JP4504995B2 - Ground hardening material injection method and its equipment - Google Patents

Ground hardening material injection method and its equipment Download PDF

Info

Publication number
JP4504995B2
JP4504995B2 JP2007128819A JP2007128819A JP4504995B2 JP 4504995 B2 JP4504995 B2 JP 4504995B2 JP 2007128819 A JP2007128819 A JP 2007128819A JP 2007128819 A JP2007128819 A JP 2007128819A JP 4504995 B2 JP4504995 B2 JP 4504995B2
Authority
JP
Japan
Prior art keywords
injection
nozzle
spiral
hardening material
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007128819A
Other languages
Japanese (ja)
Other versions
JP2008285811A (en
Inventor
茂 所崎
亮之祐 小泉
渉 中西
康晴 中西
Original Assignee
株式会社エヌ・アイ・ティ
株式会社日東テクノ・グループ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エヌ・アイ・ティ, 株式会社日東テクノ・グループ filed Critical 株式会社エヌ・アイ・ティ
Priority to JP2007128819A priority Critical patent/JP4504995B2/en
Publication of JP2008285811A publication Critical patent/JP2008285811A/en
Application granted granted Critical
Publication of JP4504995B2 publication Critical patent/JP4504995B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は構築基礎地盤の強化支保、或いは地盤の安定化や止水を目的として対象地盤に地盤硬化材を高圧注入して地盤中に地盤硬化材層を造成する地盤硬化材注入工法とその装置に関するものである。   The present invention is a ground hardening material injection method and apparatus for creating a ground hardening material layer in the ground by high-pressure injection of ground hardening material into the target ground for the purpose of strengthening support of the building foundation ground or stabilizing the ground and stopping water. It is about.

従来、地盤の覆工支保や強化支保、或いは止水を目的とする硬化材層造成のための地盤硬化材注入は、硬化材噴流の到達距離を少しでも伸長して大径の硬化材層を造成することを理想とし様々な工夫が凝らされ、その1つとして核ノズルとこれを囲繞する環状ノズルからなる重合噴射ノズルにより硬化材噴流をエアーで包合して保護し到達距離を延長する方法(例えば特許文献1参照)が開発されている。   Conventionally, ground hardener injection for ground lining support, reinforcement support, or hardener layer construction for the purpose of water stoppage has been achieved by extending the reach of the hardener jet even a little to increase the diameter of the hardener layer. Various methods have been devised with ideal creation, and one of them is a method of extending the reach distance by encapsulating and protecting the hardener jet with air using a polymerization injection nozzle consisting of a core nozzle and an annular nozzle surrounding it. (See, for example, Patent Document 1).

また、硬化材噴流に先立って清水噴射による事前改良を行い、硬化材噴流の有効射程を延長し(例えば特許文献2参照)、或いは余剰スライムを吸引機構によって吸引し(例えば特許文献3参照)てスライムの排出を良くする手段等が講じられてきた。   Prior to the hardening material jet, prior improvement by clear water injection is performed, the effective range of the hardening material jet is extended (for example, see Patent Document 2), or surplus slime is sucked by a suction mechanism (for example, see Patent Document 3). Measures to improve slime discharge have been taken.

更に、側方噴射ノズルの内壁を螺旋構造とすることにより、高圧噴射される硬化材噴流に螺旋回転を与えて有効射程を延長(例えば特許文献4参照)する手段等も講じられてきた。
特公平7ー100931号公報 特許第2865653号公報 特公平6ー29506号公報 特開昭63ー289110号公報
Furthermore, by making the inner wall of the side injection nozzle into a spiral structure, means for extending the effective range by applying a helical rotation to the high-pressure-injected hardener jet (see, for example, Patent Document 4) has been taken.
Japanese Patent Publication No.7-110031 Japanese Patent No. 2865653 Japanese Patent Publication No. 6-29506 JP-A 63-289110

しかしながら、地盤硬化材を高圧噴射する噴射ノズルは、注入ロッドの側壁に設定されるため、圧送されてきた地盤硬化材はノズル部において略直角に屈折することになり、屈折部において発生する乱流によって圧送エネルギーが消耗減衰されてしまう問題がある。   However, since the injection nozzle that injects the ground hardening material at a high pressure is set on the side wall of the injection rod, the ground hardening material that has been pumped is refracted at a substantially right angle at the nozzle portion, and the turbulent flow generated at the bending portion. Therefore, there is a problem that the pumping energy is consumed and attenuated.

また、硬化材噴流の到達距離を伸ばすために注入圧を高圧化すれば、それだけの危険を伴うほか、地盤に不自然な負荷を掛けて地盤隆起等の現象を発生させる恐れもあり、注入材料もそれだけ多量に必要となり、コスト的にも大きな負担となる。   In addition, if the injection pressure is increased to extend the reach of the hardener jet flow, there is a risk of it, and there is a risk of causing an unnatural load on the ground and causing phenomena such as ground uplift. However, such a large amount is necessary, and it becomes a heavy burden in terms of cost.

更に、従来の注入ロッド内における硬化材圧送流路の径は、構造上の理由から多少の容積径に差異が生ずることはあるものの大きく変化することはなく、曲折等による乱流の発生等による圧送エネルギーの消耗減衰に対しては、特許文献4に記載の発明のように硬化材噴流に螺旋回転を与えて噴射時にエネルギーを付加することのほか、意識的に圧送力を変化させることは行われていない。   Furthermore, the diameter of the hardened material pumping flow path in the conventional injection rod does not change greatly although there may be some difference in volume diameter due to structural reasons, and due to the occurrence of turbulence due to bending etc. Concerning the decay of pumping energy consumption, in addition to applying spiral rotation to the hardening material jet to add energy during injection as in the invention described in Patent Document 4, it is not possible to change the pumping force consciously. I have not been told.

本発明は、上記の課題に対応してこれを解決するため、注入ロッドの核ノズルに連絡する硬化材料圧送流路の所定部位から核ノズルに至る部位に旋回流誘導構造を形成して圧送材料を旋回誘導し、エネルギーロスの少ない旋回流を発生させるように構成した。   In order to solve the above-described problems, the present invention forms a swirl flow guiding structure at a portion from a predetermined portion of the hardening material pressure-feeding passage communicating with the core nozzle of the injection rod to the core nozzle, thereby pumping the material. Is configured to generate a swirling flow with less energy loss.

