 9. Therefore, depending on the amount of sludge discharged from the upper end of the vertical hole 9, it can be determined whether optimal cutting is being performed over the range necessary to form the predetermined cutting area 11. . Then, the turning speed and rising stroke speed of the hardening material injection pipe 5 in the next forming process are set to the turning speed and rising stroke speed at which optimal cutting is performed over the range necessary to form the predetermined cutting area 11. be done.

この後、造成工程が開始され、この造成工程で
は、第7図dに示すように、ジエツトノズル7h
から超高圧水を、硬化材ノズル7eから硬化材G
を、エアノズル7fから超高圧空気をそれぞれ噴
射させながら、注入管旋回・昇降駆動装置1を作
動させて、硬化材注入管5を設定された旋回速度
で深礎の周縁の接線から外側の約半回転の角度範
囲を往復して旋回駆動することを繰り返すととも
に、設定された上昇ストローク速度で上昇させ
る。これにより、地中では、硬化材注入管5が反
転される直径方向を境にして一方では超高圧水に
よつて地山が半円筒形に破砕され、超高圧水が充
填される空間が形成され、他方では硬化材Gによ
つて地山が半円筒形に破砕され、破砕により生じ
る半円筒形の空間に硬化材Gが充填される。これ
ら一方の半円筒形と他方の半円筒形との境界で
は、各半円筒形の空間の内圧が釣り合い、他方の
半円筒形空間に充填された硬化材Gが一方の半円
筒形空間に充填された空間に流入することはな
い。従つて、硬化材噴流12によつて形成される
半円筒形の切削領域11に未硬化柱13が造成さ
れることになる。
After this, the forming process is started, and in this forming process, as shown in FIG. 7d, the jet nozzle 7h
from the hardening material nozzle 7e, and the hardening material G from the hardening material nozzle 7e.
While injecting ultra-high-pressure air from the air nozzles 7f, the injection tube turning/elevating drive device 1 is activated, and the hardening material injection tube 5 is moved approximately halfway outward from the tangent to the periphery of the deep foundation at the set turning speed. It repeats reciprocating rotation angle range and turning drive, and raises at a set ascending stroke speed. As a result, underground, the ground is crushed into a semi-cylindrical shape by the ultra-high pressure water on the one hand, with the boundary in the diametrical direction where the hardening material injection pipe 5 is reversed, forming a space that is filled with ultra-high pressure water. On the other hand, the rock is crushed into a semi-cylindrical shape by the hardening material G, and the hardening material G is filled into the semi-cylindrical space created by the crushing. At the boundary between one semi-cylindrical shape and the other semi-cylindrical shape, the internal pressure of each semi-cylindrical space is balanced, and the hardening material G filled in the other semi-cylindrical space is filled into one semi-cylindrical space. It will not flow into the space where it is placed. Therefore, unhardened columns 13 are created in the semi-cylindrical cutting area 11 formed by the hardening material jet 12.

上記噴射テスト工程及び造成工程においては、
ジエツトノズル7hから超高圧水を硬化材ノズル
7e噴出される硬化材Gと反対方向に噴射するの
で、この超高圧水の噴射反力と硬化材Gの噴射反
力とが釣り合つて硬化材注入管5の下端部が硬化
材Gの噴射方向と反対側へ撓むことが防止され
る。これにより、硬化材Gの噴射方向が下方に傾
斜して未硬化柱13の径が減少することを防止し
て、未硬化柱13の寸法精度を高めることができ
るとともに、硬化材注入管5の回転抵抗を減少さ
せて駆動効率を高め、工期を一層短縮できる。
In the above injection test process and creation process,
Since ultra-high pressure water is injected from the jet nozzle 7h in the opposite direction to the hardening material G jetted from the hardening material nozzle 7e, the jetting reaction force of this ultra-high pressure water and the jetting reaction force of the hardening material G are balanced and the hardening material injection pipe 5 is prevented from bending in the direction opposite to the direction in which the hardening material G is sprayed. This prevents the injection direction of the hardening material G from being tilted downward and reducing the diameter of the unhardened pillars 13, increasing the dimensional accuracy of the unhardened pillars 13, and increasing the dimensional accuracy of the hardening material injection pipe 5. It reduces rotational resistance, increases drive efficiency, and further shortens construction time.

