JP2864243B2 - Shaft construction method - Google Patents

Shaft construction method

Info

Publication number
JP2864243B2
JP2864243B2 JP63088622A JP8862288A JP2864243B2 JP 2864243 B2 JP2864243 B2 JP 2864243B2 JP 63088622 A JP63088622 A JP 63088622A JP 8862288 A JP8862288 A JP 8862288A JP 2864243 B2 JP2864243 B2 JP 2864243B2
Authority
JP
Japan
Prior art keywords
shaft
ground
columnar
high pressure
construction method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63088622A
Other languages
Japanese (ja)
Other versions
JPH01260115A (en
Inventor
儀信 小岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KERUBIN KK
RITORU ROTSUKU KK
Original Assignee
KERUBIN KK
RITORU ROTSUKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KERUBIN KK, RITORU ROTSUKU KK filed Critical KERUBIN KK
Priority to JP63088622A priority Critical patent/JP2864243B2/en
Priority to US07/328,052 priority patent/US5026216A/en
Priority claimed from CA000595100A external-priority patent/CA1334130C/en
Priority to CA000595100A priority patent/CA1334130C/en
Priority to EP93200615A priority patent/EP0550419B1/en
Priority to AU32314/89A priority patent/AU610372B2/en
Priority to EP89303138A priority patent/EP0335709B1/en
Priority to DE68925740T priority patent/DE68925740T2/en
Priority to DE68912804T priority patent/DE68912804T2/en
Publication of JPH01260115A publication Critical patent/JPH01260115A/en
Publication of JP2864243B2 publication Critical patent/JP2864243B2/en
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Description

【発明の詳細な説明】 a 産業上の利用分野 本発明は、作業能率の向上を図り得る立坑の構築工法
に関する。
The present invention relates to a vertical shaft construction method capable of improving work efficiency.

b 従来の技術 一般に、建設工事では、対象地盤が軟弱な場合、本工
事に先だって地盤の改良が行なわれる。地盤の改良とし
ては、対象地盤を硬化させる硬化材を地盤に含浸させる
のが通常である。
b Prior Art Generally, in construction work, when the target ground is soft, the ground is improved before the main work. As the improvement of the ground, it is usual to impregnate the ground with a hardening material for hardening the target ground.

近年では、地中に硬化材と空気を超高圧で噴出し、パ
イル状の固形物を造成する噴射撹拌工法が広く用いられ
ている。
In recent years, a jet stirring method of ejecting a hardening material and air into the ground at an ultra-high pressure to create a pile-like solid has been widely used.

この噴射撹拌工法は、セメント等の硬化材を圧送する
超高圧ポンプと、空気を供給するコンプレッサーと、先
端にノズルを設けた多重管ロッドを操作する専用機とで
構成されている。
This injection stirring method comprises an ultra-high pressure pump for pumping a hardening material such as cement, a compressor for supplying air, and a dedicated machine for operating a multi-tube rod having a nozzle at the tip.

超高圧ポンプには通常、プランジャポンプが用いら
れ、ミキサーからの硬化材を高圧で圧送する。また、専
用機は多重管ロッドを回転させながら引き上げると共に
ノズルから超高圧で、空気と硬化材を混合して噴射す
る。
A plunger pump is usually used for the ultra-high pressure pump, and the hardener from the mixer is pumped at a high pressure. In addition, the special-purpose machine pulls up while rotating the multi-tube rod, and mixes and injects air and a hardening material from the nozzle at an extremely high pressure.

こうして、対象地盤中に、地盤と硬化材の柱状撹拌部
を形成し、硬化材の硬化によってパイル状の固形物を造
成している。
Thus, a columnar stirring section of the ground and the hardening material is formed in the target ground, and a pile-shaped solid is formed by hardening the hardening material.

この噴射撹拌工法は、作業性の良いことで広く用いら
れているが、柱状撹拌部の径が土質条件とポンプ性能に
よって左右され、砂質土あるいは粘性土で、標準有効径
2000±200(mm)が限度とされている。
This injection stirring method is widely used because of its good workability.However, the diameter of the columnar stirring part depends on the soil conditions and pump performance.
The limit is 2000 ± 200 (mm).

このような噴射撹拌工法を用いて第9図のような内径
3500mmの立坑を構築する場合、通常第10図のような方法
がとられている。
The inner diameter as shown in FIG.
When constructing a 3500 mm shaft, the method shown in Fig. 10 is usually used.

