JP2012021275A - Soil improvement method and monitor mechanism used in the same - Google Patents

Soil improvement method and monitor mechanism used in the same Download PDF

Info

Publication number
JP2012021275A
JP2012021275A JP2010157935A JP2010157935A JP2012021275A JP 2012021275 A JP2012021275 A JP 2012021275A JP 2010157935 A JP2010157935 A JP 2010157935A JP 2010157935 A JP2010157935 A JP 2010157935A JP 2012021275 A JP2012021275 A JP 2012021275A
Authority
JP
Japan
Prior art keywords
high pressure
hardener
injection
ultra
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010157935A
Other languages
Japanese (ja)
Other versions
JP5608449B2 (en
Inventor
Yuji Kaneko
裕治 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2010157935A priority Critical patent/JP5608449B2/en
Publication of JP2012021275A publication Critical patent/JP2012021275A/en
Application granted granted Critical
Publication of JP5608449B2 publication Critical patent/JP5608449B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a soil improvement method capable of effectively preventing occurrence of turbulent flow even when the discharge amount and discharge pressure of an ultrahigh pressure hardening material increase and substantially prolonging the jetting distance of the ultrahigh pressure hardening material, and a monitor mechanism used in the same.SOLUTION: An ultrahigh pressure liquid path 11 formed from an entrance 9 of a monitor mechanism 1 to a hardening material jetting nozzle N includes an entrance side path 12, a jetting nozzle side path 13, and first and second intermediate paths 14 and 15 positioned between both. In the view from a flowing direction upstream side, an angle α1 at which the axis of the entrance side path 12 is bent to the axis of a jetting pipe rod 2, an angle α2 at which the axis of the first intermediate path 14 is bent to the axis of the entrance side path 12, an angle α3 at which the axis of the second intermediate path 15 is bent to the axis of the first intermediate path 14, and an angle α4 at which the axis of the jetting nozzle side path 13 is bent to the axis of the second intermediate path 15 are set within 50°, respectively.

Description

本発明は、超高圧噴流液による地盤の切削を旋回噴流で行う地盤改良工法とそれに使用するモニター機構に関する。   The present invention relates to a ground improvement method for performing ground cutting with a super-high pressure jet liquid using a swirling jet, and a monitor mechanism used therefor.

従来、超高圧噴流液により地盤を切削する地盤改良工法としては、超高圧噴射工法が知られている。この超高圧噴射工法にはCCP工法等の単管式超高圧噴射工法や、ジェットグラウト工法(JSG工法)等の二重管式超高圧噴射工法、コラムジェットグラウト工法(CJG工法)やロジンジェットパイル工法(RJP工法)等の三重管式超高圧噴射工法などがある。   Conventionally, as a ground improvement method for cutting the ground with an ultrahigh pressure jet liquid, an ultrahigh pressure jet method is known. This ultra high pressure injection method includes single pipe type super high pressure injection method such as CCP method, double pipe type super high pressure injection method such as jet grouting method (JSG method), column jet grouting method (CJG method) and rosin jet pile. There are triple pipe type ultra-high pressure injection methods such as the construction method (RJP method).

この種の超高圧噴流液により地盤を切削する地盤改良工法では、地中の目標深さまで挿入された噴射管ロッドの下部に設けられたモニター機構の硬化材噴射ノズルから超高圧噴流液(セメントミルク等の超高圧硬化材)を地盤中に噴射させ、噴射管ロッドを旋回させながら引き上げることにより、超高圧噴流液による地盤の切削と、土粒子と硬化材の混合攪拌とを旋回噴流で行ってパイル状の固化体(改良体)を造成している。超高圧噴流液による地盤の切削・攪拌機構は、動圧作用、衝撃力、脈動負荷、キャビテーション現象、クサビ効果、研磨効果等が効果的に働くことによるものである。
通常、図11に示すように、モニター機構30の超高圧噴流液を地盤中に噴射させる硬化材噴射ノズル31は、超高圧液体通路32から直角状に設けられている(例えば、特許文献1参照。)。
In this ground improvement method of cutting the ground with this type of super high pressure jet liquid, the super high pressure jet liquid (cement milk) is supplied from the hardener injection nozzle of the monitor mechanism provided under the injection pipe rod inserted to the target depth in the ground. By cutting the ground with ultra-high-pressure jet liquid and mixing and stirring the soil particles and the hardener by swirling jets. A pile-like solidified body (improved body) is created. The ground cutting / stirring mechanism by the super-high pressure jet liquid is based on the effective action of dynamic pressure action, impact force, pulsation load, cavitation phenomenon, wedge effect, polishing effect and the like.
Normally, as shown in FIG. 11, the curing material injection nozzle 31 for injecting the ultrahigh pressure jet liquid of the monitor mechanism 30 into the ground is provided at a right angle from the ultrahigh pressure liquid passage 32 (see, for example, Patent Document 1). .)

近時の地盤改良においては、超高圧ポンプの開発が進み、超高圧噴流液の吐出量や吐出圧の増大が可能となったことに伴い、地盤中に造成するパイル状の固化体(改良体)の造成径の大径化がすすめられるようになっている。造成径が大きくなるにしたがって、吐出量と吐出圧を増加したり、噴射管ロッドを二重管、三重管として硬化材噴射ノズルを増やしたり、超高圧ポンプも増やしたりすることで、造成径の拡大化の実現を図っている。
このように造成径を大径化するにあたっては、噴射管ロッド内を圧送するセメントミルク等の超高圧硬化材の送給量が大量であることが求められるようになってきた。
In recent ground improvement, the development of ultra-high pressure pumps has progressed, and the discharge volume and discharge pressure of ultra-high pressure jet liquid has become possible. As a result, pile-like solidified bodies (improved bodies) created in the ground ) To increase the formation diameter. By increasing the discharge volume and discharge pressure, increasing the discharge diameter and discharge pressure, increasing the injection pipe rod as a double pipe and triple pipe, increasing the number of curing material injection nozzles, and increasing the number of ultrahigh pressure pumps, We are trying to realize expansion.
Thus, in order to increase the diameter of the formed diameter, it has been required to supply a large amount of ultrahigh pressure hardened material such as cement milk that is pumped through the inside of the injection tube rod.

