JP5498881B2 - Ground improvement method - Google Patents

Ground improvement method Download PDF

Info

Publication number
JP5498881B2
JP5498881B2 JP2010157936A JP2010157936A JP5498881B2 JP 5498881 B2 JP5498881 B2 JP 5498881B2 JP 2010157936 A JP2010157936 A JP 2010157936A JP 2010157936 A JP2010157936 A JP 2010157936A JP 5498881 B2 JP5498881 B2 JP 5498881B2
Authority
JP
Japan
Prior art keywords
injection
high pressure
monitor mechanism
passage
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010157936A
Other languages
Japanese (ja)
Other versions
JP2012021276A (en
Inventor
裕治 金子
Original Assignee
裕治 金子
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 裕治 金子 filed Critical 裕治 金子
Priority to JP2010157936A priority Critical patent/JP5498881B2/en
Publication of JP2012021276A publication Critical patent/JP2012021276A/en
Application granted granted Critical
Publication of JP5498881B2 publication Critical patent/JP5498881B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Description

本発明は、超高圧噴流液による地盤の切削を旋回噴流で行う地盤改良工法に関する。   The present invention relates to a ground improvement method for performing ground cutting with a super-high pressure jet liquid using a swirling jet.

従来、超高圧噴流液により地盤を切削する地盤改良工法としては、超高圧噴射工法が知られている。この超高圧噴射工法にはCCP工法等の単管式超高圧噴射工法や、ジェットグラウト工法(JSG工法)等の二重管式超高圧噴射工法、コラムジェットグラウト工法(CJG工法)やロジンジェットパイル工法(RJP工法)等の三重管式超高圧噴射工法などがある。   Conventionally, as a ground improvement method for cutting the ground with an ultrahigh pressure jet liquid, an ultrahigh pressure jet method is known. This ultra high pressure injection method includes single pipe type super high pressure injection method such as CCP method, double pipe type super high pressure injection method such as jet grouting method (JSG method), column jet grouting method (CJG method) and rosin jet pile. There are triple pipe type ultra-high pressure injection methods such as the construction method (RJP method).

この種の超高圧噴流液により地盤を切削する地盤改良工法では、地中の目標深さまで挿入された噴射管ロッドの先端部に設けられたモニター機構の硬化材噴射ノズルから超高圧噴流液(セメントミルク等の超高圧硬化材)を地盤中に噴射させ、噴射管ロッドを旋回させながら引き上げることにより、超高圧噴流液による地盤の切削と、土粒子と硬化材の混合攪拌とを旋回噴流で行ってパイル状の固化体(改良体)を造成している。超高圧噴流液による地盤の切削・攪拌機構は、動圧作用、衝撃力、脈動負荷、キャビテーション現象、クサビ効果、研磨効果等が効果的に働くことによるものである。   In this ground improvement method of cutting the ground with this kind of ultra-high pressure jet liquid, the super-high pressure jet liquid (cement) is supplied from the curing material injection nozzle of the monitor mechanism provided at the tip of the injection pipe rod inserted to the target depth in the ground. Super-high pressure hardener such as milk) is sprayed into the ground and pulled up while rotating the spray tube rod to perform ground cutting with ultrahigh-pressure jet liquid and mixing stirring of soil particles and hardener with a swirling jet A pile-like solidified body (improved body) is created. The ground cutting / stirring mechanism by the super-high pressure jet liquid is based on the effective action of dynamic pressure action, impact force, pulsation load, cavitation phenomenon, wedge effect, polishing effect and the like.

上記モニター機構としては、図7に示すように、2つの硬化材噴射ノズルN1,N2をモニター管の管側部に、管軸線に対して直角方向逆向きで取り付けて超高圧液体を逆方向に噴射するようにした構造のモニター機構1がある(例えば、特許文献1参照。)。これによれば、単一の硬化材噴射ノズルでは超高圧硬化材の噴射反力によって噴射管ロッドの特に先端部にぶれを生じるが、2つの硬化材噴射ノズルN1,N2から逆方向に超高圧液体を噴射するから、各硬化材噴射ノズルN1,N2で互いの噴射反力を相殺でき、噴射管ロッドのぶれも防止できる。   As shown in FIG. 7, the monitor mechanism has two hardener injection nozzles N1 and N2 attached to the tube side portion of the monitor tube in the opposite direction perpendicular to the tube axis so that the ultrahigh pressure liquid is reversed. There is a monitor mechanism 1 having a structure for jetting (see, for example, Patent Document 1). According to this, in a single hardened material injection nozzle, the injection reaction force of the ultrahigh pressure hardened material causes blurring at the tip portion of the injection tube rod, but the high pressure in the opposite direction from the two hardened material injection nozzles N1 and N2 Since the liquid is ejected, each of the curing material ejection nozzles N1 and N2 can cancel out the ejection reaction force of each other, and the jet tube rod can be prevented from shaking.

そして、2つの硬化材噴射ノズルN1,N2は、通常、一方の硬化材噴射ノズルN1の軸線X1と他方の硬化材噴射ノズルN2の軸線X2とを平行にしている。図7でいえば、噴射管ロッドの軸線と平行な向きに見た場合に、一方の硬化材噴射ノズルN1の軸線X1と直交する仮想線Z(この例では、仮想線Zはモニター機構1の軸心を通るようになっている)を考えると、他方の硬化材噴射ノズルN2の軸線X2も、この仮想線Zと直交するようになっている。つまり、この仮想線Zから測った一方の硬化材噴射ノズルN1の軸線X1の方向(仮想線Zと軸線X1のなす角)をθ1、仮想線Zから測った他方の硬化材噴射ノズルN2の軸線X2の方向(仮想線Zと軸線X2のなす角)をθ2とすると、θ1=θ2=90°となっている。(以下では、このようにして定められたθ1,θ2を、それぞれ、硬化材噴射ノズルN1,N2の「噴射方向角度」という。)   The two hardener injection nozzles N1 and N2 normally have the axis X1 of one hardener injection nozzle N1 and the axis X2 of the other hardener injection nozzle N2 in parallel. In FIG. 7, when viewed in a direction parallel to the axis of the injection tube rod, an imaginary line Z (in this example, the imaginary line Z of the monitor mechanism 1 is perpendicular to the axis X1 of one of the hardener injection nozzles N1. The axis X2 of the other curing material injection nozzle N2 is also orthogonal to the imaginary line Z. That is, the direction of the axis X1 (angle formed by the imaginary line Z and the axis X1) of one of the hardener injection nozzles N1 measured from the virtual line Z is θ1, and the axis of the other hardener injection nozzle N2 is measured from the virtual line Z If the direction of X2 (the angle formed by the imaginary line Z and the axis X2) is θ2, θ1 = θ2 = 90 °. (Hereinafter, θ1 and θ2 determined in this way are referred to as “injection direction angles” of the curing material injection nozzles N1 and N2, respectively.)