また、材料圧送流路を先端モニター部から拡径し、拡径部から核ノズル入口に到る所定範囲に旋回流誘導構造を形成し、旋回流誘導構造によって形成される流体誘導流路を螺旋旋回角度のまま伸長してそれぞれの核ノズルに連通させて誘導された高圧噴流を注入ロッド管壁に対して斜め方向(注入ロッド横断面円との同芯円円弧に対する接線方向)に噴射するようにした。   Further, the diameter of the material feeding channel is expanded from the tip monitor part, a swirling flow guiding structure is formed in a predetermined range from the expanding part to the inlet of the nuclear nozzle, and the fluid guiding channel formed by the swirling flow guiding structure is spiraled. A high-pressure jet that is extended while maintaining the swivel angle and communicated with each core nozzle is injected obliquely to the injection rod tube wall (in a direction tangential to the concentric circular arc with the cross-section circle of the injection rod). I made it.

即ち、注入ロッドの核ノズルに連絡する材料圧送流路を先端モニター部において拡径することにより、強力な送圧が開放されると共に旋回流誘導構造によって圧送流路内を螺旋旋回流として圧送され、注入ロッド管壁に対して斜め方向に開口する核ノズルに螺旋旋回角度のまま直進進行して噴射されるもので、硬化材流は屈折することなく、円滑に核ノズル入口に集中され、流速が高められるようにしたものである。   That is, by expanding the diameter of the material pressure feed passage connected to the core nozzle of the injection rod at the tip monitor unit, a powerful feed pressure is released and the inside of the pressure feed passage is pumped as a spiral swirl flow by the swirl flow guiding structure. The hardened material flow is smoothly concentrated at the inlet of the nuclear nozzle without being refracted, and is injected into the core nozzle that opens obliquely with respect to the injection rod tube wall while keeping the spiral turning angle. Is intended to be enhanced.

更に、旋回流誘導構造を構成する螺旋状の案内溝若しくは突条或いは板翼を、複数の案内溝若しくは突条或いは板翼が並列旋回する多条螺旋構造に構成し、並列旋回する多条誘導路にそれぞれ対応する核ノズルを開口させることにより、注入ロッド管壁に複数の重合噴射ノズルを設定するようにした。   Further, the spiral guide groove or protrusion or plate blade constituting the swirl flow guiding structure is formed into a multi-thread spiral structure in which a plurality of guide grooves or protrusions or plate blades rotate in parallel, and the multi-strand induction rotating in parallel A plurality of superposition spray nozzles were set on the injection rod tube wall by opening the core nozzles corresponding to the respective paths.

注入ロッド管壁に設定された複数の重合噴射ノズルは、注入ロッド管壁の上下段差部位若しくは同一レベル部位に設けるように構成して硬化材層造成の施工環境に応じて、上下に拡散する注入に対応し、或いは、同一レベル部位に集中して円盤状の放射注入に対応する。   The multiple injection nozzles set on the injection rod tube wall are configured to be provided at the upper step part or the same level part of the injection rod pipe wall, and the injection diffuses up and down depending on the construction environment of the hardener layer creation Or concentrated on the same level region and corresponding to disk-shaped radiation injection.

また、噴射ノズルが注入ロッド管壁に対して斜め方向に開口しているので、注入ロッドの回動方向によってロッドの回動を、高圧噴流の噴射方向に逆行させたり、順行させたりすることができる。   In addition, since the injection nozzle opens in an oblique direction with respect to the injection rod tube wall, the rotation of the rod may be reversed or forward in the injection direction of the high-pressure jet depending on the rotation direction of the injection rod. Can do.

即ち、ロッドの回動が高圧噴流の噴射方向に逆行する場合には、硬化材噴流が切削地盤に対向するので地盤に対する破砕力が増強されるのに対し、順行する場合には、硬化材噴流が切削地盤に順応するので破砕によるエネルギー消費がなく、噴射エネルギーがそのまま土粒子に対する浸透推進力として働く。   That is, when the rotation of the rod is reversed in the jet direction of the high-pressure jet, the hardener jet is opposed to the cutting ground, so that the crushing force on the ground is enhanced. Since the jet adapts to the cutting ground, there is no energy consumption due to crushing, and the jet energy directly acts as a permeation propulsion force for the soil particles.

本願発明の特徴は、注入ロッドの核ノズルに連絡する材料圧送流路に旋回流誘導構造を形成することにより、高圧噴流の自然な流動性向を維持してエネルギーの効率化と噴射時におけるエネルギー付加をも達成したものである。   The feature of the present invention is that a swirl flow guiding structure is formed in the material pumping flow path communicating with the core nozzle of the injection rod, thereby maintaining the natural fluidity of the high-pressure jet and improving energy efficiency and adding energy during injection. Has also been achieved.

以下図面に従って本発明の実施の形態を説明する。1は注入ロッドで、スイベル11を介して噴射材料槽に連絡するロッド内の分隔された流路12、13から成る全体として2重管で構成され、先端部側壁には、中心部に核ノズル21、その周囲を囲んで囲周ノズル22が重合開口する重合噴射ノズル2が設定され、核ノズル21が流路12に、囲周ノズル22が流路13に連通する。   Embodiments of the present invention will be described below with reference to the drawings. Reference numeral 1 denotes an injection rod, which is composed of a double pipe as a whole consisting of separated flow passages 12 and 13 in the rod communicating with the spray material tank via a swivel 11, and a core nozzle at the center of the tip side wall. 21, a superposition jet nozzle 2 is set in which the surrounding nozzle 22 surrounds and surrounds it, the core nozzle 21 communicates with the flow path 12, and the surrounding nozzle 22 communicates with the flow path 13.