また、この実施例では、高圧水用ジエツトノズ
ル7hを硬化材ノズル7eよりも上側に開口させ
て、硬化材注入管5の引上げ時にジエツトノズル
7hが硬化材ノズル7eに先行して引き上げられ
るように構成してあるので、充填された硬化材G
が高圧水によつて洗い出されるおそれがなく、密
度の高い未硬化柱13を土中に造成することがで
きる。
Further, in this embodiment, the jet nozzle 7h for high pressure water is opened above the hardening material nozzle 7e, so that when the hardening material injection pipe 5 is pulled up, the jet nozzle 7h is pulled up before the hardening material nozzle 7e. Therefore, the filled hardening material G
There is no fear that the unhardened pillars 13 will be washed out by high-pressure water, and dense unhardened pillars 13 can be created in the soil.

上記の各実施例では、先行工程において硬化材
注入管5から超高圧水を噴出させて地中に縦孔9
を形成しているが、据付工程に先立つて例えばポ
ーリングマシンニよつて地中に所要の深さの縦孔
9を形成し、その縦孔9の中に硬化材注入管5を
挿入するように上記の手順の一部分を変更するこ
とは自由である。また、止水機能を必要としない
場合には、隣合う未硬化柱13の端部どうしを互
いに相貫させる必要はない。
In each of the above embodiments, in the preceding process, ultra-high pressure water is spouted from the hardening material injection pipe 5 to form a vertical hole 9 in the ground.
However, prior to the installation process, a vertical hole 9 of a required depth is formed in the ground using, for example, a polling machine, and the hardening material injection pipe 5 is inserted into the vertical hole 9. You are free to change any part of the above procedure. Furthermore, if the water stop function is not required, it is not necessary to make the ends of adjacent unhardened columns 13 interpenetrate with each other.

<発明の効果> 以上のように、本発明によれば、地中に形成さ
れる未硬化柱の断面が半円形であるので、1つの
未硬化柱当たりの施工断面積が小さくなる。その
結果、工期を短縮できるとともに、硬化材の使用
量を半減させることができる。
<Effects of the Invention> As described above, according to the present invention, the cross section of the unhardened pillar formed underground is semicircular, so the construction cross-sectional area per unhardened pillar becomes small. As a result, the construction period can be shortened and the amount of hardening material used can be halved.

また、地中に形成される未硬化柱の断面が半円
形であるので、例えば深礎補強用擁壁のように、
擁壁の横断平面が閉じられた平面図形を形成する
ように造成される場合には、その断面ほぼ半円形
の長手方向を未硬化柱が連続する方向にほぼ並行
に造成することにより、硬化材注入管を挿入する
施工地点を深礎等の周縁上あるいはそのごく近傍
に設定することができ、これにより施工地点を結
ぶピツチ円等のピツチ線図形の周長を短くして施
工地点数を減少させ、工期を一層短縮できるとと
もに、硬化材の使用量を一層減少させることがで
きる。
In addition, since the cross section of the unhardened pillars formed underground is semicircular, it can be used, for example, as a retaining wall for reinforcing deep foundations.
If the retaining wall is constructed so that its cross-sectional plane forms a closed plan shape, the longitudinal direction of the retaining wall is approximately semicircular in cross-section and is constructed approximately parallel to the direction in which the unhardened columns continue. The construction point where the injection pipe is inserted can be set on or very close to the periphery of a deep foundation, etc., which reduces the number of construction points by shortening the circumference of pitch lines such as pitch circles that connect the construction points. This makes it possible to further shorten the construction period and further reduce the amount of hardening material used.