他方、モニター機構の硬化材噴射ノズルから超高圧硬化材を管半径方向へ噴射させながら噴射管ロッドを旋回駆動して、超高圧硬化材の高圧噴流でその周囲の地盤を切削攪拌して造成するさい、モニター機構が1回転する間にモニター機構を所定回転角度ごとに一定時間停止させるようにして間欠的に回転させながらモニター機構を引き上げる地盤改良工法も知られている(例えば、特許文献2)。   On the other hand, the injection tube rod is driven to rotate while spraying the ultra high pressure hardened material in the radial direction of the tube from the curing material spray nozzle of the monitor mechanism, and the surrounding ground is cut and stirred by the high pressure jet of the ultra high pressure hardened material. In addition, there is also known a ground improvement method for pulling up the monitor mechanism while rotating the monitor mechanism intermittently so that the monitor mechanism stops at a predetermined rotation angle for one rotation while the monitor mechanism rotates once (for example, Patent Document 2). .

特開昭56−142914号公報(第5図)JP-A-56-142914 (FIG. 5) 特公平6−19135号公報Japanese Patent Publication No. 6-19135

しかしながら、硬化材噴射ノズルN1,N2の軸線X1,X2が互いに逆向きで平行な上記モニター機構1を、特許文献2に記載されたような方法に使用した場合、回転角度の設定如何によっては同じところばかりが切削されるケースがあり、固化体の周囲の造成面の仕上がりに大きな不均一が生じる可能性がある。   However, when the monitor mechanism 1 in which the axes X1 and X2 of the curing material injection nozzles N1 and N2 are opposite to each other and parallel is used in the method described in Patent Document 2, the same depending on the setting of the rotation angle. However, there are cases where the material is cut, and there is a possibility that a large non-uniformity may occur in the finished surface around the solidified body.

本発明は、上記のような問題を解決するためになされたものであり、その目的とするところは、固化体の周囲の造成面をより均一に仕上げることができる地盤改良工法を提供することにある。   The present invention has been made to solve the above-described problems, and the object of the present invention is to provide a ground improvement method capable of finishing the formation surface around the solidified body more uniformly. is there.

本発明の地盤改良工法は、請求項1に記載のように、噴射管ロッドを地中の目標深さまで挿入し、この噴射管ロッドの頭部に取り付けたスイベルの超高圧硬化材入口から硬化材を超高圧で圧入し、前記噴射管ロッドの先端部に組み付けたモニター機構の硬化材噴射ノズルから前記超高圧硬化材を管半径方向へ噴射させながら前記噴射管ロッドを旋回駆動して、前記超高圧硬化材の高圧噴流でその周囲の地盤を切削攪拌して造成するさい、前記モニター機構が1回転する間に前記モニター機構を所定回転角度ごとに停止させるようにして間欠的に回転させながら前記モニター機構を引き上げる地盤改良工法において、前記硬化材噴射ノズルを互いに逆向きで2つ設けるとともに、一方の硬化材噴射ノズルの軸線と他方の硬化材噴射ノズルの軸線が互いに平行とならないようにずらし、このずれ角度は、前記モニター機構の1回の回転角度の半分の角度に設定されていることを特徴とする。   According to the ground improvement method of the present invention, the injection pipe rod is inserted to a target depth in the ground, and the hardening material is inserted from the ultrahigh pressure hardening material inlet of the swivel attached to the head of the injection pipe rod. The injection tube rod is pivotally driven while spraying the ultra-high pressure hardened material in the radial direction of the tube from the hardening material injection nozzle of the monitor mechanism assembled at the tip of the injection tube rod. When the surrounding ground is cut and agitated with a high-pressure jet of high-pressure hardened material, the monitor mechanism is rotated intermittently so that the monitor mechanism is stopped at every predetermined rotation angle during one rotation of the monitor mechanism. In the ground improvement method for raising the monitor mechanism, the two curing material spray nozzles are provided in opposite directions, and the axis of one curing material spray nozzle and the axis of the other curing material spray nozzle Shifted so as not to be parallel to each other, the offset angle is characterized by being set to half of the angle of one rotation angle of said monitor mechanism.

本発明によれば、一方の硬化材噴射ノズルの軸線と他方の硬化材噴射ノズルの軸線が互いに平行とならないようにずらすとともに、このずれ角度をモニター機構の1回の回転角度の半分の角度に設定する(逆に言えば、モニター機構の1回の回転角度を両噴射ノズルのずれ角度の2倍の角度に設定する)ことにより、一方の硬化材噴射ノズルの停止位置の間に他方の硬化材噴射ノズルの停止位置がくるので、固化体の周囲の造成面をより均一に仕上げることができる。   According to the present invention, the axis of one curing material injection nozzle and the axis of the other curing material injection nozzle are shifted so as not to be parallel to each other, and this shift angle is set to half the rotation angle of the monitor mechanism once. By setting (in other words, setting the rotation angle of the monitor mechanism once to be twice the deviation angle of both injection nozzles), the other curing is performed between the stop positions of one of the curing material injection nozzles. Since the stop position of the material injection nozzle comes, the formation surface around the solidified body can be finished more uniformly.