流路12はスイベル11からモニターAの部分までの狭径部12a、モニターAの部分からノズル口までの拡径部12bから成り、拡径部12bの先端底部に設定された清水噴出孔14に連絡すると共に、モニターAの先端側壁部に設定された重合噴射ノズル2の核ノズル21に集中して連通開口する。なお、モニターAの部分からノズル口までの拡径部12bは、必ずしも設ける必要はなく、流路12をノズル口まで同一径に構成し、適宜部位に旋回流誘導構造3を形成するようにしても良い。   The flow path 12 includes a narrow-diameter portion 12a from the swivel 11 to the monitor A portion, and a wide-diameter portion 12b from the monitor A portion to the nozzle opening, and a clear water jet hole 14 set at the bottom of the tip of the wide-diameter portion 12b. At the same time, the central nozzle 21 of the superposition injection nozzle 2 set on the side wall of the tip of the monitor A is concentrated and opened. The enlarged diameter portion 12b from the portion of the monitor A to the nozzle port is not necessarily provided, and the flow path 12 is configured to have the same diameter up to the nozzle port, and the swirling flow guiding structure 3 is appropriately formed at the site. Also good.

清水噴出孔14は、ボール41の投入による噴出孔閉鎖のために拡径部12bの先端底部に形成されたボール弁座4を介して下方に開口するが、流路13は流路12の外周に沿って環状に形成され、モニターAの先端側壁部に設定された重合噴射ノズル2の囲周ノズル22に集中して連通開口し、先端側は閉鎖状態となる。なお、清水噴出孔の開閉はボール投入によらず、差圧弁によることもでき、この場合にはボール弁座4に代えて差圧弁が設定されることになる。   The fresh water ejection hole 14 opens downward via a ball valve seat 4 formed at the bottom of the tip of the enlarged diameter portion 12 b in order to close the ejection hole when the ball 41 is inserted. Is formed in an annular shape along the peripheral wall 22 of the superposition injection nozzle 2 set in the side wall portion of the monitor A and opens in communication, and the front end side is closed. It should be noted that the opening and closing of the fresh water ejection hole can be performed by a differential pressure valve, not by ball insertion. In this case, a differential pressure valve is set instead of the ball valve seat 4.

流路12は、狭径部12aから拡径部12bに連絡するテーパー状の基部E付近から核ノズルに至る流路内壁面に螺旋状に案内溝若しくは突条による旋回流誘導構造3が形成され、狭径部12aから拡径部12bに開放された高圧噴流は、この旋回流誘導構造3によって旋回エネルギーが加えられて核ノズル21に集中噴射される。   In the flow path 12, a swirl flow guiding structure 3 is formed by a guide groove or a ridge spirally on the inner wall surface of the flow path from the vicinity of the tapered base E connecting from the narrow diameter portion 12a to the enlarged diameter portion 12b to the core nozzle. The high-pressure jet that is opened from the narrow-diameter portion 12a to the wide-diameter portion 12b is subjected to concentrated energy by the swirling flow guiding structure 3 and concentratedly injected into the core nozzle 21.

旋回流誘導構造3の案内溝若しくは突条或いは板翼によって形成される流体誘導流路31は、図6に示すように螺旋角度のまま伸長してそれぞれの核ノズルに開通させて1つ又は複数の高圧噴流を注入ロッド管壁に対して斜め方向に噴射するようになっており、対象地盤に対して直角ではなく斜め方向に切削する効率的な方向付けを行うようにしている。   One or a plurality of fluid guiding channels 31 formed by guide grooves or protrusions or plate blades of the swirling flow guiding structure 3 are elongated at a spiral angle as shown in FIG. The high-pressure jet is injected in an oblique direction with respect to the injection rod tube wall, and efficient orientation is performed by cutting in an oblique direction rather than perpendicular to the target ground.

旋回流誘導構造3における案内突条は条体素材に限らず加工螺旋板を、流路に対してオーガー翼状に張出設定しても良い。また、核ノズル入口まで接合しないで、図2、図3に示すように核ノズル入口上部の所定範囲にのみ設定すれば、高圧送により旋回力を維持したまま核ノズル入口に達する。更に、案内溝を用いる場合には、案内溝は施工環境に応じてその断面形状を変化させることにより、様々な効果を挙げることができる。   The guide ridge in the swirling flow guiding structure 3 is not limited to a strip material, and a processed spiral plate may be set to project in an auger wing shape with respect to the flow path. Moreover, if it sets only to the predetermined range of the upper part of a nuclear nozzle inlet as shown in FIG.2, FIG.3, without joining to a nuclear nozzle inlet, it will reach a nuclear nozzle inlet, maintaining a turning force by high pressure feeding. Furthermore, when the guide groove is used, various effects can be obtained by changing the cross-sectional shape of the guide groove according to the construction environment.

また、旋回流誘導構造3を複数の案内溝若しくは突条が並列旋回する多条螺旋構造に構成することによって、図4に示すように複数の流れ1、2が並列旋回する独自の高圧噴流を創成することができる。   Further, by configuring the swirling flow guiding structure 3 into a multi-helix structure in which a plurality of guide grooves or protrusions swirl in parallel, a unique high-pressure jet flow in which a plurality of flows 1 and 2 swirl in parallel as shown in FIG. Can be created.

多条螺旋構造ににより、複数に設定された重合噴射ノズル2は図3に示すように上下段差部位、若しくは図7に示すように同一レベル部位からの複数の高圧噴流を注入ロッド管壁に対して斜め方向に噴射させる。   Due to the multi-helix spiral structure, a plurality of superposition jet nozzles 2 are provided with a plurality of high-pressure jets from the upper and lower stepped portions as shown in FIG. 3 or the same level portion as shown in FIG. Spray in an oblique direction.

重合噴射ノズル2からの硬化材噴射が、注入ロッド管壁に対して斜め方向に噴射されることにより、注入時における注入ロッドの回動を高圧噴流の噴射方向に逆行する方向、或いは順行する方向に選択することができ、注入施工環境に即応した注入を行えるようにしている。   The curing material injection from the polymerization injection nozzle 2 is injected in an oblique direction with respect to the injection rod tube wall, so that the rotation of the injection rod during injection reverses or reverses the injection direction of the high-pressure jet. The direction can be selected, and the injection can be performed immediately in accordance with the injection construction environment.