また、地中に形成される未硬化柱の断面が半円
形であるので、その断面ほぼ半円形の長手方向を
未硬化柱が連続する方向にほぼ並行に造成するこ
とにより、未硬化の擁壁14の最大厚さを小さく
することができ、施工用地に対して利用可能な用
地を大きくすることができ、例えば建坪を大きく
とることかできる。しかも、断面ほぼ半円形の長
手方向を未硬化柱が連続する方向にほぼ並行に造
成することにより擁壁の少なくとも片面を平面状
に連続させることができ、例えば擁壁表面を平面
化したり、利用用地を拡大したりするためのはつ
り作業を省略して工期を大幅に短縮できるととも
に、その労力を大幅に削減することができる。
In addition, since the cross section of the unhardened pillars formed underground is semicircular, by constructing the longitudinal direction of the almost semicircular cross section almost parallel to the direction in which the unhardened pillars continue, it is possible to create an unhardened retaining wall. 14 can be made smaller, and the available land for construction can be made larger, for example, the building floor area can be made larger. Moreover, by constructing the longitudinal direction of the nearly semicircular cross section in approximately parallel to the direction in which the unhardened columns continue, it is possible to make at least one side of the retaining wall continuous in a planar shape. The construction period can be significantly shortened by omitting the chisel work required to expand the site, and the labor involved can be greatly reduced.

本発明において、特に、釣合用液を超高圧で硬
化材注入管の管上部の釣合用液入口から圧入し
て、管下部の釣合用液ノズルから、硬化材ノズル
からの硬化材噴出方向と反対の方向へ連続的に噴
出させることにより、管下部に曲げ力として作用
する硬化材噴出反力に釣合用液吐出反力を対抗さ
せる場合には、硬化材注入管の下部が硬化材反力
によつてその吐出方向と反対側に偏心することを
防止できる。その結果、硬化材噴出の噴出方向が
下方に傾斜して未硬化柱の径が減少することが防
止され、施工精度を高められるとともに、硬化材
注入管の回転抵抗を小さくしてその駆動効率を高
めることができ、工期を一層短縮できる。また、
この場合、特に、釣合用液ノズルを硬化材ノズル
よりも高い位置に偏らせて設け、管旋回引上げ工
程において、釣合い用液ノズルから噴出する釣合
用液噴流を硬化材ノズルから噴出する硬化材噴流
よりも上側に先行させる場合には、硬化材ノズル
から噴出した硬化材が釣合用液噴流によつて洗わ
れるおそれがなく、密度の高い未硬化柱を土中に
造成することができる。
In particular, in the present invention, the balancing liquid is injected under ultra-high pressure from the balancing liquid inlet in the upper part of the hardening material injection pipe, and from the balancing liquid nozzle in the lower part of the pipe, the direction opposite to the direction in which the hardening material is ejected from the hardening material nozzle. If the counterbalancing liquid discharge reaction force is to counteract the hardening material jetting reaction force that acts as a bending force on the lower part of the tube by continuously jetting it in the direction of Therefore, it is possible to prevent eccentricity to the side opposite to the discharge direction. As a result, the diameter of the uncured column is prevented from decreasing due to the downward inclination of the ejecting direction of the hardening material, improving construction accuracy, and reducing the rotational resistance of the hardening material injection pipe to improve its driving efficiency. This can further shorten the construction period. Also,
In this case, in particular, the balancing liquid nozzle is biased to a higher position than the hardening material nozzle, and in the tube turning and pulling process, the balancing liquid jet jetted from the balancing liquid nozzle is the hardening material jet jetted from the hardening material nozzle. In the case where the hardening material is placed in advance above the hardening material nozzle, there is no fear that the hardening material ejected from the hardening material nozzle will be washed away by the balancing liquid jet, and dense unhardened pillars can be created in the soil.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図aないしeは本発明の一実施例に係る深
礎補強擁壁の未硬化柱の造成方法の手順を順に示
す説明図、第2図は上記一実施例で使用されるス
イベルの断面図、第3図は上記一実施例で使用さ
れるモニター機構の断面図、第4図はその深礎補
強擁壁の横断平面図、第5図は本発明を適用した
親杭横矢板補強擁壁の横断平面図、第6図は本発
明を適用した別の親杭横矢板補強擁壁の横断平面
図、第7図aないしeは本発明の他の実施例に係
る深礎補強擁壁の未硬化柱の造成方法の手順を順
に示す説明図、第8図は上記他の実施例で使用さ
れるスイベルの断面図、第9図は上記他の実施例
で使用されるモニター機構の断面図、第10図は
上記他の実施例で使用される硬化材注入管の横断
平面図である。 1……注入管旋回・昇降駆動装置、2……硬化
材超高圧供給装置、3……超高圧水供給装置、5
……硬化材注入管、6a……ジエツト入口、6e
……ジエツト入口、7e……硬化材ノズル、7
e,11……切削領域、12……硬化材噴流、1
3……未硬化柱、14……擁壁、7h……ジエツ
トノズル、G……硬化材、GL……地表、W……
超高圧水噴流。
Figures 1a to 1e are explanatory diagrams sequentially showing the steps of a method for creating unhardened columns for a deep foundation reinforced retaining wall according to an embodiment of the present invention, and Figure 2 is a cross-sectional view of a swivel used in the above embodiment. Fig. 3 is a sectional view of the monitor mechanism used in the above embodiment, Fig. 4 is a cross-sectional plan view of the deep foundation reinforced retaining wall, and Fig. 5 is a main pile side pile reinforced retaining wall to which the present invention is applied. A cross-sectional plan view of the wall, FIG. 6 is a cross-sectional plan view of another main pile side pile reinforced retaining wall to which the present invention is applied, and FIGS. 7 a to 7 e are deep foundation reinforced retaining walls according to other embodiments of the present invention. 8 is a sectional view of a swivel used in the other embodiments described above, and FIG. 9 is a sectional view of a monitor mechanism used in the other embodiments described above. FIG. 10 is a cross-sectional plan view of a hardening material injection pipe used in the above-mentioned other embodiments. 1...Injection pipe turning/lifting drive device, 2...Hardening material ultra-high pressure supply device, 3...Ultra high pressure water supply device, 5
... Hardening material injection pipe, 6a ... Jet inlet, 6e
...Jet inlet, 7e...Hardening material nozzle, 7
e, 11... Cutting area, 12... Hardening material jet, 1
3... Unhardened column, 14... Retaining wall, 7h... Jet nozzle, G... Hardened material, GL... Ground surface, W...
Ultra high pressure water jet.