本発明の一実施例のモニター機構の縦断面図である。It is a longitudinal cross-sectional view of the monitor mechanism of one Example of this invention. 図1のモニター機構の横断面図である。It is a cross-sectional view of the monitor mechanism of FIG. 本発明の地盤改良工法に使用される噴射管ロッドの頭部に取り付けられるスイベルの外観図である。It is an external view of the swivel attached to the head of the injection pipe rod used for the ground improvement construction method of the present invention. 本発明の一実施例の地盤改良工法の施工手順を示す説明図である。It is explanatory drawing which shows the construction procedure of the ground improvement construction method of one Example of this invention. 図1のモニター機構の概略横断面図である。It is a schematic cross-sectional view of the monitor mechanism of FIG. 本発明のモニター機構の硬化材噴射ノズルからの超高圧液体の噴射方向角度およびずれ角度の説明図である。(a)はモニター機構が180°回転(半回転)したときの様子を表わしており、(b)はモニター機構が360°回転したときの様子を表わしている。It is explanatory drawing of the injection direction angle and deviation angle of the ultrahigh pressure liquid from the hardening material injection nozzle of the monitor mechanism of this invention. (A) represents a state when the monitor mechanism is rotated 180 ° (half rotation), and (b) represents a state when the monitor mechanism is rotated 360 °. 従来例のモニター機構の硬化材噴射ノズル部分の横断面図である。It is a cross-sectional view of the hardening material injection nozzle portion of the monitor mechanism of the conventional example. 従来例のモニター機構における超高圧液体通路と硬化材噴射ノズルの取合い部分を示す縦断面図である。It is a longitudinal cross-sectional view which shows the connection part of the ultrahigh pressure liquid channel | path and the hardening | curing material injection nozzle in the monitor mechanism of a prior art example.

以下、本発明の実施形態を図面に基づいて説明する。図1において、本発明の地盤改良工法に使用する二重管構造のモニター機構1は、ジェットグラウト工法等の二重管式超高圧噴射工法などによる地盤改良工法にて地中にパイル状の固化体(改良体、以下同じ)を造成する際に使用する二重管用の噴射管ロッド2の先端部(下部)に取り付けられる。噴射管ロッド2の頭部(上部)には図3に示す二重管用のスイベル5が取り付けられる。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Referring to FIG. 1, a double-pipe structure monitoring mechanism 1 used in the ground improvement method of the present invention is a solidified pile in the ground by a ground improvement method such as a double-pipe super-high pressure injection method such as a jet grout method. It attaches to the front-end | tip part (lower part) of the injection pipe rod 2 for double pipes used when constructing | assembling a body (an improved body, and the same hereafter). A double pipe swivel 5 shown in FIG. 3 is attached to the head (upper part) of the injection pipe rod 2.

スイベル5は、図3に示すように、その上部の周面一部に開口され、超高圧ポンプ(図示せず)からの超高圧硬化材入口6と、圧縮空気入口5aと、超高圧硬化材入口6から中心部に延び、更に軸心に沿って下端面まで連通する通路7と、圧縮空気入口5aから通路7の外周側を囲む形に下端面まで連通する圧縮空気通路5bとを備えている。尚、スイベル5の頭部には噴射管ロッド2をクレーン等で吊持するためのフック部8を一体に設けている。   As shown in FIG. 3, the swivel 5 is opened in a part of the upper peripheral surface thereof, and an ultra-high pressure curing material inlet 6 from an ultra-high pressure pump (not shown), a compressed air inlet 5 a, and an ultra-high pressure curing material. A passage 7 that extends from the inlet 6 to the center and communicates with the lower end surface along the axis, and a compressed air passage 5b that communicates from the compressed air inlet 5a to the lower end surface so as to surround the outer periphery of the passage 7. Yes. A hook portion 8 for suspending the injection tube rod 2 with a crane or the like is integrally provided on the head of the swivel 5.

図1、図2において、二重管構造のモニター機構1は、二つの硬化材噴射ノズルN1,N2を持つ両噴射用のモニター機構1であって、超高圧硬化材通路4及び圧縮空気通路21を有する二重管の噴射管ロッド2の先端側に取り付けられるものである。噴射管ロッド2の超高圧硬化材通路4の上端部は図3に示す二重管用のスイベル5の超高圧硬化材入口6と、圧縮空気通路21の上端部は同スイベル5の圧縮空気入口5aとそれぞれ連通している。   1 and 2, a double-pipe monitoring mechanism 1 is a two-injection monitoring mechanism 1 having two curing material injection nozzles N1 and N2, and includes an ultra-high pressure curing material passage 4 and a compressed air passage 21. It is attached to the front end side of the injection tube rod 2 of a double tube having The upper end portion of the ultrahigh pressure hardened material passage 4 of the injection tube rod 2 is the ultrahigh pressure hardened material inlet 6 of the double tube swivel 5 shown in FIG. 3, and the upper end portion of the compressed air passage 21 is the compressed air inlet 5a of the swivel 5. And communicate with each other.

二重管構造のモニター機構1は、スイベル5の超高圧硬化材入口6と噴射管ロッド2内の超高圧硬化材通路4を介して連通する超高圧液体通路11,11と、同スイベル5の圧縮空気入口5aと同噴射管ロッド2内の圧縮空気通路21を介して連通する圧縮空気通路23を有する二重管構造のモニター管10と、モニター管10の管側部に各超高圧液体通路11の下端部に連通するよう設けられた2つの硬化材噴射ノズルN1,N2と、各圧縮空気通路23の下端部に設けられ且つ各硬化材噴射ノズルN1,N2を包囲する形に設けられた圧縮空気噴射ノズル22を有する。   The double-pipe structure monitoring mechanism 1 includes an ultrahigh-pressure liquid passages 11 and 11 communicating with an ultrahigh-pressure hardener inlet 6 of the swivel 5 and an ultrahigh-pressure hardener passage 4 in the injection tube rod 2, and the swivel 5. A monitor pipe 10 having a double pipe structure having a compressed air passage 23 communicating with the compressed air inlet 5a via a compressed air passage 21 in the injection pipe rod 2, and each super high pressure liquid passage on the side of the monitor pipe 10 The two hardener injection nozzles N1, N2 provided so as to communicate with the lower end portion of 11 and the lower end portion of each compressed air passage 23 and provided so as to surround each of the hardener injection nozzles N1, N2. A compressed air injection nozzle 22 is provided.

上記超高圧液体通路11は以下のように構成している。   The ultra high pressure liquid passage 11 is configured as follows.

通常、図8に示すように、モニター機構30の超高圧噴流液を地盤中に噴射させる硬化材噴射ノズル31は、超高圧液体通路32から直角状に設けられている(例えば、特開平6−306846号公報参照。)。   Normally, as shown in FIG. 8, the curing material injection nozzle 31 for injecting the ultra-high pressure jet liquid of the monitor mechanism 30 into the ground is provided at a right angle from the ultra-high pressure liquid passage 32 (for example, JP-A-6-6 No. 306846).