このような旋回流誘導構造3は、流路内壁面に螺旋状に案内溝若しくは突条やオーガー翼の設定によるほか、図5に示すように、芯材に螺旋翼若しくは多条螺旋翼を付設した軸体を先端モニター部の流路スーペス内に格納して構成することもできる。   Such a swirl flow guiding structure 3 is provided with spiral guides or ridges or auger blades on the inner wall surface of the flow path, and as shown in FIG. It is also possible to store the shaft body in a flow path space of the tip monitor unit.

従って、図5に示すように複数の案内溝若しくは突条3a、3b、3c、3dを並列旋回させて設定すると共に、これによって形成される流路のの開口部を、それぞれ核ノズルの開口部に構成して注入ロッド1に複数の重合噴射ノズル2を設け、それぞれ異なった角度方向から高圧噴流を旋回噴射することにより独自の破砕攪拌力を得ることができる。   Therefore, as shown in FIG. 5, a plurality of guide grooves or ridges 3a, 3b, 3c, and 3d are set by turning in parallel, and the openings of the flow paths formed thereby are respectively the openings of the nuclear nozzles. In this configuration, a plurality of superposition jet nozzles 2 are provided on the injection rod 1 and a high pressure jet is swirled and jetted from different angular directions, whereby a unique crushing and stirring force can be obtained.

図6は4条に構成した案内溝3a、3b、3c、3dが流路拡径部12b内を並列走行する状態を流路拡径部の横断面斜視図として示したもので、それぞれの案内溝に対応して重合噴射ノズル2を設けることにより、異なった角度方向から複数の高圧旋回噴流が周辺土壌を交差攪拌して、噴射により注入ロッドにかかる偏った反力が相殺されてロッドのぶれや撓みがなくなり、安定した注入による均質な硬化材混入層が造成されるものである。   FIG. 6 shows a state in which the guide grooves 3a, 3b, 3c, and 3d configured in four strips run in parallel in the flow passage enlarged portion 12b as a cross-sectional perspective view of the flow passage enlarged portion. By providing the superposition jet nozzle 2 corresponding to the groove, a plurality of high-pressure swirling jets cross-stir around the surrounding soil from different angular directions, and the biased reaction force applied to the injection rod is canceled by the jet, so that the shake of the rod In this way, a uniform hardened material mixed layer is created by stable injection.

流路12の狭径部12aから拡径部12bへの連絡は、モニターAのテーパー状の基部Eを介してロッド先端部を構成し重合噴射ノズル2が設定されるモニター部Aへの連通によって行われ、その外径は上部のロッド本管Bの外径より大径に構成され、モニター部の挿入掘削によりロッド本管Bと挿入孔Cの内壁の間にクリアランスが形成される。   The communication from the narrow-diameter part 12a of the flow path 12 to the enlarged-diameter part 12b is made by communicating with the monitor part A, which forms the tip of the rod through the tapered base E of the monitor A and the polymerization injection nozzle 2 is set. The outer diameter is made larger than the outer diameter of the upper rod main pipe B, and a clearance is formed between the rod main pipe B and the inner wall of the insertion hole C by insertion excavation of the monitor portion.

更に、注入ロッド1にはその外表部に、所定間隔毎に前記モニター部Aの外径と同一にした外殻体15が設定され、設定された複数の外殻体の外表が全体として注入ロッド1の外表と挿入孔Cの内壁との間のクリアランスを維持するスペーサーを形成するように構成されている。   Further, an outer shell 15 having the same outer diameter as that of the monitor portion A is set at predetermined intervals on the outer surface of the injection rod 1, and the outer surfaces of the set outer shells as a whole are injected rods. A spacer is formed to maintain a clearance between the outer surface of 1 and the inner wall of the insertion hole C.

注入ロッド1の後端はスイベル11となっており、ロッド内の各流路の対応部とその噴射材料槽に連絡するホース8、8に連結すると共に、基台6上に装置された注入ロッド駆動部5と作動機構7に支持される。   The rear end of the injection rod 1 is a swivel 11, which is connected to the corresponding portion of each flow path in the rod and the hoses 8 and 8 connected to the injection material tank and is installed on the base 6 It is supported by the drive unit 5 and the operating mechanism 7.

ロッド1は上記のように全体として2重管で構成され、その中心部は掘削下降時には清水供給路、硬化材の噴射注入を行う上昇時には硬化材供給路に切り換えられる流路12、その外周に環状に囲周ノズル22に噴射エアーを供給するエアー供給流路13が形成される。   The rod 1 is composed of a double pipe as a whole as described above, and its central portion is formed on the outer periphery of the flow path 12 that is switched to the fresh water supply path when excavating and descending, and to the hardener supply path when ascending and injecting the hardener. An air supply passage 13 for supplying the blast air to the surrounding nozzle 22 is formed in an annular shape.

以上のように構成された地盤硬化材注入装置は対象地盤上に設置され、先ず、流路12に潤滑清水を供給して先端噴出孔14から噴出し、注入ロッド作動機構7によって注入ロッド1に対して回転等の作動を与えながら前進させて、ロッドクラウンの掘削刃9と注入ロッド1の回転によって注入ロッドを対象地盤Gに挿入させる。   The ground hardening material injecting apparatus configured as described above is installed on the target ground, and firstly, lubricated clean water is supplied to the flow path 12 and ejected from the tip ejection hole 14. On the other hand, the rod is moved forward while giving an operation such as rotation, and the injection rod is inserted into the target ground G by the rotation of the excavating blade 9 of the rod crown and the injection rod 1.

このように注入ロッド1を対象地盤Gに向けて推進挿入し、所定の深度に達したところで、スイベル11を外し流路12に連通する連結部からボール3を投入すると、ボール3は重力によって落下搬送され噴出孔14に設定された弁座4に嵌入して噴出孔14を閉塞する。   In this way, when the injection rod 1 is propelled and inserted toward the target ground G and the predetermined depth is reached, the swivel 11 is removed and the ball 3 is inserted from the connecting portion communicating with the flow path 12. The ejection hole 14 is closed by being inserted into the valve seat 4 which is conveyed and set in the ejection hole 14.