すなわち、立坑100の底部101に、操作機の多重管ロッ
ドをa1から順次a2、a3、a4と挿入して、硬化材を噴射
し、柱状撹拌部102を形成する。次に、立坑100の周囲と
なる円周に沿って多重管ロッドをb1..b10と挿入し柱状
撹拌部103を形成する。こうして、硬化材の硬化後に、
柱状撹拌部102の内側の部分を掘削して取り出して所定
径の立坑100を構築している。
That is, the multiple pipe rods of the operating device are inserted into the bottom 101 of the shaft 100 in the order of a1, a2, a3, and a4 from the a1, and the hardening material is injected to form the columnar stirring unit 102. Next, the multiple pipe rods are inserted as b1..b10 along the circumference of the shaft 100 to form the columnar stirring section 103. Thus, after curing of the curing material,
The inner part of the columnar stirring unit 102 is excavated and taken out to construct a shaft 100 having a predetermined diameter.

c 発明が解決しようとする課題 このような従来の立坑の構築工法によれば、必要な内
径Dより内側に造成された斜面部分を取り出す作業が硬
化材が硬化しているので極めて困難で、作業効率の低下
を来たしていた。また、柱状撹拌部102,103を多数成形
する必要があるので、大きな内径の立坑を掘削するには
作業に長時間を要していた。
c Problems to be Solved by the Invention According to such a conventional shaft construction method, it is extremely difficult to take out the slope portion formed inside the required inner diameter D because the hardening material is hardened. The efficiency was coming down. In addition, since it is necessary to form a large number of columnar stirring sections 102 and 103, it takes a long time to excavate a shaft having a large inner diameter.

本発明は、上記課題を解決し、短時間で連続壁または
所望の比較的大きな内径(内径3500mm程度)を有する立
坑であって、ガス用枡、下水・雨水枡(ホール)や中空
の管を埋設できる大きな内径を持つ底部を有する立坑を
構築し得る立坑の築工法を提供することを目的とする。
The present invention solves the above-mentioned problems, and is a vertical shaft having a continuous wall or a desired relatively large inner diameter (about 3500 mm in inner diameter) in a short time, wherein a gas basin, a sewage / rainwater basin (hole), and a hollow pipe are used. An object of the present invention is to provide a method for constructing a shaft that can construct a shaft having a bottom having a large inner diameter that can be buried.

d 課題を解決するための手段 本発明は上記課題を解決するため対象地盤の深さ方向
に沿って操作される操作ロッドを回動操作し、操作ロッ
ドの側面に設けられた噴出部から超高圧ポンプによって
地盤硬化材を掘削すべき立坑の略周上に沿って所定間隔
で噴射して地盤中に地盤と硬化材の柱状撹拌部を形成し
てから立坑を掘削する工法において、超高圧で立坑の底
面部となるべき地盤中に掘削すべき立坑の断面形状より
大で一定の厚みのある底面撹拌部を形成し、次に掘削す
べき立坑の周辺部に沿って地盤硬化材の噴出により形成
される柱状撹拌部の形状が、掘削すべき立坑の外周のみ
に形成されるよう、操作ロッドを回転させながら引き上
げて掘削すべき立坑の外側のみに連続する柱状撹拌部に
よる連続壁を構築し、さらに連続壁内の土砂を除去して
立坑を構築する工法である。
d Means for Solving the Problems The present invention solves the above problems by rotating an operation rod operated along the depth direction of the target ground, and using an ultra-high pressure from an ejection portion provided on a side surface of the operation rod. In a construction method in which a ground hardening material is injected at a predetermined interval along a substantially perimeter of a shaft to be excavated by a pump to form a columnar stirring portion of the ground and hardening material in the ground, and then the shaft is excavated, the shaft is extruded at an extremely high pressure. Form a bottom agitator with a constant thickness that is larger than the cross-sectional shape of the shaft to be excavated in the ground that will be the bottom of the shaft, and then formed by blowing out the ground hardening material along the periphery of the shaft to be excavated The shape of the columnar stirring portion to be formed is formed only on the outer periphery of the shaft to be excavated, so as to construct a continuous wall with a columnar stirring portion that is continuous only outside the shaft to be excavated by pulling up while rotating the operation rod, In addition, sediment in the continuous wall Removal to a method to build a pit.

e 実施例 以下本発明の構築工法による底部のある立坑の構築工
法を図面を参照しながら詳細に説明する。
e Example Hereinafter, a method of constructing a shaft with a bottom by the construction method of the present invention will be described in detail with reference to the drawings.