しかし、近時の地盤改良においては、超高圧ポンプの開発が進み、超高圧噴流液の吐出量や吐出圧の増大が可能となったことに伴い、地盤中に造成するパイル状の固化体の造成径の大径化がすすめられるようになっている。造成径が大きくなるにしたがって、吐出量と吐出圧を増加したり、噴射管ロッドを二重管、三重管として硬化材噴射ノズルを増やしたり、超高圧ポンプも増やしたりすることで、造成径の拡大化の実現を図っている。
このように造成径を大径化するにあたっては、噴射管ロッド内を圧送するセメントミルク等の超高圧硬化材の送給量が大量であることが求められるようになってきた。
However, in recent ground improvement, the development of ultra-high pressure pumps has progressed, and the discharge volume and discharge pressure of ultra-high pressure jet liquid has become possible. Increasing the diameter of the formation is recommended. By increasing the discharge volume and discharge pressure, increasing the discharge diameter and discharge pressure, increasing the injection pipe rod as a double pipe and triple pipe, increasing the number of curing material injection nozzles, and increasing the number of ultrahigh pressure pumps, We are trying to realize expansion.
Thus, in order to increase the diameter of the formed diameter, it has been required to supply a large amount of ultrahigh pressure hardened material such as cement milk that is pumped through the inside of the injection tube rod.

しかしながら、かかる超高圧硬化材を大量に送給するとなると、噴射管ロッド径やモニター機構の径に機械装置上制約、限度があるために、流速の増加が避けられず、当該流速の増加により結果的に噴射管ロッドやモニター機構内に形成されている図8に示すごとき超高圧液体通路32と硬化材噴射ノズル31の直角部に於いては不可避的に乱流が生じ、地盤中に噴出するエネルギーの損失を引き起す原因となり、造成径の大径化には限界があった。また、造成径の大径化に伴う超高圧硬化材の吐出量と吐出圧の増加によってモニター機構の損耗が激しく、消耗費の高騰化につながっている。   However, when a large amount of such ultra-high-pressure hardened material is fed, the increase in the flow rate is unavoidable due to the limitations and limitations of the injection tube rod diameter and the monitor mechanism diameter. In particular, a turbulent flow is inevitably generated in the right-angle portion of the ultrahigh-pressure liquid passage 32 and the hardening material injection nozzle 31 as shown in FIG. This caused energy loss, and there was a limit to increasing the diameter of the product. In addition, due to the increase in the discharge amount and discharge pressure of the ultra-high pressure hardened material accompanying the increase in the diameter of the formed diameter, the monitor mechanism is severely worn, leading to an increase in the consumption cost.

このような問題を解消するために、上記モニター機構1内に形成される超高圧液体通路11,11はその構成に工夫を凝らしている。   In order to solve such a problem, the ultrahigh pressure liquid passages 11 and 11 formed in the monitor mechanism 1 have been devised.

すなわち、図1に示すように、モニター機構1は、スイベル5の通路7の下端に連通する噴射管ロッド2内の超高圧硬化材通路4からの超高圧硬化材を受け入れる入口9、超高圧硬化材を管半径方向へ互いに逆方向に噴射させる2つの硬化材噴射ノズルN1,N2、および入口9から各硬化材噴射ノズルN1,N2までの間に連通状に形成される超高圧液体通路11を有する二重管構造からなる。各超高圧液体通路11は、入口9側に連続して位置する入口側通路12と、各硬化材噴射ノズルN1,N2側に連続して位置する噴射ノズル側通路13と、入口側通路12と各噴射ノズル側通路13の間に連続して位置する少なくとも一つの中間通路、すなわち図示例では二つの第1および第2の中間通路14・15とを備える。   That is, as shown in FIG. 1, the monitor mechanism 1 includes an inlet 9 for receiving an ultrahigh-pressure curing material from the ultrahigh-pressure curing material passage 4 in the injection tube rod 2 communicating with the lower end of the passage 7 of the swivel 5, ultrahigh-pressure curing. Two curing material spray nozzles N1, N2 for spraying the material in the pipe radial direction in mutually opposite directions, and an ultrahigh pressure liquid passage 11 formed in communication between the inlet 9 and each of the curing material spray nozzles N1, N2 It has a double tube structure. Each ultra-high pressure liquid passage 11 includes an inlet-side passage 12 that is continuously located on the inlet 9 side, an injection nozzle-side passage 13 that is continuously located on each of the curing material injection nozzles N1 and N2, and an inlet-side passage 12. At least one intermediate passage located continuously between the injection nozzle side passages 13, that is, in the illustrated example, two first and second intermediate passages 14 and 15 are provided.

本発明者は、モニター機構1の入口9から各硬化材噴射ノズルN1,N2までの超高圧液体通路11にコーナー部が存在している場合、そのコーナー部において超高圧硬化材が屈曲させられるときの曲がり角が50°を超えると、超高圧液体通路11に超高圧液体(硬化材)の吐出量、吐出圧が増加する場合に、超高圧液体通路11内の流れ状態は乱流となることを知見した。そこで、かかる乱流の発生を防止でき、超高圧液体がスムーズに硬化材噴射ノズルNに突入して、噴射される超高圧噴流の噴流断面を円状にし、かつ円断面の大きさを小さくすることができ、これにより超高圧噴流液体の飛距離を飛躍的に伸ばすことができるように、モニター機構1の入口9から各硬化材噴射ノズルN1,N2までの超高圧液体通路11に存在するコーナー部の曲がり角α1〜α4をすべて50°以内に設定している。   When the corner portion is present in the ultrahigh pressure liquid passage 11 from the inlet 9 of the monitor mechanism 1 to each of the curing material injection nozzles N1 and N2, the present inventor can bend the ultrahigh pressure curing material at the corner portion. If the bend angle exceeds 50 °, the flow state in the ultrahigh pressure liquid passage 11 becomes turbulent when the discharge amount and discharge pressure of the ultrahigh pressure liquid (curing material) increase in the ultrahigh pressure liquid passage 11. I found out. Therefore, the generation of such turbulent flow can be prevented, the ultrahigh pressure liquid smoothly enters the curing material injection nozzle N, and the jet section of the jetted ultrahigh pressure jet is made circular and the size of the circular section is reduced. Corners existing in the ultrahigh pressure liquid passage 11 from the inlet 9 of the monitor mechanism 1 to the respective curing material injection nozzles N1, N2 so that the flying distance of the ultrahigh pressure jet liquid can be dramatically increased. All the bending angles α1 to α4 are set within 50 °.