同時に、それまで清水を供給していたホース8を硬化材に切替える。地盤硬化材としてはセメントミルクを用い、硬化材圧送の送圧力を20〜30メガパスカル、硬化材吐出量を100〜200リットル/分程度の高圧噴流として囲周ノズル22からのエアー噴射と共に噴射し、上昇速度を15分/メートル程度とするものである。   At the same time, the hose 8 that has been supplying fresh water until then is switched to a hardener. Cement milk is used as the ground hardening material, and it is injected together with air injection from the surrounding nozzle 22 as a high pressure jet flow of 20 to 30 megapascals and a discharge amount of the hardening material of about 100 to 200 liters / minute. The ascending speed is about 15 minutes / meter.

流路12に圧送された硬化材は、狭径部12aから拡径部12bに至ると、流路の拡張によって内圧が発散してモニターAのテーパー斜面壁に誘導され、旋回流誘導構造3によって旋回エネルギーが付加され、更に、流線湾曲面に構成された内壁によって流速を高められ、乱流や流路抵抗が最小限に抑えられてノズル21の入口に集中する流線テーパーによって搬送されるので、ロッドの引揚げ時間を従来の2分の1程度としても注入密度を十分に維持することができる。   When the hardened material pumped to the flow path 12 reaches from the narrow diameter portion 12a to the expanded diameter portion 12b, the internal pressure diverges due to the expansion of the flow path and is guided to the tapered slope wall of the monitor A. The swirling energy is added, and the flow velocity is increased by the inner wall formed on the streamline curved surface, and the turbulent flow and flow path resistance are minimized, and the flow is conveyed by the streamline taper concentrated at the inlet of the nozzle 21. Therefore, the injection density can be sufficiently maintained even when the rod lifting time is about one-half of the conventional method.

エア供給路13に供給されたエアは、重合噴射ノズル2の囲周ノズル22に供給されて上記硬化材噴流の包合噴流体として噴射されるので、前記乱流や流路抵抗の減殺と相まって核ノズルの口径を拡大することを可能にし、より短時間で硬化材噴流の到達距離の長い硬化材注入層Xの造成を行えるようにした。   The air supplied to the air supply path 13 is supplied to the surrounding nozzle 22 of the superposition jet nozzle 2 and is jetted as a composite jet fluid of the hardener jet, thus coupled with the turbulent flow and the flow resistance reduction. The diameter of the core nozzle can be increased, and the hardener injection layer X having a long reach of the hardener jet can be formed in a shorter time.

このようにして重合噴射ノズル2から硬化材とエアーの包合旋回噴流を噴射し、注入ロッド1を回転若しくは所定角度によって往復回動させながら抜去方向に1メートル当たり15分でステップアップして後退上昇させることにより、硬化材高圧噴流Yは周辺地盤を穿孔切削し土粒子を破砕して、対象地盤Gに注入ロッド1の駆動軌跡に沿って円筒状に硬化材注入層Xを造成する。   In this way, a curing swirling jet of curing material and air is jetted from the polymerization jet nozzle 2, and the injection rod 1 is rotated or reciprocated by a predetermined angle while stepping up in 15 minutes per meter in the withdrawal direction. By raising, the hardened material high-pressure jet Y drills and cuts the surrounding ground to crush the soil particles, and forms a hardened material injection layer X in a cylindrical shape along the drive locus of the injection rod 1 on the target ground G.

次いで、隣接位置に注入ロッドを設定して同様に硬化材注入層の造成を行って側腹部を相互に交差接合させてを造成し、更に、同様の硬化材注入層を次々に隣接させて所定形状に並列することにより、所定の注入層構造体を造成していくものである。   Next, an injection rod is set at an adjacent position, and a hardener injection layer is similarly formed to cross-join the flank portions. Further, similar hardener injection layers are successively adjacent to each other to be predetermined. A predetermined injection layer structure is formed in parallel with the shape.

本発明は以上のように構成したので、硬化材圧送流路の曲折等による乱流の発生による圧送エネルギーの消耗減衰を防止すると共に、狭径部から拡径部に至る流路の拡張、旋回流誘導構造3による旋回エネルギーの付加、拡径流路におけるテーパー斜面壁16と流線湾曲面17に構成された内壁によって圧送エネルギーを従来に倍加する効率によって活用することを可能としたものである。   Since the present invention is configured as described above, it prevents the pumping energy from being attenuated due to the turbulent flow caused by bending of the hardened material pumping flow path, and expands and swivels the flow path from the narrow diameter part to the large diameter part. The swirling energy can be added by the flow guide structure 3 and the inner wall formed by the tapered inclined wall 16 and the streamline curved surface 17 in the diameter-enlarged flow path can be utilized by the efficiency of doubling the pumping energy conventionally.