Claims (1)

【特許請求の範囲】 1 地上に注入管旋回・引上げ駆動装置1と硬化
材超高圧供給装置2とを設置し、 硬化材注入管5を地表GLから地中の目標深さ
まで挿入し、 硬化材超高圧供給装置2を作動させて、硬化材
Gを超高圧で硬化材注入管5の管上部の硬化材入
口6aから圧入し、管下部の硬化材ノズル7eか
ら管半径方向へ連続的に噴出させるとともに、 注入管旋回・引上げ駆動装置1を作動させて、
硬化材注入管5を旋回駆動しながら引上げ駆動す
ることにより地中で硬化材ノズル7eから管半径
方向へ超高圧で連続的に噴出する硬化材噴流12
を旋回させながら引上げて行き、硬化材噴流12
の噴出力でその周囲の地盤を切削するとともに、
その切削領域11に硬化材Gを注入してその切削
領域11に未硬化柱13を造成し、 多数本の未硬化柱13を互いに横に並べて連続
させて未硬化の擁壁14を造成し、 未硬化の擁
壁14が硬化することにより地中に擁壁14を造
成するという手順からなるジエツトグラウト式地
中擁壁造成方法において、 硬化材注入管5を注入管旋回・引上げ駆動装置
1で旋回駆動しながら引上げ駆動する管旋回引上
げ工程において、硬化材注入管5を約半回転の角
度範囲を往復して旋回させることを繰り返すこと
により切削領域11に造成される未硬化柱13の
断面形状をほぼ半月形に形成し、 断面ほぼ半月形の多数本の未硬化柱13は、互
いに横に並べて連続させて未硬化の擁壁14を造
成して行く未硬化擁壁造成工程において、その断
面ほぼ半円形の長手方向を上記横に並べて連続す
る方向にほぼ沿わせて造成することを特徴とする
ジエツトグラウト式地中擁壁造成方法。 2 多数本のうちの隣合う未硬化柱13,13の
ほぼ半月形の断面の向きが互いに同じ向きになる
ように造成することを特徴とする請求項1に記載
のジエツトグラウト式地中擁壁造成方法。 3 多数本のうちの隣合う未硬化柱13,13の
ほぼ半月形の断面の向きが互いに逆の向きになる
ように造成することを特徴とする請求項1に記載
のジエツトグラウト式地中擁壁造成方法。 4 硬化材注入管5の管下部の周面のうちその一
側面部分に硬化材ノズル7eを開口させるのに対
して、これとは反対側の多側面に釣合用液ノズル
7hを開口し、 地上に釣合用液超高圧供給装置3を設置し、 前記管旋回引上げ工程において、釣合用液超高
圧供給装置3を作動させ、釣合用液を超高圧で硬
化材注入管5の管上部の釣合用液入口6eから圧
入して、管下部の釣合用液ノズル7hから、硬化
材ノズル7eからの硬化材噴出方向と反対の方向
へ連続的に噴出させることにより、管下部に曲げ
力として作用する硬化材噴出反力に釣合用液吐出
反力を対抗させることを特徴とする請求項1、2
または3に記載のジエツトグラウト式地中擁壁造
成方法。 5 前記釣合用液ノズル7hを硬化材ノズル7e
よりも高い位置に偏らせて設け、 前記管旋回引上げ工程ににおいて、釣合用液ノ
ズル7hから噴出する釣合用液噴流Wを、硬化材
ノズル7eから噴出する硬化材噴流12よりも上
側に先行させることを特徴とする請求項4に記載
のジエツトグラウト式地中擁壁造成方法。
[Claims] 1. An injection pipe turning/lifting drive device 1 and a hardening material ultra-high pressure supply device 2 are installed on the ground, a hardening material injection pipe 5 is inserted from the ground surface GL to a target depth underground, and a hardening material injection pipe 5 is installed on the ground. The ultra-high pressure supply device 2 is activated, and the hardening material G is pressed into the hardening material injection pipe 5 at an extremely high pressure from the hardening material inlet 6a at the top of the pipe, and is continuously jetted out from the hardening material nozzle 7e at the bottom of the pipe in the radial direction of the pipe. At the same time, actuate the injection tube turning/lifting drive device 1,
By pulling up the hardening material injection pipe 5 while rotating it, a hardening material jet stream 12 is continuously ejected underground from the hardening material nozzle 7e in the radial direction of the pipe at an extremely high pressure.
is pulled up while swirling, and the hardening material jet 12
In addition to cutting the surrounding ground with the jet force of
A hardening material G is injected into the cutting area 11 to create unhardened pillars 13 in the cutting area 11, and a large number of unhardened pillars 13 are arranged side by side and continuous to create an unhardened retaining wall 14. In a jet grout type underground retaining wall construction method comprising a procedure of constructing a retaining wall 14 underground by hardening an unhardened retaining wall 14, a hardening material injection pipe 5 is connected to an injection pipe turning/lifting drive device 1. In the pipe turning and pulling process