具体的には、流れ方向上流側から見た場合の噴射管ロッド2の軸線に対する入口側通路12の軸線が屈曲する角度α1、流れ方向上流側から見た場合の入口側通路12の軸線に対する第1の中間通路14の軸線が屈曲する角度α2、流れ方向上流側から見た場合の第1の中間通路14の軸線に対する第2の中間通路15の軸線が屈曲する角度α3、および流れ方向上流側から見た場合の第2の中間通路15の軸線に対する噴射ノズル側通路13の軸線が屈曲する角度α4を、すべて50°以内に設定している。   Specifically, the angle α1 at which the axis of the inlet side passage 12 bends with respect to the axis of the injection tube rod 2 when viewed from the upstream side in the flow direction, and the first axis with respect to the axis of the inlet side passage 12 when viewed from the upstream side in the flow direction. The angle α2 at which the axis of the first intermediate passage 14 bends, the angle α3 at which the axis of the second intermediate passage 15 bends with respect to the axis of the first intermediate passage 14 when viewed from the upstream side in the flow direction, and the upstream side in the flow direction The angles α4 at which the axis of the injection nozzle side passage 13 bends with respect to the axis of the second intermediate passage 15 when viewed from above are all set within 50 °.

α1〜α4の具体的な数値としては、例えば、α1〜α4をすべて45°に設定してもよいし、α1〜α3を50°に設定し、α4のみ40°に設定してもよい。   As specific numerical values of α1 to α4, for example, all of α1 to α4 may be set to 45 °, α1 to α3 may be set to 50 °, and only α4 may be set to 40 °.

このような構成により、乱流の発生を効果的に防止することができ、超高圧噴流液体の飛距離を飛躍的に伸ばすことができる。   With such a configuration, generation of turbulent flow can be effectively prevented, and the flight distance of the super-high pressure jet liquid can be greatly increased.

また、本実施形態では、流れ方向上流側から見て、噴射管ロッド2の軸線に対し入口側通路12の軸線が各硬化材噴射ノズルN1,N2の位置する側とは反対側に屈曲するように入口側通路12が設けられ、そこから第1の中間通路14が下方(ほぼ真下)に伸びるように設けられ、さらに、第1の中間通路14よりも短い第2の中間通路15を介して噴射ノズル側通路13に接続されているので、噴射ノズル側通路13を長く設定することができる。これにより、噴射ノズル側通路13において流れを整流化でき、この面でも超高圧噴流液体の飛距離の増大に寄与している。   Further, in the present embodiment, when viewed from the upstream side in the flow direction, the axis of the inlet side passage 12 is bent to the opposite side of the axis of the injection tube rod 2 from the side where each of the hardener injection nozzles N1, N2 is located. Is provided with an inlet-side passage 12 extending from the first intermediate passage 14 downward (substantially directly below), and further via a second intermediate passage 15 shorter than the first intermediate passage 14. Since it is connected to the injection nozzle side passage 13, the injection nozzle side passage 13 can be set long. As a result, the flow can be rectified in the injection nozzle side passage 13, and this aspect also contributes to an increase in the flight distance of the ultra-high pressure jet liquid.

入口側通路12、第1・2の中間通路14・15、あるいは噴射ノズル側通路13が湾曲状に形成されていると、該湾曲状の通路の出口で整流とならないため、入口側通路12、第1・2の中間通路14・15、および噴射ノズル側通路13はそれぞれ直線状に形成して、液体の流れを各通路の出口側(下流側)で整えて乱れのない流れになるようにしている。   If the inlet-side passage 12, the first and second intermediate passages 14, 15 or the injection nozzle-side passage 13 are formed in a curved shape, rectification is not performed at the outlet of the curved passage. The first and second intermediate passages 14 and 15 and the injection nozzle side passage 13 are respectively formed in a straight line so that the flow of liquid is adjusted on the outlet side (downstream side) of each passage so that there is no turbulent flow. ing.

この点は、超高圧液体通路11の屈曲部(コーナー部)も同様であり、各屈曲部が円弧状に丸味を有していると、ここで乱流が発生し易くなる。そこで、超高圧液体通路11の屈曲部はコーナー部に形成している。   The same applies to the bent portions (corner portions) of the ultrahigh-pressure liquid passage 11. If each bent portion is rounded in an arc shape, turbulent flow is likely to occur here. Therefore, the bent portion of the ultrahigh pressure liquid passage 11 is formed at the corner portion.

上記超高圧液体通路11の内面、および硬化材噴射ノズルN1,N2は、硬化材による損耗を減少し、耐摩耗性を付与するために、超硬合金16、例えば、炭化タングステンとコバルトを混合して焼結した超硬合金で形成している。   The inner surface of the ultra-high pressure liquid passage 11 and the hardener injection nozzles N1 and N2 are mixed with a cemented carbide 16, for example, tungsten carbide and cobalt, in order to reduce wear due to the hardener and to provide wear resistance. It is made of sintered cemented carbide.

超高圧液体を互いに逆方向に噴射する2つの硬化材噴射ノズルN1,N2は、モニター管10の管側部に、管軸線に対して直角方向逆向きで取り付けている。   The two hardener injection nozzles N1 and N2 that inject the ultrahigh-pressure liquid in opposite directions are attached to the tube side portion of the monitor tube 10 in the direction perpendicular to the tube axis.

本実施形態では、超高圧液体を互いに逆方向に噴射する2つの硬化材噴射ノズルN1,N2において、図2、図5に示すように、一方の硬化材噴射ノズルN1の軸線aと他方の硬化材噴射ノズルN2の軸線bが互いに平行とならないようにずらされている。このときのずれ角度Sは、モニター機構1の1回の回転角度θ(図6(a)参照。以下同じ)の半分の角度(1/2)θとする。なお、図2及び図5中、矢印Tはモニター機構1の回転方向を示す。したがって、前述した噴射方向角度θ1,θ2とずれ角度Sとの関係はθ1=θ2+Sとなっている。なお、図6(a)(b)中において、放射状の実線は、一方の硬化材噴射ノズルN1(の軸線a)の停止位置を、放射状の破線は、他方の硬化材噴射ノズルN2(の軸線b)の停止位置を表わしている。   In the present embodiment, in the two hardener injection nozzles N1 and N2 that inject the ultrahigh pressure liquid in opposite directions, as shown in FIGS. 2 and 5, the axis a of one hardener injection nozzle N1 and the other cure The axis b of the material injection nozzle N2 is shifted so as not to be parallel to each other. The shift angle S at this time is an angle (1/2) θ that is half of the rotation angle θ of the monitor mechanism 1 (see FIG. 6A, the same applies hereinafter). 2 and 5, an arrow T indicates the rotation direction of the monitor mechanism 1. Therefore, the relationship between the jetting direction angles θ1, θ2 and the deviation angle S is θ1 = θ2 + S. In FIGS. 6A and 6B, the radial solid line indicates the stop position of one of the hardener injection nozzles N1 (its axis a), and the radial broken line indicates the axis of the other hardener injection nozzles N2 (of its axis). This represents the stop position of b).