特開平6−306846号公報Japanese Patent Laid-Open No. 6-306846

しかしながら、かかる超高圧硬化材を大量に送給するとなると、噴射管ロッド径やモニター機構の径に機械装置上制約、限度があるために、流速の増加が避けられず、当該流速の増加により結果的に噴射管ロッドやモニター機構内に形成されている図11に示すような超高圧液体通路32と硬化材噴射ノズル31の直角部に於いては不可避的に乱流が生じ、地盤中に噴出するエネルギーの損失を引き起す原因となり、造成径の大径化に躍進するには限界があった。また、造成径の大径化に伴う超高圧硬化材の吐出量と吐出圧の増加によってモニター機構の損耗が激しく、消耗費の高騰化につながっている。   However, when a large amount of such ultra-high-pressure hardened material is fed, the increase in the flow rate is unavoidable due to the limitations and limitations of the injection tube rod diameter and the monitor mechanism diameter. 11 is formed in the injection tube rod or the monitor mechanism, the turbulent flow inevitably occurs in the right-angled portion of the ultrahigh pressure liquid passage 32 and the hardener injection nozzle 31 as shown in FIG. This causes a loss of energy, and there has been a limit to making progress in increasing the diameter of the product. In addition, due to the increase in the discharge amount and discharge pressure of the ultra-high pressure hardened material accompanying the increase in the diameter of the formed diameter, the monitor mechanism is severely worn, leading to an increase in the consumption cost.

そこで、本発明は、上記のような問題を解決するためになされたものであり、その目的とするところは、上記のような、噴射管ロッドを地中の目標深さまで挿入し、この噴射管ロッドの上部に取り付けたスイベルの硬化材入口から硬化材を超高圧で圧入し、前記噴射管ロッドの下部に組み付けたモニター機構の硬化材噴射ノズルから前記硬化材を管半径方向へ連続的に噴射させ、前記噴射管ロッドを旋回駆動して、前記硬化材の高圧噴流でその周囲の地盤を切削攪拌して造成する地盤改良工法において、モニター機構の入口から前記硬化材噴射ノズルまでの間に形成される超高圧液体通路の構成に工夫を凝らすことにより、造成径の大径化に伴い超高圧硬化材の吐出量と吐出圧が増加しても乱流の発生を防止でき、またモニター機構の損耗の減少、耐久性の向上を図り得る地盤改良工法とそれに使用するモニター機構を提供することにある。   Therefore, the present invention has been made to solve the above-described problems, and the object of the present invention is to insert the injection tube rod as described above to a target depth in the ground, and The hardener is pressed in from the hardener inlet of the swivel attached to the upper part of the rod at ultra high pressure, and the hardener is continuously injected in the pipe radial direction from the hardener injection nozzle of the monitor mechanism assembled to the lower part of the injection pipe rod. In the ground improvement method in which the injection tube rod is driven to rotate and the surrounding ground is cut and stirred by the high pressure jet of the hardened material, it is formed between the entrance of the monitor mechanism and the hardened material injection nozzle. By devising the configuration of the ultra-high pressure liquid passage, the generation of turbulent flow can be prevented even if the discharge amount and discharge pressure of the ultra-high pressure hardened material increase with the increase in the diameter of the formed diameter. Worn out Small to provide a monitoring mechanism for use therewith and ground improvement method to obtain aim to improve the durability.

本発明者は、モニター機構の入口から硬化材噴射ノズルまでの超高圧液体通路にコーナー部が存在している場合、そのコーナー部において超高圧硬化材が屈曲させられるときの曲がり角をすべて50°以内に設定すると、超高圧液体通路内における乱流の発生を防止できることを知見した。そして、乱流の発生を防止して流れを整流化することにより、超高圧硬化材の噴射距離を飛躍的に増大できることを知見した。本発明は、かかる知見に基づいてなされたものである。   In the case where a corner portion is present in the ultra high pressure liquid passage from the entrance of the monitoring mechanism to the curing material injection nozzle, the inventor makes all the bending angles when the ultra high pressure curing material is bent at the corner portion within 50 °. It was found that the generation of turbulent flow in the ultra-high pressure liquid passage can be prevented by setting to. And it discovered that the injection distance of an ultra-high pressure hardening material could be increased dramatically by preventing the generation of turbulent flow and rectifying the flow. The present invention has been made based on such knowledge.

本発明の地盤改良工法は、請求項1に記載のように、噴射管ロッドを地中の目標深さまで挿入し、この噴射管ロッドの上部に取り付けたスイベルの硬化材入口から硬化材を超高圧で圧入し、前記噴射管ロッドの下部に組み付けたモニター機構の硬化材噴射ノズルから前記超高圧硬化材を管半径方向へ連続的に噴射させ、前記噴射管ロッドを旋回駆動して、前記超高圧硬化材の高圧噴流でその周囲の地盤を切削攪拌して造成する地盤改良工法において、前記モニター機構の前記超高圧硬化材を受け入れる入口から前記硬化材噴射ノズルまでの超高圧液体通路におけるコーナー部の曲がり角をすべて50°以内に設定していることを特徴とする。   According to the ground improvement method of the present invention, as described in claim 1, the injection tube rod is inserted to a target depth in the ground, and the hardening material is applied to the ultra high pressure from the hardening material inlet of the swivel attached to the upper portion of the injection tube rod. The super high pressure hardened material is continuously injected in the radial direction of the tube from the hard material injection nozzle of the monitor mechanism assembled with the lower part of the injection tube rod, and the injection tube rod is swiveled to drive the ultra high pressure. In the ground improvement method in which the surrounding ground is cut and agitated by a high pressure jet of hardened material, the corner portion in the ultrahigh pressure liquid passage from the inlet for receiving the ultrahigh pressure hardened material to the hardener jet nozzle of the monitor mechanism All the corners are set within 50 °.

この地盤改良工法に使用するモニター機構は、請求項2に記載のように、噴射管ロッドの先端部に組み付けられ、超高圧硬化材を受け入れる入口と、硬化材噴射ノズルと、前記入口から前記硬化材噴射ノズルまでの間に形成される超高圧液体通路とを有し、前記超高圧液体通路におけるコーナー部の曲がり角をすべて50°以内に設定していることを特徴とする。   The monitoring mechanism used in the ground improvement method is assembled at the tip of the injection tube rod as described in claim 2, and receives an ultrahigh-pressure hardener, a hardener injection nozzle, and the hardening from the inlet. And an ultrahigh pressure liquid passage formed between the material injection nozzles, and all the corners of the ultrahigh pressure liquid passage are set to be within 50 °.