本発明の実施例を示すもので、地盤硬化材注入層造成の施工状況を示す注入装置と地盤の全体を側面から見た施工説明図The example of the present invention, showing the construction state of the ground hardening material injection layer construction, and an explanatory view of the construction as seen from the side of the whole of the injection device and the ground 同じく、本発明の実施例による旋回流誘導構造を単条螺旋構造とした注入ロッドの構造を示すもので、硬化材流路の所定範囲にのみ旋回流誘導構造を設定した場合における先端モニター部の要部構造を示すため注入ロッドの一部外郭部を切欠する等した縦断面側面図Similarly, it shows the structure of an injection rod in which the swirling flow guiding structure according to the embodiment of the present invention is a single-strand spiral structure, and the tip monitor section in the case where the swirling flow guiding structure is set only in a predetermined range of the hardener flow path. Longitudinal cross-sectional side view with a cutout of a part of the outer portion of the injection rod to show the main structure 同じく、本発明の他の実施例による旋回流誘導構造を多条螺旋構造とした注入ロッドの構造を示すもので、硬化材流路の所定範囲にのみオーガー翼体を収納した旋回流誘導構造を設定した場合における先端モニター部の要部構造を示すため注入ロッドの一部外郭部を切欠する等した縦断面側面図Similarly, it shows the structure of an injection rod in which the swirling flow guiding structure according to another embodiment of the present invention is a multi-spiral spiral structure, and the swirling flow guiding structure in which the auger blade body is accommodated only in a predetermined range of the hardening material channel. Longitudinal cross-sectional side view in which a part of the outer portion of the injection rod is cut away in order to show the structure of the main part of the tip monitor part when set 同じく、旋回流誘導構造において複数の流れ1、2が並列旋回する流路内壁面を切割展開図として示す多条螺旋構造の模式説明図Similarly, in the swirl flow guiding structure, a schematic explanatory view of a multi-strand spiral structure showing the inner wall surface of the flow path in which a plurality of flows 1 and 2 swirl in parallel as a cutaway development view 同じく、本発明の他の実施例による旋回流誘導構造を多条螺旋構造とした注入ロッドの構造を示すもので、旋回流誘導構造を、芯材に多条螺旋翼を付設した軸体を先端モニター部の流路スーペス内に格納して構成した場合における先端モニター部の要部構造を示すため注入ロッドの一部外郭部を切欠する等した縦断面側面図Similarly, it shows the structure of an injection rod in which a swirl flow guiding structure according to another embodiment of the present invention has a multi-spiral spiral structure, and the swirl flow guiding structure has a shaft body with a multi-spiral spiral blade attached to the tip. Longitudinal cross-sectional side view in which a portion of the outer portion of the injection rod is cut away in order to show the structure of the main part of the distal end monitoring unit when it is housed in the flow path space of the monitoring unit. 同じく、流路内壁面における旋回流誘導構造を、4条の多条螺旋構造に構成し、その各流体誘導路の開口部を、それぞれ核ノズルの開口部に構成した状態における注入ロッド重合噴射ノズル設定部の構造を示す注入ロッド重合噴射ノズル設定部の横断面図Similarly, the swirl flow guiding structure on the inner wall surface of the flow path is configured as a four-row multi-helix structure, and the injection rod superposition injection nozzle in a state where the opening of each fluid guiding path is configured as the opening of the core nozzle, respectively. Cross section of injection rod superposition injection nozzle setting part showing structure of setting part 同じく、本発明の実施例による旋回流誘導構造を多条螺旋構造とした注入ロッドの構造を示すもので、重合噴射ノズルを同一レベル部に設定した場合における先端モニター部の要部構造を示す注入ロッドの縦断面側面図Similarly, the structure of an injection rod having a multi-spiral structure as a swirling flow guiding structure according to an embodiment of the present invention is shown, and an injection showing the main structure of the tip monitor part when the polymerization injection nozzle is set at the same level part. Longitudinal cross section side view of rod 同じく、重合噴射ノズルの正面からの外観状况を示す注入ロッドのノズル設定部分拡大正面図Similarly, the nozzle setting part enlarged front view of the injection rod showing the appearance from the front of the polymerization injection nozzle

符号の説明Explanation of symbols

1 注入ロッド
11 スイベル機構
12 核ノズルに連通する流路
12a 核ノズルに連通する流路の狭径部
12b 核ノズルに連通する流路の拡径部
13 囲周ノズルに連通する流路
14 清水噴出孔
15 ロッドに設定される外殻体
2 重合噴射ノズル
21 同核ノズル
22 同囲周ノズル
3 旋回流誘導構造
3a 多条螺旋構造として並列旋回する案内溝若しくは突条
3b 多条螺旋構造として並列旋回する案内溝若しくは突条
3c 多条螺旋構造として並列旋回する案内溝若しくは突条
3d 多条螺旋構造として並列旋回する案内溝若しくは突条
4 ボール弁座
41 ボール
5 注入ロッド駆動部
6 基台
7 注入ロッド作動機構
8 噴射材料槽に連絡するホース
9 ロッドクラウンの掘削刃
A ロッドモニター部
B ロッド本管
C ロッド挿入孔
E ロッドモニターのテーパー基部
G 対象地盤
X 地盤硬化材注入層
Y 硬化材高圧噴流
DESCRIPTION OF SYMBOLS 1 Injection rod 11 Swivel mechanism 12 The flow path connected to the core nozzle 12a The narrow diameter part of the flow path connected to the core nozzle 12b The enlarged diameter part of the flow path connected to the core nozzle 13 The flow path connected to the surrounding nozzle 14 Fresh water ejection Hole 15 Outer shell set on rod 2 Polymerization injection nozzle 21 Co-axial nozzle 22 Encircling nozzle 3 Swirl flow guiding structure 3a Guide groove or protrusion 3b rotating in parallel as a multi-strand spiral structure 3b Parallel swirling as a multi-strand spiral structure Guide grooves or ridges 3c Guide grooves or ridges rotating in parallel as a multi-helix structure 3d Guide grooves or ridges rotating in parallel as a multi-helix structure 4 Ball valve seat 41 Ball 5 Injection rod drive 6 Base 7 Injection Rod operating mechanism 8 Hose connected to the spray material tank 9 Rod crown drilling blade A Rod monitor B Rod main pipe C Rod insertion hole E Tapered base G target ground X ground hardened material injection layer Y stiffeners pressure jet of Ddomonita

Claims (12)