モニター機構1の1回の回転角度θは、固化体Pの造成径Dの大きさによって異ならせるのが好ましい。例えば、図6に示す固化体Pの造成径Dが5000mmの場合は、1回の回転角度θは6.00°、造成径Dが4000mmの場合は、1回の回転角度θは8.00°、造成径Dが3000mmの場合は、1回の回転角度θは12.00°とする。これによって、ずれ角度Sも違ってくる。すなわち、造成径Dが5000mmの場合は、ずれ角度Sは3.00°、造成径Dが4000mmの場合は、ずれ角度Sは4.00°、造成径Dが3000mmの場合は、ずれ角度Sは6.00°とする。したがって、予めずれ角度Sが異なる多数のモニター機構を用意しておき、造成径Dに応じて使い分けるのが好ましい。一般に、造成径Dが大きいほど、ずれ角度Sは小さなものを使用する(したがって、1回の回転角度θ=2Sも小さくなる)。   The one rotation angle θ of the monitor mechanism 1 is preferably varied depending on the size of the formation diameter D of the solidified body P. For example, when the formation diameter D of the solidified body P shown in FIG. 6 is 5000 mm, the one rotation angle θ is 6.00 °, and when the formation diameter D is 4000 mm, the one rotation angle θ is 8.00. When the forming diameter D is 3000 mm, the one rotation angle θ is 12.00 °. As a result, the deviation angle S is also different. That is, when the creation diameter D is 5000 mm, the deviation angle S is 3.00 °, when the creation diameter D is 4000 mm, the deviation angle S is 4.00 °, and when the creation diameter D is 3000 mm, the deviation angle S. Is 6.00 °. Therefore, it is preferable to prepare a number of monitor mechanisms having different deviation angles S in advance and use them according to the formation diameter D. In general, the larger the formation diameter D, the smaller the deviation angle S (therefore, the one rotation angle θ = 2S is also reduced).

次に、上記のモニター機構1を先端部に取り付けた噴射管ロッド2を使用するジェットグラウト工法等の二重管式超高圧噴射工法による本発明に係る地盤改良工法にて地中に固化体(改良体、以下、同じ)Pを垂直に造成する施工手順を図4の(a)〜(e)を参照して以下に説明する。図4の(a)は先導管による削孔工程図、(b)噴射管ロッドの建て込み工程図、(c)は水による噴射テスト工程図、(d)はパイル状の固化体の造成工程図、(e)は噴射管ロッドの引き抜き工程図である。以下、工程順に説明する。   Next, in the ground improvement method according to the present invention by a double pipe type super high pressure injection method such as a jet grout method using the injection tube rod 2 with the monitor mechanism 1 attached to the tip, the solidified body ( A construction procedure for vertically building the improved body (hereinafter the same) P will be described below with reference to FIGS. FIG. 4A is a drilling process diagram using a leading conduit, FIG. 4B is a process diagram for building an injection tube rod, FIG. 4C is a water injection test process diagram, and FIG. 4D is a process for creating a pile-shaped solidified body. FIG. 4E is a drawing process drawing of the injection tube rod. Hereinafter, it demonstrates in order of a process.

(1)先導管による削孔工程
図4(a)に示すように、地上にボーリングマシンMを設置し、先導管17による削孔を水又はベントナイト泥水を噴出しながら目的の削孔深度まで行う。即ち、先導管17の上端部に接続されたスイベル18の入口18aに水又はベントナイト泥水を供給し、先導管17のメタルクラウン19を装着した下部先導管17aから前記水又はベントナイト泥水を吐出させ、先導管17を旋回させながら下降させてメタルクラウン19で削孔することにより先導管17を地中の所定の深さまで挿入する。
(1) Drilling process by the leading conduit As shown in FIG. 4 (a), the boring machine M is installed on the ground, and the drilling by the leading conduit 17 is performed to the target drilling depth while jetting water or bentonite mud. . That is, water or bentonite mud is supplied to the inlet 18a of the swivel 18 connected to the upper end of the leading conduit 17, and the water or bentonite mud is discharged from the lower leading conduit 17a equipped with the metal crown 19 of the leading conduit 17, The leading conduit 17 is lowered while being swung and drilled with a metal crown 19 to insert the leading conduit 17 to a predetermined depth in the ground.

(2)噴射管ロッドの建て込み工程
次いで、図4(b)に示すように、先導管17内に図3のスイベル5および図1のモニター機構1を取り付けた上記噴射管ロッド2を所定の深さまで建て込んだ後、先導管17を引き抜く。
(2) Injection tube rod installation step Next, as shown in FIG. 4B, the injection tube rod 2 having the swivel 5 of FIG. 3 and the monitor mechanism 1 of FIG. After building up to the depth, the tip conduit 17 is pulled out.

(3)水による噴射テスト工程
噴射管ロッド2の建て込み後は、図4(c)に示すように、噴射管ロッド2のスイベル5の超高圧硬化材入口6に超高圧水を圧入し、モニター機構1の硬化材噴射ノズルNから超高圧水Wを管半径方向へ連続的に噴射させながら噴射管ロッド2を旋回駆動させて噴射テストを行う。噴射テストに異常がなければ、超高圧水をセメントミルク等の超高圧硬化材に切り替えて、パイル状の固化体の造成工程を開始する。
(3) Injection test step with water After the injection tube rod 2 is installed, as shown in FIG. 4C, ultra high pressure water is injected into the ultra high pressure hardened material inlet 6 of the swivel 5 of the injection tube rod 2, An injection test is performed by rotating the injection tube rod 2 while continuously injecting ultrahigh pressure water W from the hardened material injection nozzle N of the monitor mechanism 1 in the tube radial direction. If there is no abnormality in the injection test, the ultra high pressure water is switched to an ultra high pressure hardener such as cement milk, and the process for creating a pile-shaped solidified body is started.