請求項2に記載のモニター機構は、請求項3に記載のように、前記超高圧液体通路の内面が超硬合金で形成されていることが好ましい。   In the monitor mechanism according to claim 2, as described in claim 3, it is preferable that the inner surface of the ultrahigh pressure liquid passage is formed of cemented carbide.

請求項1及び請求項2に記載の発明によれば、前記モニター機構の前記超高圧硬化材を受け入れる入口から前記硬化材噴射ノズルまでの超高圧液体通路におけるコーナー部の曲がり角をすべて50°以内に設定しているので、超高圧液体通路に超高圧硬化材の吐出量、吐出圧が増加する場合でも、乱流の発生を防止でき、超高圧液体がスムーズに硬化材噴射ノズルに突入することになり、したがって噴射される超高圧噴流の噴流断面を円状にし、円断面の大きさを小さくすることができ、これにより超高圧噴流液体の飛距離を飛躍的に伸ばすことができて造成径の大型化に躍進することができる。   According to the first and second aspects of the present invention, all the bending angles of the corner portions in the ultra-high pressure liquid passage from the inlet for receiving the ultra-high pressure curing material of the monitor mechanism to the curing material injection nozzle are within 50 °. Therefore, it is possible to prevent the occurrence of turbulent flow even when the discharge amount and discharge pressure of the ultra-high pressure curing material increase in the ultra-high pressure liquid passage, and the ultra-high pressure liquid smoothly enters the curing material injection nozzle. Therefore, the jet cross-section of the injected ultra-high-pressure jet can be made circular, and the size of the circular cross-section can be reduced, thereby making it possible to dramatically increase the flying distance of the super-high-pressure jet liquid and It can make a big leap forward.

請求項3に記載の発明によれば、モニター機構の損耗の減少、耐久性の向上を図ることができる。   According to the third aspect of the present invention, it is possible to reduce wear and improve durability of the monitor mechanism.

本発明のモニター機構の一実施例を示す縦断面図である。It is a longitudinal cross-sectional view which shows one Example of the monitor mechanism of this invention. 本発明の地盤改良工法に使用される噴射管ロッドの頭部に取り付けられるスイベルの外観図である。It is an external view of the swivel attached to the head of the injection pipe rod used for the ground improvement construction method of the present invention. 本発明の一実施例の地盤改良工法の施工手順を示す説明図である。It is explanatory drawing which shows the construction procedure of the ground improvement construction method of one Example of this invention. 本発明の地盤改良工法により造成される固化体(改良体)の一実施例を示す断面図である。It is sectional drawing which shows one Example of the solidified body (improved body) created by the ground improvement construction method of this invention. 本発明の地盤改良工法により造成される固化体(改良体)の他の実施例を示す断面図である。It is sectional drawing which shows the other Example of the solidified body (improved body) created by the ground improvement construction method of this invention. 本発明の地盤改良工法により造成される固化体(改良体)の更に他の実施例を示す断面図である。It is sectional drawing which shows the further another Example of the solidified body (improved body) created by the ground improvement construction method of this invention. 他の実施例のモニター機構の縦断面図である。It is a longitudinal cross-sectional view of the monitor mechanism of another Example. 図7のモニター機構の噴射管ロッドの頭部に取り付けられるスイベルの外観図である。It is an external view of the swivel attached to the head of the injection tube rod of the monitor mechanism of FIG. 更に他の実施例のモニター機構の縦断面図である。It is a longitudinal cross-sectional view of the monitor mechanism of other Example. 図9のモニター機構の横断面図である。FIG. 10 is a cross-sectional view of the monitor mechanism of FIG. 9. 従来例のモニター機構における超高圧液体通路と硬化材噴射ノズルの取合い部分を示す縦断面図である。It is a longitudinal cross-sectional view which shows the connection part of the ultrahigh pressure liquid channel | path and the hardening | curing material injection nozzle in the monitor mechanism of a prior art example.

以下、本発明の実施形態を図面に基づいて説明する。図1において、本発明の地盤改良工法に使用するモニター機構1は、CCP工法等の単管式超高圧噴射工法などによる地盤改良工法にて地中にパイル状の固化体(改良体、以下同じ)を造成する際に使用する単管用の噴射管ロッド2の先端部にカップリング3を介して取り付けられる。噴射管ロッド2の頭部には図2に示す単管用のスイベル5が取り付けられる。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In FIG. 1, the monitor mechanism 1 used for the ground improvement method of the present invention is a pile-like solidified body (improved body, the same applies hereinafter) by a ground improvement method such as a single-tube super-high pressure injection method such as a CCP method. ) Is attached to the distal end portion of the single-tube injection tube rod 2 used when forming the first tube) via the coupling 3. A single tube swivel 5 shown in FIG. 2 is attached to the head of the injection tube rod 2.

スイベル5は、図2に示すように、その上部の周面一部に開口され、超高圧ポンプ(図示せず)からの超高圧硬化材の入口6と、この入口6から中心部に延び、更に軸心に沿って下端面まで連通する通路7とを備えている。尚、スイベル5の頭部には噴射管ロッド2をクレーン等で吊持するためのフック部8を一体に設けている。   As shown in FIG. 2, the swivel 5 is opened in a part of the upper peripheral surface thereof, and extends from the ultra-high pressure pump (not shown) to an ultra-high pressure hardening material inlet 6 and from the inlet 6 to the center. Furthermore, a passage 7 communicating with the lower end surface along the axis is provided. A hook portion 8 for suspending the injection tube rod 2 with a crane or the like is integrally provided on the head of the swivel 5.