先端部に清水噴出孔、同側壁に核ノズルと囲周ノズルから成る重合噴射ノズルを設けた注入ロッドの、上記核ノズルに連絡する材料圧送流路を先端モニター部から核ノズル入口に到る範囲を拡径すると共に、その拡径部に、圧送される流体に螺旋旋回運動を与える旋回流誘導構造を形成した注入ロッドを、先端部から清水を噴出しつつ回動下降させて対象地盤の所定深度まで挿入し、所定深度において清水噴出孔を閉鎖すると共に、重合噴射ノズルの核部から高圧による地盤硬化材、囲周部からエアを噴射しつつ、注入ロッドを回動上昇させて円柱状の硬化材注入層を造成することを特徴とする地盤硬化材注入工法 The range from the tip monitor section to the core nozzle inlet of the material pressure feed channel connected to the core nozzle of the injection rod provided with the clear water injection hole at the tip and the polymerization injection nozzle consisting of the core nozzle and the surrounding nozzle on the side wall The injection rod formed with a swirl flow guiding structure that imparts a spiral swirling motion to the fluid to be pumped on the expanded diameter portion is rotated and lowered while ejecting fresh water from the distal end portion to determine the predetermined ground of the target ground. Inserted to the depth, closed the clear water injection hole at a predetermined depth, and while rotating the injection rod while raising the ground hardening material by high pressure from the core of the polymerization injection nozzle and air from the surrounding part, A ground hardener injection method characterized by creating a hardener injection layer 圧送される流体に螺旋旋回運動を与える旋回流誘導構造を、流路内壁に螺旋状の案内溝若しくは突条或いは板翼を形成して構成した請求項1記載の地盤硬化材注入工法 The ground hardening material injecting method according to claim 1 , wherein the swirl flow guiding structure for imparting a spiral swirling motion to the pumped fluid is configured by forming a spiral guide groove or a ridge or a plate blade on the inner wall of the flow path. 圧送される流体に螺旋旋回運動を与える旋回流誘導構造を、流路内壁に螺旋状の案内溝若しくは突条或いは板翼を形成して構成し、複数の案内溝若しくは突条或いは板翼が並列旋回する多条螺旋構造に構成した請求項1又は請求項2記載の地盤硬化材注入工法 A swirling flow guiding structure that imparts a spiral swirling motion to the pumped fluid is formed by forming a spiral guide groove or protrusion or plate blade on the inner wall of the flow path , and a plurality of guide grooves or protrusions or plate blades are arranged in parallel. The ground hardening material injection method of Claim 1 or Claim 2 comprised to the multi-spindle spiral structure which turns. 旋回流誘導構造の案内溝若しくは突条或いは板翼によって形成される流体誘導流路を螺旋角度のまま伸長してそれぞれの核ノズルに開通させ、1つ又は複数の高圧噴流を注入ロッド管壁に対して注入ロッド横断面円との同芯円円弧に対する接線方向に噴射口が形成されるようにした請求項1又は請求項2又は請求項3記載の地盤硬化材注入工法 The fluid guiding flow path formed by the guide groove or the ridge of the swirling flow guiding structure or the plate blade is elongated at the spiral angle and opened to each core nozzle, and one or a plurality of high-pressure jets are applied to the injection rod tube wall. 4. The ground hardening material injecting method according to claim 1, wherein the injection port is formed in a tangential direction with respect to a concentric circular arc with an injection rod cross-sectional circle. 1つ又は上下段差部位若しくは同一レベル部位からの複数の高圧噴流を注入ロッド管壁に対して注入ロッド横断面円との同芯円円弧に対する接線方向に噴射させると共に、高圧噴流の噴射方向に逆行する方向に注入ロッドを回動させるようにした請求項4記載の地盤硬化材注入工法 A plurality of high-pressure jets from one or both upper and lower step parts or the same level part are jetted to the injection rod tube wall in a direction tangential to the concentric circular arc with the cross-section circle of the injection rod , and reverse to the injection direction of the high-pressure jet The ground hardening material injection method according to claim 4, wherein the injection rod is rotated in a direction to be turned. 1つ又は上下段差部位若しくは同一レベル部位からの複数の高圧噴流を注入ロッド管壁に対して注入ロッド横断面円との同芯円円弧に対する接線方向に噴射させると共に、高圧噴流の噴射方向に順行する方向に注入ロッドを回動させるようにした請求項4記載の地盤硬化材注入工法 A plurality of high-pressure jets from one or upper and lower step parts or the same level part are injected in a tangential direction with respect to the concentric circular arc with the injection rod cross-sectional circle to the injection rod tube wall, and in the order of the injection direction of the high-pressure jets. The ground hardening material injection method according to claim 4, wherein the injection rod is rotated in the direction of travel. 先端部に清水噴出孔、同側壁に核ノズルと囲周ノズルから成る重合噴射ノズルを設けた注入ロッドの上記核ノズルに連絡する硬化材料圧送流路を先端モニター部から核ノズル入口に到る範囲を拡径すると共に、その拡径部に、圧送される流体に螺旋旋回運動を与える旋回流誘導構造を形成した注入ロッドを、回転上下動機構に支持して成ることを特徴とする地盤硬化材注入装置 The range from the tip monitor section to the core nozzle inlet through the hardened material pumping channel communicating with the core nozzle of the injection rod provided with a clear water injection hole at the tip and a polymerization injection nozzle consisting of a core nozzle and a surrounding nozzle on the side wall The ground hardening material is characterized in that an injection rod formed with a swirling flow guiding structure for giving a spiral swirling motion to the pumped fluid is supported by a rotating vertical movement mechanism in the expanded diameter portion. Injection device 旋回流誘導構造の形成を、注入ロッドの流路内壁面に螺旋状に案内溝若しくは突条或いは板翼を設定して行うようにした請求項7記載の地盤硬化材注入装置 8. The ground hardening material injecting apparatus according to claim 7, wherein the swirl flow guiding structure is formed by setting a guide groove or a ridge or a plate blade in a spiral shape on the inner wall surface of the injection rod. 螺旋状の案内溝若しくは突条或いは板翼による旋回流誘導構造を、複数条の案内溝若しくは突条或いは板翼が並列旋回する多条螺旋構造に構成した請求項7又は請求項8記載の地盤硬化材注入装置 The ground according to claim 7 or claim 8 , wherein the swirling flow guiding structure by means of spiral guide grooves or ridges or plate wings is formed into a multi-row spiral structure in which a plurality of guide grooves or ridges or plate wings swirl in parallel. Hardener injection device 螺旋構造の案内溝若しくは突条或いは板翼によって形成される流体誘導流路を螺旋角度のまま伸長して核ノズルに開通させ、1つ又は複数の高圧噴流が注入ロッド管壁に対して注入ロッド横断面円との同芯円円弧に対する接線方向に噴射する噴射口に形成した請求項8又は請求項9記載の地盤硬化材注入装置 The fluid guide channel formed by guide grooves or ridges or Itatsubasa the helical structure extends remains the helix angle is opened to the nucleus nozzle, injection rod for one or more high pressure jets injected rod tube wall The ground hardening material injecting device according to claim 8 or 9, wherein the ground hardening material injecting device is formed in an injection port for injecting in a direction tangential to a concentric circular arc with a cross-sectional circle. 多条螺旋構造の案内溝若しくは突条或いは板翼によって形成される流体誘導流路を螺旋角度のまま伸長してそれぞれの対応する核ノズルに開通させて複数の重合噴射ノズルを、注入ロッド管壁の上下段差部位若しくは同一レベル部位に設けるように構成した請求項8又は請求項9又は請求項10記載の地盤硬化材注入装置 A plurality of superposition jet nozzles are formed on the injection rod tube wall by extending the fluid guide passage formed by the guide grooves or protrusions of the multi-strand spiral structure or the plate blades at the spiral angle and opening the corresponding core nozzles. The ground hardening material injecting device according to claim 8, wherein the ground hardening material injecting device is configured to be provided at an upper and lower step portion or at the same level portion. 旋回流誘導構造を、芯材に螺旋翼若しくは多条螺旋翼を付設した軸体を先端モニター部の流路スーペス内に格納して構成するようにした請求項8又は請求項9又は請求項10又は請求項11記載の地盤硬化材注入装置 The swirling flow guiding structure, according to claim 8 or claim 9 or claim 10 so as to constitute stores shaft that attached the spiral blade or multi-start helical blades core material in the channel Supesu tip monitor portion Or the ground hardening material injection | pouring apparatus of Claim 11
JP2007128819A 2007-05-15 2007-05-15 Ground hardening material injection method and its equipment Active JP4504995B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007128819A JP4504995B2 (en) 2007-05-15 2007-05-15 Ground hardening material injection method and its equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007128819A JP4504995B2 (en) 2007-05-15 2007-05-15 Ground hardening material injection method and its equipment