in which the hardening material injection pipe 5 is rotated and pulled up while being driven by the A large number of unhardened pillars 13 each having an approximately half-moon shape and a cross section are arranged side by side and continuous to form an unhardened retaining wall 14 during the unhardened retaining wall construction process. A method for constructing a jet grout type underground retaining wall, which is characterized in that the longitudinal direction of the approximately semicircular cross section is constructed approximately along the above-mentioned horizontally continuous direction. 2. The jet grout type underground retaining structure according to claim 1, wherein adjacent unhardened pillars 13, 13 among the plurality of pillars are constructed so that their substantially half-moon cross sections are oriented in the same direction. Wall construction method. 3. The jet grout type underground according to claim 1, characterized in that the substantially half-moon cross sections of adjacent unhardened pillars 13, 13 of the plurality of pillars are constructed in opposite directions. Retaining wall construction method. 4 The hardening material nozzle 7e is opened on one side of the circumferential surface of the lower part of the hardening material injection pipe 5, and the balancing liquid nozzle 7h is opened on the other side on the opposite side. A balancing liquid ultra-high pressure supply device 3 is installed in the pipe turning and pulling process, and the balancing liquid ultra-high pressure supply device 3 is operated to supply the balancing liquid at an ultra-high pressure to the upper part of the hardening material injection pipe 5 for balancing. By press-fitting the liquid into the liquid inlet 6e and continuously jetting it from the balancing liquid nozzle 7h at the lower part of the tube in the opposite direction to the direction in which the hardening material is ejected from the hardening material nozzle 7e, the hardening agent acts as a bending force on the lower part of the pipe. Claims 1 and 2 characterized in that a counterbalancing liquid discharge reaction force opposes the material jet reaction force.
Or the jet grout type underground retaining wall construction method described in 3. 5 The balancing liquid nozzle 7h is replaced with the hardening material nozzle 7e.
In the pipe turning and pulling step, the balancing liquid jet W jetted from the balancing liquid nozzle 7h precedes the hardening material jet 12 spouted from the hardening material nozzle 7e above. The method for constructing a jet grout type underground retaining wall according to claim 4.
JP25636289A 1989-09-29 1989-09-29 Jet grout type underground retaining wall building method Granted JPH03119219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25636289A JPH03119219A (en) 1989-09-29 1989-09-29 Jet grout type underground retaining wall building method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25636289A JPH03119219A (en) 1989-09-29 1989-09-29 Jet grout type underground retaining wall building method