図1に示すように、モニター機構1は、スイベル5の通路7の下端に連通する噴射管ロッド2内の超高圧硬化材通路4からの超高圧硬化材を受け入れる入口9、超高圧硬化材を管半径方向へ連続的に噴射させる単一の硬化材噴射ノズルN、および入口9から硬化材噴射ノズルNまでの間に連通状に形成される超高圧液体通路11を有する単管構造からなる。超高圧液体通路11は、入口9側に連続して位置する入口側通路12と、硬化材噴射ノズルN側に連続して位置する噴射ノズル側通路13と、入口側通路12と噴射ノズル側通路13の間に連続して位置する少なくとも一つの中間通路、すなわち図示例では二つの第1および第2の中間通路14・15とを備える。   As shown in FIG. 1, the monitor mechanism 1 includes an inlet 9 for receiving an ultrahigh-pressure curing material from an ultrahigh-pressure curing material passage 4 in an injection tube rod 2 communicating with the lower end of a passage 7 of a swivel 5, and an ultrahigh-pressure curing material. It consists of a single tube structure having a single hardener injection nozzle N that continuously injects in the radial direction of the tube, and an ultrahigh-pressure liquid passage 11 that is formed in communication between the inlet 9 and the hardener injection nozzle N. The ultra high pressure liquid passage 11 includes an inlet side passage 12 that is continuously located on the inlet 9 side, an injection nozzle side passage 13 that is continuously located on the hardener injection nozzle N side, an inlet side passage 12 and an injection nozzle side passage. 13 is provided with at least one intermediate passage located in succession between the first and second intermediate passages 14 and 15 in the illustrated example.

本発明者は、モニター機構1の入口9から硬化材噴射ノズルNまでの超高圧液体通路11にコーナー部が存在している場合、そのコーナー部において超高圧硬化材が屈曲させられるときの曲がり角が50°を超えると、超高圧液体通路11に超高圧液体(硬化材)の吐出量、吐出圧が増加する場合に、超高圧液体通路11内の流れ状態は乱流となることを知見した。そこで、かかる乱流の発生を防止でき、超高圧液体がスムーズに硬化材噴射ノズルNに突入して、噴射される超高圧噴流の噴流断面を円状にし、かつ円断面の大きさを小さくすることができ、これにより超高圧噴流液体の飛距離を飛躍的に伸ばすことができるように、モニター機構1の入口9から硬化材噴射ノズルNまでの超高圧液体通路11に存在するコーナー部の曲がり角α1〜α4をすべて50°以内に設定している。   When the corner portion is present in the ultrahigh pressure liquid passage 11 from the inlet 9 of the monitor mechanism 1 to the curing material injection nozzle N, the inventor has a bending angle when the ultrahigh pressure curing material is bent at the corner portion. It has been found that when the amount exceeds 50 °, the flow state in the ultrahigh pressure liquid passage 11 becomes turbulent when the discharge amount and discharge pressure of the ultrahigh pressure liquid (curing material) increase in the ultrahigh pressure liquid passage 11. Therefore, the generation of such turbulent flow can be prevented, the ultrahigh pressure liquid smoothly enters the curing material injection nozzle N, and the jet section of the jetted ultrahigh pressure jet is made circular and the size of the circular section is reduced. The corner of the corner portion existing in the ultrahigh pressure liquid passage 11 from the inlet 9 of the monitor mechanism 1 to the hardener injection nozzle N so that the flying distance of the superhigh pressure jet liquid can be dramatically increased. α1 to α4 are all set within 50 °.

具体的には、流れ方向上流側から見た場合の噴射管ロッド2の軸線に対する入口側通路12の軸線が屈曲する角度α1、流れ方向上流側から見た場合の入口側通路12の軸線に対する第1の中間通路14の軸線が屈曲する角度α2、流れ方向上流側から見た場合の第1の中間通路14の軸線に対する第2の中間通路15の軸線が屈曲する角度α3、および流れ方向上流側から見た場合の第2の中間通路15の軸線に対する噴射ノズル側通路13の軸線が屈曲する角度α4を、すべて50°以内に設定している。   Specifically, the angle α1 at which the axis of the inlet side passage 12 bends with respect to the axis of the injection tube rod 2 when viewed from the upstream side in the flow direction, and the first axis with respect to the axis of the inlet side passage 12 when viewed from the upstream side in the flow direction. The angle α2 at which the axis of the first intermediate passage 14 bends, the angle α3 at which the axis of the second intermediate passage 15 bends with respect to the axis of the first intermediate passage 14 when viewed from the upstream side in the flow direction, and the upstream side in the flow direction The angles α4 at which the axis of the injection nozzle side passage 13 bends with respect to the axis of the second intermediate passage 15 when viewed from above are all set within 50 °.

α1〜α4の具体的な数値としては、例えば、α1〜α4をすべて45°に設定してもよいし、α1〜α3を50°に設定し、α4のみ40°に設定してもよい。   As specific numerical values of α1 to α4, for example, all of α1 to α4 may be set to 45 °, α1 to α3 may be set to 50 °, and only α4 may be set to 40 °.

このような構成により、乱流の発生を効果的に防止することができ、超高圧噴流液体の飛距離を飛躍的に伸ばすことができる。   With such a configuration, generation of turbulent flow can be effectively prevented, and the flight distance of the super-high pressure jet liquid can be greatly increased.

また、本実施形態では、流れ方向上流側から見て、噴射管ロッド2の軸線に対し入口側通路12の軸線が硬化材噴射ノズルNの位置する側とは反対側に屈曲するように入口側通路12が設けられ、そこから第1の中間通路14が下方(ほぼ真下)に伸びるように設けられ、さらに、第1の中間通路14よりも短い第2の中間通路15を介して噴射ノズル側通路13に接続されているので、噴射ノズル側通路13を長く設定することができる。これにより、噴射ノズル側通路13において流れを整流化でき、この面でも超高圧噴流液体の飛距離の増大に寄与している。   Further, in the present embodiment, when viewed from the upstream side in the flow direction, the inlet side so that the axis of the inlet side passage 12 is bent to the opposite side of the axis of the injection tube rod 2 from the side where the hardener injection nozzle N is located. A passage 12 is provided, from which a first intermediate passage 14 extends downward (substantially directly below), and further through a second intermediate passage 15 that is shorter than the first intermediate passage 14, the injection nozzle side Since it is connected to the passage 13, the injection nozzle side passage 13 can be set longer. As a result, the flow can be rectified in the injection nozzle side passage 13, and this aspect also contributes to an increase in the flight distance of the ultra-high pressure jet liquid.

入口側通路12、第1・2の中間通路14・15、あるいは噴射ノズル側通路13が湾曲状に形成されていると、該湾曲状の通路の出口で整流とならないため、入口側通路12、第1・2の中間通路14・15、および噴射ノズル側通路13はそれぞれ直線状に形成して、液体の流れを各通路の出口側(下流側)で整えて乱れのない流れになるようにしている。   If the inlet-side passage 12, the first and second intermediate passages 14, 15 or the injection nozzle-side passage 13 are formed in a curved shape, rectification is not performed at the outlet of the curved passage. The first and second intermediate passages 14 and 15 and the injection nozzle side passage 13 are respectively formed in a straight line so that the flow of liquid is adjusted on the outlet side (downstream side) of each passage so that there is no turbulent flow. ing.