Publications (2)

Publication Number Publication Date
JP2008285811A JP2008285811A (en) 2008-11-27
JP4504995B2 true JP4504995B2 (en) 2010-07-14

Family

ID=40145808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007128819A Active JP4504995B2 (en) 2007-05-15 2007-05-15 Ground hardening material injection method and its equipment

Country Status (1)

Country Link
JP (1) JP4504995B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5548942B2 (en) * 2010-01-14 2014-07-16 那須 ▲丈▼夫 Ground improvement injection pipe
IT1401219B1 (en) 2010-07-15 2013-07-12 Trevi Spa HEAD OF INJECTION TO INJECT PRESSURIZED FLUID CONSOLIDATING MIXTURES IN THE GROUND.
JP6576264B2 (en) * 2016-02-17 2019-09-18 東興ジオテック株式会社 High pressure jet agitating method
JP7158010B2 (en) * 2018-09-19 2022-10-21 株式会社ワイビーエム High-pressure injection method rod

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0383198U (en) * 1989-12-18 1991-08-23
JP2004027796A (en) * 2002-06-24 2004-01-29 Kazuo Iki Self-drilling injection device for use in high-pressure injection/agitation pile construction method
JP2004068439A (en) * 2002-08-07 2004-03-04 Compagnie Du Sol Pressurized liquid injecting head for excavating ground
JP2004076530A (en) * 2002-08-22 2004-03-11 Raito Kogyo Co Ltd In-ground fluid injector

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS528003B2 (en) * 1973-11-17 1977-03-05
JPS5451218A (en) * 1977-09-30 1979-04-21 Nippon Sougou Bousui Kk Grout injection pipe
JPS61165414A (en) * 1985-01-14 1986-07-26 Yoshiaki Togawa Stabilization work for ground
JPS63289110A (en) * 1987-05-20 1988-11-25 N I T:Kk Ground improving work by spiral jet flow
JPH03119219A (en) * 1989-09-29 1991-05-21 Yuji Kaneko Jet grout type underground retaining wall building method
JPH09158162A (en) * 1995-12-07 1997-06-17 Sutabii:Kk Accurately detecting method of soft and hard place of ground
JP3218369B2 (en) * 1997-01-09 2001-10-15 株式会社日東テクノ・グループ Ground improvement equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0383198U (en) * 1989-12-18 1991-08-23
JP2004027796A (en) * 2002-06-24 2004-01-29 Kazuo Iki Self-drilling injection device for use in high-pressure injection/agitation pile construction method
JP2004068439A (en) * 2002-08-07 2004-03-04 Compagnie Du Sol Pressurized liquid injecting head for excavating ground
JP2004076530A (en) * 2002-08-22 2004-03-11 Raito Kogyo Co Ltd In-ground fluid injector

Also Published As

Publication number Publication date
JP2008285811A (en) 2008-11-27

Similar Documents

Publication Publication Date Title
JP4504995B2 (en) Ground hardening material injection method and its equipment
CN102345441A (en) Self-propelled drilling method and pulsed cavitation swirling jet nozzle
JP6754914B1 (en) High-pressure injection nozzle device and ground improvement device equipped with it
KR101028218B1 (en) Jet-propelled rotational tube for grouting and jet-propelled rotational device for the same
JP2012021275A (en) Soil improvement method and monitor mechanism used in the same
JP4887179B2 (en) Ground improvement method and ground improvement equipment
JP2007204983A (en) Swivel for soil excavating tool, and soil improving method
JP4429326B2 (en) Ground hardening material injection method and its equipment
JP5145180B2 (en) Ground hardening material injection method and its equipment
JP2007077739A (en) Jet grout type ground improvement construction method
JP5734601B2 (en) Ground improvement method and equipment
JP5875849B2 (en) Injection stirring ground improvement method
JP2739641B2 (en) Ground improvement method
CN212479214U (en) Sand bed probing sampling drilling tool
JP2008081942A (en) Construction method for water passage portion of underground wall
JP2007016534A (en) Ground hardening material injecting rod
CN209761345U (en) Self-advancing type porous jet drill bit with supporting plate
JPS594006B2 (en) Ground improvement method
JP5346977B2 (en) Ground hardening layer construction method and its equipment
JP3912740B2 (en) High pressure spray nozzle tube and solidification pile construction device with the same
JP5498881B2 (en) Ground improvement method
JP5573235B2 (en) Jet agitator and ground improvement method
JP2007262699A (en) Injection structure of high-pressure injection stirring apparatus
CN117868134A (en) Spiral drill bit for high-pressure jet grouting
JP6307049B2 (en) Ground hardening layer construction method and its equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100423

R150 Certificate of patent or registration of utility model

Ref document number: 4504995

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250