Publications (2)

Publication Number Publication Date
JPH03119219A JPH03119219A (en) 1991-05-21
JPH0448894B2 true JPH0448894B2 (en) 1992-08-10

Family

ID=17291628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25636289A Granted JPH03119219A (en) 1989-09-29 1989-09-29 Jet grout type underground retaining wall building method

Country Status (1)

Country Link
JP (1) JPH03119219A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0641946A (en) * 1992-03-04 1994-02-15 Nit Co Ltd Ground hardener injecting device
KR20050037911A (en) * 2003-10-20 2005-04-25 한미기초개발주식회사 Method and apparatus of multi-jet compaction grouting, jcg
JP4504995B2 (en) * 2007-05-15 2010-07-14 株式会社エヌ・アイ・ティ Ground hardening material injection method and its equipment
JP5061079B2 (en) * 2008-10-03 2012-10-31 裕治 金子 Ground improvement equipment
CN106592596B (en) * 2016-12-12 2021-03-26 浙江海洋大学 High-pressure jet grouting device for foundation
JP7158010B2 (en) * 2018-09-19 2022-10-21 株式会社ワイビーエム High-pressure injection method rod

Also Published As

Publication number Publication date
JPH03119219A (en) 1991-05-21

Similar Documents

Publication Publication Date Title
JPH10325138A (en) Method for constructing earth retaining wall and earth auger device
JP5282541B2 (en) How to prevent lifting of the lining body
JP4520913B2 (en) Ground improvement method and existing structure foundation reinforcement method
CN206396745U (en) Long spire stake machine with the Counterboring apparatus that spins
JPH0448894B2 (en)
CN109267575A (en) The construction method of pattern foundation pit supporting structure is cheated in the hole of Soft Soil Area
JPS5985028A (en) Steel pipe pile and laying work thereof
JP5305573B2 (en) Underground solid body forming device and underground solid body forming method
KR101670683B1 (en) Construction method for underground foundation structure
JP3931123B2 (en) Non-open-cutting construction method for underground structures
JP5284168B2 (en) Excavation member for earth retaining member construction and earth retaining member construction method
JPH09317373A (en) Method of shaft construction
CN111472804A (en) Construction method for tunnel entrance of river-crossing tunnel with upper soft and lower hard strata in foundation pit
KR100491876B1 (en) UCM method and drilling road of ground drilling rigs using UCM method
CN111395327B (en) Rotary single pile foundation and construction method thereof
JP3125033B2 (en) Construction method of improved wall
CN115467332B (en) Sand layer grouting device and grouting method thereof
KR102270555B1 (en) Method for reinforcing ground using grouting bead and helical pile
KR102519175B1 (en) Drive rod apparatus for a drilling and grouting and Method for preventing underground water using the same
JPH01247611A (en) Construction and device for foundation improvement with the joint use of agitator and jet
JP3237797B2 (en) Excavation method for tunnels
JP3005741B2 (en) Ground improvement method
JP2864243B2 (en) Shaft construction method
JPH05321511A (en) Construction method for underground vessel in weak ground
JP3515991B2 (en) Soil pillar construction equipment

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080810

Year of fee payment: 16

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 17

Free format text: PAYMENT UNTIL: 20090810

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090810

Year of fee payment: 17

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 18

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 18