この点は、超高圧液体通路11の屈曲部(コーナー部)も同様であり、各屈曲部が円弧状に丸味を有していると、ここで乱流が発生し易くなる。そこで、超高圧液体通路11の屈曲部はコーナー部に形成している。   The same applies to the bent portions (corner portions) of the ultrahigh-pressure liquid passage 11. If each bent portion is rounded in an arc shape, turbulent flow is likely to occur here. Therefore, the bent portion of the ultrahigh pressure liquid passage 11 is formed at the corner portion.

さらに、超高圧液体通路11の内面、および硬化材噴射ノズルNは硬化材による損耗を減少し、耐摩耗性を付与するために、超硬合金16、例えば、炭化タングステンとコバルトを混合して焼結した超硬合金で形成する。   Further, the inner surface of the ultrahigh pressure liquid passage 11 and the hardener injection nozzle N are mixed with cemented carbide 16 such as tungsten carbide and cobalt to reduce wear caused by the hardener and to provide wear resistance. It is made of cemented cemented carbide.

次に、上記のモニター機構1を先端部に取り付けた噴射管ロッド2(単管)を使用するCCP工法等の単管式超高圧噴射工法による本発明に係る地盤改良工法にて地中にパイル状の固化体(改良体、以下、同じ)Pを垂直に造成する施工手順を図3の(a)〜(c)を参照して以下に説明する。図3の(a)は噴射管ロッドによる削孔工程図、(b)はパイル状の固化体の造成工程図、(c)は噴射管ロッドの引き抜き工程図である。以下、工程順に説明する。   Next, it piles in the ground by the ground improvement method according to the present invention by the single tube type super high pressure injection method such as the CCP method using the injection tube rod 2 (single tube) with the monitor mechanism 1 attached to the tip. A construction procedure for vertically creating a solid-like solid body (improved body, hereinafter the same) P will be described below with reference to FIGS. 3A is a drilling process diagram using an injection tube rod, FIG. 3B is a process diagram for creating a pile-like solidified body, and FIG. 3C is a drawing process diagram of an injection tube rod. Hereinafter, it demonstrates in order of a process.

(1)噴射管ロッドによる削孔工程
図3(a)に示すように、地上にボーリングマシンMを設置し、噴射管ロッド2による削孔を水又はベントナイト泥水を噴出しながら目的の削孔深度まで行う。
(1) Drilling step by injection tube rod As shown in FIG. 3 (a), a boring machine M is installed on the ground, and a target drilling depth is obtained while water or bentonite mud is ejected from the drilling hole by the injection tube rod 2. Do until.

(2)造成工程
図3(b)に示すように、造成工程では、噴射管ロッド2をモニター機構1ごと連続的に回転させながら引き上げて行くと同時に、超高圧硬化材Gを硬化材噴射ノズルNから連続的に噴射させ、その旋回噴流で周囲の地盤を切削するとともに、土粒子と硬化材を混合攪拌してその切削域に図3(c)に示すようにパイル状の固化体Pを造成する。パイル状の固化体Pとしては、例えば、噴射管ロッド2をモニター機構1ごと連続的に回転させることにより図4に示すような断面円形状に形成する。
または、噴射管ロッド2をモニター機構1ごと図5(a)に示すように1回転する間に45°(噴射停止角度θ)ごとに停止と回転とを繰り返して間欠回転させるか、あるいは図5(b)に示すように1回転する間に22.5°(噴射停止角度θ)ごとに停止と回転を繰り返して回転させることにより断面放射形柱状の固化体Pを造成することができる。
更に又、高圧噴流の噴射(例えば40°)と噴射停止(例えば140°)とを交互に繰り返すことで、図6に示すように断面蝶形の壁状の固化体(止水壁)Pを造成することができる。
(2) Formation Step As shown in FIG. 3 (b), in the formation step, the injection tube rod 2 is pulled up while being continuously rotated together with the monitor mechanism 1, and at the same time, the ultra high pressure curing material G is cured with a curing material injection nozzle. N is continuously ejected from N, and the surrounding ground is cut by the swirling jet, and the soil particles and the hardener are mixed and stirred, and a pile-like solidified body P is formed in the cutting area as shown in FIG. Create. As the pile-shaped solid body P, for example, the injection tube rod 2 is continuously rotated together with the monitor mechanism 1 to form a circular cross section as shown in FIG.
Alternatively, the injection tube rod 2 is rotated intermittently by repeatedly stopping and rotating every 45 ° (injection stop angle θ) while rotating the injection tube rod 2 together with the monitor mechanism 1 as shown in FIG. As shown in (b), the cross-section radial columnar solidified body P can be formed by repeatedly stopping and rotating every 22.5 ° (injection stop angle θ) during one rotation.
Furthermore, by alternately repeating injection of high-pressure jet (for example, 40 °) and stop of injection (for example, 140 °), a solidified body (water blocking wall) P having a butterfly cross section as shown in FIG. Can be created.

ここにおいて、注目すべきは、モニター機構1の入口9から硬化材噴射ノズルNまでの超高圧液体通路11に存在するコーナー部の曲がり角α1〜α4をすべて50°以内に設定している構成であるから、超高圧液体通路11に超高圧液体(硬化材)の吐出量が多くなる場合でも、乱流の発生を防止でき、超高圧液体がスムーズに硬化材噴射ノズルNに突入することになり、したがって噴射される超高圧噴流の噴流断面を円状にし、かつ円断面の大きさを小さくすることができ、これにより超高圧噴流液体の飛距離を飛躍的に伸ばすことができて固化体Pの造成径の大型化に躍進することができる点である。また、入口側通路12、第1・2の中間通路14・15および噴射ノズル側通路13のそれぞれが液体の進路方向に対して直線状に形成されているので、液体の流れを各通路の出口側(下流側)で整えることができて有効確実に乱流のない流れにすることができる点である。   What should be noted here is a configuration in which the corner corners α1 to α4 existing in the ultrahigh-pressure liquid passage 11 from the inlet 9 of the monitor mechanism 1 to the curing material injection nozzle N are all set within 50 °. Therefore, even when the discharge amount of the ultra-high pressure liquid (curing material) increases in the ultra-high pressure liquid passage 11, the generation of turbulent flow can be prevented, and the ultra-high pressure liquid smoothly enters the curing material injection nozzle N. Therefore, the jet cross section of the jetted ultra-high pressure jet can be made circular and the size of the circular cross-section can be reduced, and the flying distance of the super-high pressure jet liquid can be greatly increased. It is a point that can make a breakthrough in the enlargement of the formed diameter. Further, since each of the inlet side passage 12, the first and second intermediate passages 14, 15 and the injection nozzle side passage 13 is formed in a straight line with respect to the direction of liquid flow, the flow of the liquid is discharged to the outlet of each passage. This is a point that can be adjusted on the side (downstream side), so that a flow without turbulent flow can be effectively and surely obtained.