(4)造成工程
図4(d)に示すように、造成工程では、噴射管ロッド2をモニター機構1ごと回転させながら引き上げて行くと同時に、超高圧硬化材Gを硬化材噴射ノズルN1,N2から互いに逆方向に噴射させ、その噴流で周囲の地盤を切削するとともに、土粒子と硬化材を混合攪拌してその切削域に固化体Pを造成する。その際、モニター機構1が1回転する間にモニター機構1を所定回転角度θごとにモニター機構1を適宜秒間、例えば0.5〜2.0秒間停止させる。なお、モニター機構の1回の回転角度θが、一方の硬化材噴射ノズルN1の軸線aと他方の硬化材噴射ノズルの軸線bのずれ角Sの2倍に設定されていることはいうまでもない。
(4) Formation Step As shown in FIG. 4 (d), in the formation step, the injection tube rod 2 is pulled up while rotating together with the monitor mechanism 1, and at the same time, the ultrahigh pressure curing material G is cured with the curing material injection nozzles N1, N2. Are sprayed in opposite directions, and the surrounding ground is cut by the jet flow, and the solid particles P are formed in the cutting region by mixing and stirring the soil particles and the hardener. At that time, while the monitor mechanism 1 makes one rotation, the monitor mechanism 1 is stopped for an appropriate second, for example, 0.5 to 2.0 seconds at every predetermined rotation angle θ. Needless to say, the one rotation angle θ of the monitor mechanism is set to be twice the deviation angle S between the axis a of the one curing material injection nozzle N1 and the axis b of the other curing material injection nozzle. Absent.

ここにおいて、モニター機構1の入口9から各硬化材噴射ノズルN1,N2までの超高圧液体通路11に存在するコーナー部の曲がり角α1〜α4をすべて50°以内に設定している構成であるから、超高圧液体通路11に超高圧液体(硬化材)の吐出量が多くなる場合でも、乱流の発生を防止でき、超高圧液体がスムーズに硬化材噴射ノズルN1,N2に突入することになり、したがって噴射される超高圧噴流の噴流断面を円状にし、かつ円断面の大きさを小さくすることができ、これにより超高圧噴流液体の飛距離を飛躍的に伸ばすことができて固化体Pの造成径を増大化することができる。また、入口側通路12、第1・2の中間通路14・15および噴射ノズル側通路13のそれぞれが液体の進路方向に対して直線状に形成されているので、液体の流れを各通路の出口側(下流側)で整えることができて有効確実に乱流のない流れにすることができる。   Here, because the corners α1 to α4 of the corner portions existing in the ultrahigh pressure liquid passage 11 from the inlet 9 of the monitor mechanism 1 to the respective curing material injection nozzles N1 and N2 are all set within 50 °, Even when the discharge amount of the ultra-high pressure liquid (curing material) increases in the ultra-high pressure liquid passage 11, the generation of turbulent flow can be prevented, and the ultra-high pressure liquid smoothly enters the curing material injection nozzles N1, N2. Therefore, the jet cross section of the jetted ultra-high pressure jet can be made circular and the size of the circular cross-section can be reduced, and the flying distance of the super-high pressure jet liquid can be greatly increased. The formation diameter can be increased. Further, since each of the inlet side passage 12, the first and second intermediate passages 14, 15 and the injection nozzle side passage 13 is formed in a straight line with respect to the direction of liquid flow, the flow of the liquid is discharged to the outlet of each passage. The flow can be adjusted on the side (downstream side), and the flow can be effectively and surely free of turbulence.

さらに、一方の硬化材噴射ノズルN1の軸線aと他方の硬化材噴射ノズルN2の軸線bが互いに平行とならないようにずらすとともに、このずれ角度Sをモニター機構1の1回の回転角度θの半分の角度(1/2)θに設定することにより(逆に言えば、モニター機構1の1回の回転角度θを両噴射ノズルN1,N2のずれ角度Sの2倍の角度2Sに設定することにより)、一方の硬化材噴射ノズルN1の停止位置の間に他方の硬化材噴射ノズルN2の停止位置がくるので、固化体Pの周囲の造成面をより均一に仕上げることができる。   Further, the axis a of one of the curing material spray nozzles N1 and the axis b of the other curing material spray nozzle N2 are shifted so as not to be parallel to each other, and this shift angle S is half of the one rotation angle θ of the monitor mechanism 1. (In other words, the rotation angle θ of the monitor mechanism 1 is set to an angle 2S that is twice the deviation angle S of the two injection nozzles N1 and N2). ), Since the stop position of the other hardener injection nozzle N2 comes between the stop positions of the one hardener injection nozzle N1, the formation surface around the solidified body P can be finished more uniformly.

(5)噴射管ロッドの引き抜き工程
造成完了後は、図4(e)に示すように、超高圧硬化材の供給を停止して、噴射管ロッド2を地上に引き抜く。なお、噴射管ロッド2を引き抜いた後は、該噴射管ロッド2内を清水で洗浄し、次の造成地点に移動させる。また、噴射管ロッド2の引き抜きにより固化体Pの上方に生じる穴20は、排泥やモルタル等で穴埋めを行う。
(5) Extraction step of injection tube rod After completion of the formation, as shown in FIG. 4 (e), the supply of the ultra-high pressure hardener is stopped and the injection tube rod 2 is extracted to the ground. In addition, after pulling out the injection pipe rod 2, the inside of the injection pipe rod 2 is washed with fresh water and moved to the next formation point. Further, the hole 20 generated above the solidified body P by drawing out the injection tube rod 2 is filled with mud, mortar, or the like.

上記実施例では、噴射管ロッド2は二重管からなるが、これに代えて圧縮空気通路21を備えず超高圧硬化材通路4のみを有する単管からなるものであってもよい。この場合、スイベル5としては圧縮空気入口5aを備えないで、超高圧硬化材入口6のみを備えるものが使用され、モニター機構1としては上記二重管構造からなるものに代えて、圧縮空気通路23を備えないで超高圧液体通路11のみを備える単管構造のモニター機構1が使用される。また、上記実施例では、噴射ノズルを2箇所に設けたものについて説明しているが、3箇所以上に設けたものでも実施することができる。   In the above-described embodiment, the injection tube rod 2 is composed of a double tube, but instead of this, it may be composed of a single tube that does not include the compressed air passage 21 but has only the ultra-high pressure hardened material passage 4. In this case, the swivel 5 is not provided with the compressed air inlet 5a but is provided with only the ultra-high pressure hardened material inlet 6, and the monitor mechanism 1 is replaced with a compressed air passage instead of the double pipe structure. A single-pipe structure monitoring mechanism 1 having only the super-high pressure liquid passage 11 without using 23 is used. Moreover, although the said Example demonstrated what provided the injection nozzle in two places, what was provided in three or more places can also be implemented.