(3)噴射管ロッドの引き抜き工程
造成完了後は、図3(c)に示すように、超高圧硬化材の供給を停止して、噴射管ロッド2を地上に引き抜く。なお、噴射管ロッド2を引き抜いた後は、該噴射管ロッド2内を清水で洗浄し、次の造成地点に移動させる。また、噴射管ロッド2の引き抜きにより固化体Pの上方に生じる穴20は、排泥やモルタル等で穴埋めを行う。
(3) Pulling-out process of injection pipe rod After completion of the formation, as shown in FIG. 3 (c), the supply of the ultra-high pressure hardener is stopped and the injection pipe rod 2 is pulled out to the ground. In addition, after pulling out the injection pipe rod 2, the inside of the injection pipe rod 2 is washed with fresh water and moved to the next formation point. Further, the hole 20 generated above the solidified body P by drawing out the injection tube rod 2 is filled with mud, mortar, or the like.

上記実施例のモニター機構1は単管構造からなるが、これに代えて、図7に示すように、二重管構造のモニター機構1を採用することもできる。この二重管構造のモニター機構1は、超高圧硬化材通路4及び圧縮空気通路21を有する二重管の噴射管ロッド2の先端側に取り付けられるものである。超高圧硬化材通路4の上端部は図8に示す二重管用のスイベル5の超高圧硬化材入口6と、圧縮空気通路21の上端部はスイベル5に設けられる圧縮空気入口5aとそれぞれ連通状態になす。そして、二重管構造のモニター機構1は、スイベル5の超高圧硬化材入口6と二重管の噴射管ロッド2内の超高圧硬化材通路4を介して連通する上記実施例の超高圧液体通路11と同じ構造の超高圧液体通路11と、同スイベル5の圧縮空気入口5aと同噴射管ロッド2内の圧縮空気通路21を介して連通する圧縮空気通路23を有する二重管構造のモニター管10と、超高圧液体通路11の下端部に設けられた単一の硬化材噴射ノズルNと、圧縮空気通路23の下端部に設けられ且つ硬化材噴射ノズルNを包囲する形に設けられた圧縮空気噴射ノズル22を有するものである。なお、超高圧液体通路11の内面、および硬化材噴射ノズルNは、上記実施例の場合と同様に硬化材による損耗を減少し、耐摩耗性を付与するために、炭化タングステンとコバルトを混合して焼結した超硬合金16で形成する。   The monitor mechanism 1 of the above embodiment has a single tube structure, but instead of this, as shown in FIG. 7, a double tube structure monitor mechanism 1 may be employed. This double-pipe structure monitoring mechanism 1 is attached to the distal end side of a double-pipe injection pipe rod 2 having an ultra-high pressure hardener passage 4 and a compressed air passage 21. The upper end portion of the ultrahigh pressure hardened material passage 4 is in communication with the ultrahigh pressure hardened material inlet 6 of the double tube swivel 5 shown in FIG. 8, and the compressed air passage 21 is in communication with the compressed air inlet 5a provided in the swivel 5. To make. The double-pipe monitor mechanism 1 is connected to the ultrahigh-pressure hardener inlet 6 of the swivel 5 and the ultrahigh-pressure hardener passage 4 in the double-tube injection pipe rod 2. A double pipe structure monitor having an ultra high pressure liquid passage 11 having the same structure as the passage 11 and a compressed air passage 23 communicating with the compressed air inlet 5a of the swivel 5 via the compressed air passage 21 in the injection pipe rod 2 A pipe 10, a single hardener injection nozzle N provided at the lower end of the ultrahigh pressure liquid passage 11, and a lower end of the compressed air passage 23 are provided so as to surround the hardener injection nozzle N. A compressed air injection nozzle 22 is provided. In addition, the inner surface of the ultrahigh pressure liquid passage 11 and the hardener injection nozzle N are mixed with tungsten carbide and cobalt in order to reduce wear due to the hardener and to provide wear resistance as in the case of the above embodiment. The cemented carbide 16 is sintered.

図7に示す二重管構造のモニター機構1は、単一の硬化材噴射ノズルNを有する片噴射用であるが、これに代えて、図9、図10に示すように二つの硬化材噴射ノズルN1,N2を持つ両噴射用の二重管構造のモニター機構1を採用することもできる。   The double-pipe structure monitoring mechanism 1 shown in FIG. 7 is for single injection having a single hardener injection nozzle N, but instead of this, two hardener injections as shown in FIGS. It is also possible to adopt a double-pipe structure monitor mechanism 1 for both injections having nozzles N1 and N2.

この両噴射用の二重管構造のモニター機構1は、モニター管10の管側部に2つの硬化材噴射ノズルN1,N2を設けてなる。   The double-tube structure monitoring mechanism 1 for both injections is provided with two hardener injection nozzles N1 and N2 on the tube side of the monitor tube 10.

すなわち、両噴射用の二重管構造のモニター機構1は、スイベル5の超高圧硬化材入口6と二重管の噴射管ロッド2内の超高圧硬化材通路4を介して連通する上記実施例の超高圧液体通路11と同じ構造をした2本の超高圧液体通路11、11、及び同スイベル5の圧縮空気入口5aと同噴射管ロッド2内の圧縮空気通路21を介して連通する圧縮空気通路23を有する二重管構造のモニター管10と、モニター管10の管側部に各超高圧液体通路11の下端部に連通するよう設けられた2つの硬化材噴射ノズルN1,N2と、各圧縮空気通路23の下端部に設けられ且つ各硬化材噴射ノズルN1,N2を包囲する形に設けられた圧縮空気噴射ノズル22を有するものである。   That is, the double-tube structure monitoring mechanism 1 for both injections communicates with the ultrahigh-pressure hardener inlet 6 of the swivel 5 via the ultrahigh-pressure hardener passage 4 in the double-tube injection pipe rod 2. Compressed air communicating with the two ultrahigh pressure liquid passages 11, 11 having the same structure as the ultrahigh pressure liquid passage 11, and the compressed air inlet 5 a of the swivel 5 and the compressed air passage 21 in the injection pipe rod 2. A monitor pipe 10 having a double-pipe structure having a passage 23; two hardener injection nozzles N1, N2 provided on the pipe side portion of the monitor pipe 10 so as to communicate with the lower end of each ultrahigh pressure liquid passage 11; The compressed air injection nozzle 22 is provided at the lower end of the compressed air passage 23 and is provided so as to surround each of the curing material injection nozzles N1 and N2.

超高圧液体を逆方方向に噴射する2つの硬化材噴射ノズルN1,N2は、モニター管10の管側部に、管軸芯に対して直角方向逆向きで取り付けている。
本実施形態では、図10に示すように、一方の硬化材噴射ノズルN1の軸線aと他方の硬化材噴射ノズルN2の軸線bが互いに平行とならないように、ずれ角度Sだけ両者の方向をずらしている。具体的には、噴射管ロッド2の軸線と平行な向きに見た場合に、硬化材噴射ノズルN1,N2の軸線a,bと交差する仮想線Z(この例では、仮想線Zはモニター機構1の軸心を通るようになっている)を想定し、この仮想線Zから測った一方の硬化材噴射ノズルN1の軸線aの方向(仮想線Zと軸線aのなす角)をθ1、仮想線Zから測った他方の硬化材噴射ノズルN2の軸線bの方向(仮想線Zと軸線bのなす角)をθ2とすると、θ1=θ2+Sとなっている。
但し、互いの軸線a,bが平行となるように硬化材噴射ノズルN1,N2を設けてもよい。
The two hardener injection nozzles N1 and N2 for injecting the ultra-high pressure liquid in the opposite direction are attached to the tube side portion of the monitor tube 10 in the direction perpendicular to the tube axis.
In the present embodiment, as shown in FIG. 10, the directions of both the stiffening material injection nozzles N1 and the other stiffening material injection nozzles N2 are shifted by a deviation angle S so that they are not parallel to each other. ing. Specifically, when viewed in a direction parallel to the axis of the injection tube rod 2, an imaginary line Z that intersects with the axes a and b of the hardener injection nozzles N1 and N2 (in this example, the imaginary line Z is a monitoring mechanism). 1), the direction of the axis a of one of the hardener injection nozzles N1 measured from this imaginary line Z (the angle formed by the imaginary line Z and the axis a) is θ1, Assuming that the direction of the axis b of the other cured material injection nozzle N2 measured from the line Z (the angle formed by the imaginary line Z and the axis b) is θ2, θ1 = θ2 + S.
However, the curing material injection nozzles N1 and N2 may be provided so that the axes a and b are parallel to each other.

上記各実施例では、噴射ノズルを1箇所ないし2箇所に設けたものについて説明しているが、3箇所以上に設けたものでも実施することができる。   In each of the above embodiments, the spray nozzles provided at one or two locations have been described. However, the spray nozzles may be provided at three or more locations.

1 モニター機構
2 噴射管ロッド
4 超高圧硬化材通路
5 スイベル
9 入口
10 モニター管
11 超高圧液体通路
12 入口側通路
13 噴射ノズル側通路
14 第1の中間通路
15 第2の中間通路
16 超硬合金
N、N1、N2 硬化材噴射ノズル
P 固化体
α1〜α4 超高圧液体通路におけるコーナー部の曲がり角
DESCRIPTION OF SYMBOLS 1 Monitor mechanism 2 Injection pipe rod 4 Super high pressure hardening material passage 5 Swivel 9 Inlet 10 Monitor pipe 11 Super high pressure liquid passage 12 Inlet side passage 13 Injection nozzle side passage 14 1st intermediate passage 15 2nd intermediate passage 16 Cemented carbide N, N1, N2 Curing material injection nozzle P Solidified body α1-α4 Corner corner bend in ultra high pressure liquid passage

Claims (3)

噴射管ロッドを地中の目標深さまで挿入し、この噴射管ロッドの上部に取り付けたスイベルの硬化材入口から硬化材を超高圧で圧入し、前記噴射管ロッドの下部に組み付けたモニター機構の硬化材噴射ノズルから前記超高圧硬化材を管半径方向へ連続的に噴射させ、前記噴射管ロッドを旋回駆動して、前記超高圧硬化材の高圧噴流でその周囲の地盤を切削攪拌して造成する地盤改良工法において、
前記モニター機構の前記超高圧硬化材を受け入れる入口から前記硬化材噴射ノズルまでの超高圧液体通路におけるコーナー部の曲がり角をすべて50°以内に設定していることを特徴とする、地盤改良工法。
The injection tube rod is inserted to the target depth in the ground, and the hardened material is press-fitted at a very high pressure from the hardener inlet of the swivel attached to the upper portion of the injection tube rod, and the monitor mechanism assembled to the lower portion of the injection tube rod is cured. The super high pressure hardened material is continuously jetted from the material jet nozzle in the pipe radial direction, the jet pipe rod is driven to rotate, and the surrounding ground is cut and stirred by the high pressure jet of the super high pressure hardened material. In the ground improvement method,
The ground improvement method according to claim 1, wherein all corner corners in the ultra-high pressure liquid passage from the entrance for receiving the ultra-high pressure hardener to the hardener injection nozzle of the monitor mechanism are set within 50 °.
噴射管ロッドの先端部に組み付けられ、超高圧硬化材を受け入れる入口と、硬化材噴射ノズルと、前記入口から前記硬化材噴射ノズルまでの間に形成される超高圧液体通路とを有し、前記超高圧液体通路におけるコーナー部の曲がり角をすべて50°以内に設定していることを特徴とする、モニター機構。   An inlet for receiving an ultra-high pressure hardener, a hardener injection nozzle, and an ultrahigh-pressure liquid passage formed between the inlet and the hardener injection nozzle. A monitor mechanism characterized in that all corner corners in the ultra-high pressure liquid passage are set within 50 °. 請求項2に記載のモニター機構において、前記超高圧液体通路の内面が超硬合金で形成されていることを特徴とするモニター機構。   3. The monitor mechanism according to claim 2, wherein an inner surface of the ultra high pressure liquid passage is formed of a cemented carbide.
JP2010157935A 2010-07-12 2010-07-12 Monitor mechanism used for ground improvement method Active JP5608449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010157935A JP5608449B2 (en) 2010-07-12 2010-07-12 Monitor mechanism used for ground improvement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010157935A JP5608449B2 (en) 2010-07-12 2010-07-12 Monitor mechanism used for ground improvement method