1 モニター機構
2 噴射管ロッド
4 超高圧硬化材通路
5 スイベル
6 超高圧硬化材入口
N1,N2 硬化材噴射ノズル
a,b 硬化材噴射ノズルの軸線
S 硬化材噴射ノズルの軸線のずれ角度
θ モニター機構の1回の回転角度
DESCRIPTION OF SYMBOLS 1 Monitor mechanism 2 Injection pipe rod 4 Super high pressure hardening material channel | path 5 Swivel 6 Ultra high pressure hardening material inlet N1, N2 Hardening material injection nozzle a, b Axis line of hardening material injection nozzle S Deviation angle of axis line of hardening material injection nozzle θ Monitoring mechanism One rotation angle of

Claims (1)

噴射管ロッドを地中の目標深さまで挿入し、この噴射管ロッドの頭部に取り付けたスイベルの超高圧硬化材入口から硬化材を超高圧で圧入し、前記噴射管ロッドの先端部に組み付けたモニター機構の硬化材噴射ノズルから前記超高圧硬化材を管半径方向へ噴射させながら前記噴射管ロッドを旋回駆動して、前記超高圧硬化材の高圧噴流でその周囲の地盤を切削攪拌して造成するさい、前記モニター機構が1回転する間に前記モニター機構を所定回転角度ごとに停止させるようにして間欠的に回転させながら前記モニター機構を引き上げる地盤改良工法において、
前記硬化材噴射ノズルを互いに逆向きで2つ設けるとともに、一方の硬化材噴射ノズルの軸線と他方の硬化材噴射ノズルの軸線が互いに平行とならないようにずらし、このずれ角度は、前記モニター機構の1回の回転角度の半分の角度に設定されていることを特徴とする、地盤改良工法。
The injection tube rod was inserted to the target depth in the ground, and the hardened material was press-fitted at an ultrahigh pressure from the entrance of the ultra high pressure hardened material of the swivel attached to the head of the injection tube rod, and assembled to the tip of the injection tube rod. While rotating the injection tube rod while spraying the ultra high pressure hardened material in the radial direction of the tube from the hard material injection nozzle of the monitor mechanism, cutting and stirring the surrounding ground with the high pressure jet of the ultra high pressure hardened material At the same time, in the ground improvement method of pulling up the monitor mechanism while intermittently rotating the monitor mechanism at every predetermined rotation angle while the monitor mechanism rotates once,
The two curing material spray nozzles are provided in opposite directions, and the axis of one curing material spray nozzle and the axis of the other curing material spray nozzle are shifted so that they are not parallel to each other. Ground improvement method characterized by being set to an angle half of one rotation angle.
JP2010157936A 2010-07-12 2010-07-12 Ground improvement method Active JP5498881B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010157936A JP5498881B2 (en) 2010-07-12 2010-07-12 Ground improvement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010157936A JP5498881B2 (en) 2010-07-12 2010-07-12 Ground improvement method

Publications (2)

Publication Number Publication Date
JP2012021276A JP2012021276A (en) 2012-02-02
JP5498881B2 true JP5498881B2 (en) 2014-05-21

Family

ID=45775750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010157936A Active JP5498881B2 (en) 2010-07-12 2010-07-12 Ground improvement method

Country Status (1)

Country Link
JP (1) JP5498881B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6710166B2 (en) * 2017-02-02 2020-06-17 株式会社不動テトラ Rotary nozzle, ground improvement apparatus and ground improvement method using the rotary nozzle
JP6876843B2 (en) * 2020-03-19 2021-05-26 株式会社不動テトラ Ground improvement device and ground improvement method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2881331B2 (en) * 1990-04-04 1999-04-12 麟 森 Directional injection injection method
JPH055392A (en) * 1991-06-27 1993-01-14 Katoutoku Shoji Kk Bedrock improvement method and device thereof
JP2534970B2 (en) * 1993-12-03 1996-09-18 日産建設株式会社 Ground improvement method by high-pressure jet stirring
JP3218369B2 (en) * 1997-01-09 2001-10-15 株式会社日東テクノ・グループ Ground improvement equipment
JP3550392B2 (en) * 2001-09-20 2004-08-04 有限会社 ニューテック研究▲しゃ▼ Ground improvement method and ground improvement equipment
JP4185815B2 (en) * 2003-05-29 2008-11-26 裕治 金子 Monitor device used for ground improvement method

Also Published As

Publication number Publication date
JP2012021276A (en) 2012-02-02

Similar Documents

Publication Publication Date Title
JP5608449B2 (en) Monitor mechanism used for ground improvement method
KR101666141B1 (en) Drill Stirrer For Protecting Auger
JP5498881B2 (en) Ground improvement method
KR102317641B1 (en) Monitor apparatus for grouting
JP2014015731A (en) Nozzle head for high-pressure water drilling
JP5717148B2 (en) Underground consolidated body construction method
JP2007077739A (en) Jet grout type ground improvement construction method
JP5875849B2 (en) Injection stirring ground improvement method
JP4185815B2 (en) Monitor device used for ground improvement method
JP4887179B2 (en) Ground improvement method and ground improvement equipment
JP2005324283A (en) Spray nozzle and injection device using the same
JP5848939B2 (en) Jet grout type ground improvement method and jet grout type ground improvement device
JP4504995B2 (en) Ground hardening material injection method and its equipment
JP5734601B2 (en) Ground improvement method and equipment
JP6271240B2 (en) Ground improvement method and apparatus
JP2008069549A (en) Equipment and construction method for creating underground consolidation body
JP5250729B2 (en) Underground consolidated body construction method and underground solid body creation device for creating a solid body using the method
JP5573235B2 (en) Jet agitator and ground improvement method
JPH07252824A (en) Control method for finished pile diameter in forming consolidated pile by jet construction method
JP6307049B2 (en) Ground hardening layer construction method and its equipment
CN216765858U (en) High-pressure rotary spraying grouting device
JP7470936B2 (en) Injection equipment used in the high-pressure injection mixing method
JP7398281B2 (en) High pressure injection stirring method and injection equipment
JP6343752B2 (en) Ground improvement device
JP2012122272A (en) Injection device for soil improvement

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140310

R150 Certificate of patent or registration of utility model

Ref document number: 5498881

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250