Publications (2)

Publication Number Publication Date
JP2012021275A true JP2012021275A (en) 2012-02-02
JP5608449B2 JP5608449B2 (en) 2014-10-15

Family

ID=45775749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010157935A Active JP5608449B2 (en) 2010-07-12 2010-07-12 Monitor mechanism used for ground improvement method

Country Status (1)

Country Link
JP (1) JP5608449B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015110873A (en) * 2013-12-06 2015-06-18 株式会社不動テトラ Ground improvement method by high pressure injection and agitation method
JP2020084502A (en) * 2018-11-21 2020-06-04 株式会社ワイビーエム Control method for ground construction machine and ground construction machine
US11458512B2 (en) 2017-01-27 2022-10-04 Tel Manufacturing And Engineering Of America, Inc. Systems and methods for rotating and translating a substrate in a process chamber
US11476129B2 (en) 2016-11-29 2022-10-18 Tel Manufacturing And Engineering Of America, Inc. Translating and rotating chuck for processing microelectronic substrates in a process chamber
US11545387B2 (en) 2018-07-13 2023-01-03 Tel Manufacturing And Engineering Of America, Inc. Magnetic integrated lift pin system for a chemical processing chamber

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6141555B1 (en) * 2017-03-12 2017-06-07 基盤技研株式会社 High pressure spray nozzle device and ground improvement device on which it is mounted

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5457706U (en) * 1977-09-30 1979-04-21
JPH10195862A (en) * 1997-01-09 1998-07-28 Nitto Techno Group:Kk Soil improving apparatus
JP2004068439A (en) * 2002-08-07 2004-03-04 Compagnie Du Sol Pressurized liquid injecting head for excavating ground
JP2004076573A (en) * 2002-08-13 2004-03-11 Sol Cie Injection head of fluid
JP2007262699A (en) * 2006-03-28 2007-10-11 Onoda Chemico Co Ltd Injection structure of high-pressure injection stirring apparatus
JP2008095442A (en) * 2006-10-13 2008-04-24 Raito Kogyo Co Ltd Self-boring type monitor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5457706U (en) * 1977-09-30 1979-04-21
JPH10195862A (en) * 1997-01-09 1998-07-28 Nitto Techno Group:Kk Soil improving apparatus
JP2004068439A (en) * 2002-08-07 2004-03-04 Compagnie Du Sol Pressurized liquid injecting head for excavating ground
JP2004076573A (en) * 2002-08-13 2004-03-11 Sol Cie Injection head of fluid
JP2007262699A (en) * 2006-03-28 2007-10-11 Onoda Chemico Co Ltd Injection structure of high-pressure injection stirring apparatus
JP2008095442A (en) * 2006-10-13 2008-04-24 Raito Kogyo Co Ltd Self-boring type monitor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015110873A (en) * 2013-12-06 2015-06-18 株式会社不動テトラ Ground improvement method by high pressure injection and agitation method
US11476129B2 (en) 2016-11-29 2022-10-18 Tel Manufacturing And Engineering Of America, Inc. Translating and rotating chuck for processing microelectronic substrates in a process chamber
US11458512B2 (en) 2017-01-27 2022-10-04 Tel Manufacturing And Engineering Of America, Inc. Systems and methods for rotating and translating a substrate in a process chamber
US11545387B2 (en) 2018-07-13 2023-01-03 Tel Manufacturing And Engineering Of America, Inc. Magnetic integrated lift pin system for a chemical processing chamber
JP2020084502A (en) * 2018-11-21 2020-06-04 株式会社ワイビーエム Control method for ground construction machine and ground construction machine

Also Published As

Publication number Publication date
JP5608449B2 (en) 2014-10-15

Similar Documents

Publication Publication Date Title
JP5608449B2 (en) Monitor mechanism used for ground improvement method
JP2004346734A (en) Device for injecting quick setting agent using high-speed jet fluid
KR101545254B1 (en) Medium Pressure Grouting device and it's using a columnar structure construction method
JP5498881B2 (en) Ground improvement method
KR102317641B1 (en) Monitor apparatus for grouting
JP5717148B2 (en) Underground consolidated body construction method
JP2007077739A (en) Jet grout type ground improvement construction method
JP2005324283A (en) Spray nozzle and injection device using the same
JP4887179B2 (en) Ground improvement method and ground improvement equipment
JP5875849B2 (en) Injection stirring ground improvement method
KR20100009968A (en) Grouting equipment to uses a supersonic waves
JP2004353298A (en) Ground improving method and monitoring device for use in the same
JP5848939B2 (en) Jet grout type ground improvement method and jet grout type ground improvement device
JP5734601B2 (en) Ground improvement method and equipment
JP2008069549A (en) Equipment and construction method for creating underground consolidation body
JP6466101B2 (en) Soil cement underground continuous wall construction method
JP2008285811A (en) Method of injecting ground hardener and device therefor
JPH07252824A (en) Control method for finished pile diameter in forming consolidated pile by jet construction method
JP5369049B2 (en) Ground improvement method and ground improvement device using a spray device with a multi-hole nozzle surrounding the center hole
JP6307049B2 (en) Ground hardening layer construction method and its equipment
JP5250729B2 (en) Underground consolidated body construction method and underground solid body creation device for creating a solid body using the method
CN220909733U (en) Sectional grouting anchor cable
JP2023079942A (en) Injection apparatus used in high-pressure injection and agitation method, and high-pressure injection and agitation method
CN216765858U (en) High-pressure rotary spraying grouting device
CN221030181U (en) Triple-tube cement mixing pile concrete slurry conveying system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140901

R150 Certificate of patent or registration of utility model

Ref document number: 5608449

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350