第1図は本発明の構築工法に使用する装置を示したも
ので、1は多重管ロッド2を昇降あるいは一定角度の範
囲内で回動もしくは回転操作する専用機、3はミキサー
4およびアジテータ5で混合された硬化材を超高圧で圧
送する超高圧ポンプ、6は超高圧ポンプ3を駆動する油
圧ユニット、7は超高圧ポンプ3から圧送される硬化材
に空気を混入させるコンプレッサーである。8はポンプ
(図示せず)によりミキサー4に水を供給する水タンク
である。
FIG. 1 shows an apparatus used in the construction method of the present invention, wherein 1 is a dedicated machine for raising and lowering a multi-tube rod 2 or rotating or rotating within a certain angle range, 3 is a mixer 4 and an agitator 5. An ultra-high pressure pump for pumping the mixed hardening material at an ultra-high pressure, a hydraulic unit 6 for driving the ultra-high pressure pump 3, and a compressor 7 for mixing air into the hardening material fed from the ultra-high pressure pump 3. Reference numeral 8 denotes a water tank for supplying water to the mixer 4 by a pump (not shown).

専用機1の多重管ロッド2には、先端にノズル(図示
せず)が設けられており、超高圧ポンプ3で圧送された
硬化材を対象地盤中に噴射するものである。
A nozzle (not shown) is provided at the tip of the multiple pipe rod 2 of the special-purpose machine 1 and injects the hardened material pumped by the ultra-high pressure pump 3 into the target ground.

専用機1は多重管ロッド2を回診操作する通常の駆動
部と、多重管ロッド2を一定の角度の範囲で回動操作す
る駆動部が設けられており、専用機1に備えられた切換
器によって選択的に切換えられるようにしたものであ
る。
The dedicated machine 1 is provided with a normal drive unit for performing a round operation of the multiple tube rod 2 and a drive unit for rotating and operating the multiple tube rod 2 within a certain angle range. , And can be selectively switched.

回動操作の駆動部は、たとえば、ラックとピニオンを
用いて、ラックを往復動操作させて多重管ロッド2を左
右に回動操作させるものである。ラックの往復動操作に
は、ラックの両端にたとえば突起部を設け、これによっ
てマイクロスイッチ等を作動することにより、多重管ロ
ッド2の回動走行を任意に切換える。多重管ロッド2の
回動角度は、ラックに設ける突起部を移動させることに
よって、マイクロスイッチの作動位置が変わることによ
って行うことができる。
The drive unit for the rotation operation is, for example, a unit that reciprocates the rack using a rack and a pinion to rotate the multiple pipe rod 2 right and left. For the reciprocating operation of the rack, for example, projections are provided at both ends of the rack, and by operating a microswitch or the like by this, the rotation traveling of the multiple pipe rod 2 is arbitrarily switched. The rotation angle of the multi-tube rod 2 can be adjusted by changing the operation position of the microswitch by moving the protrusion provided on the rack.

上記超高圧ポンプ3の一例を第2図により説明する。 An example of the ultra-high pressure pump 3 will be described with reference to FIG.

この超高圧ポンプ3は、先に出願済のもので、弁室9
を設けたバルブボックス10と、プランジャ11を設けたプ
ランジャボックス12と、バルブボックス10とプランジャ
ボックス12との間に配設された圧力作用室13aを設けた
ボックス13とで構成されている。
This ultra-high pressure pump 3 has already been filed and has a valve chamber 9.
, A plunger box 12 provided with a plunger 11, and a box 13 provided with a pressure action chamber 13a disposed between the valve box 10 and the plunger box 12.

バルブボックス10は弁室9に通じる入口通路14と出口
通路15にそれぞれ入口側バルブ16および出口側バルブ17
が設けられている。入口側バルブ16および出口側バルブ
17は、弁座部を略半球状の凹面形状に形成し、かつ該凹
面から軸方向に複数の小孔18を形成したバルブシート19
と、上記凹面形状に対応する球面を有するバルブ本体20
と、このバルブ本体20をバルブシート19に押圧するバル
ブスプリング21とで構成されている。上記バルブシート
19の小孔18は一定の粒子径以上のものが流入するのを除
去する。
The valve box 10 has an inlet valve 16 and an outlet valve 17 in an inlet passage 14 and an outlet passage 15 communicating with the valve chamber 9, respectively.
Is provided. Inlet valve 16 and outlet valve
17 is a valve seat 19 in which a valve seat portion is formed in a substantially hemispherical concave surface shape, and a plurality of small holes 18 are formed in the concave surface in the axial direction.
And a valve body 20 having a spherical surface corresponding to the concave shape
And a valve spring 21 for pressing the valve body 20 against the valve seat 19. Above valve seat
The small holes 18 of 19 eliminate the inflow of particles having a certain particle diameter or more.

上記バルブボックス10の側壁22には、圧力作用室13a
と弁室9内を連通する通路23が突設されており、該通路
23を圧力作用室13a側の開口端部には、一定の粒子径以
上の粒子を流入を阻止するメッシュ等の選別器24が設け
こらている。
On the side wall 22 of the valve box 10, a pressure action chamber 13a is provided.
A passage 23 communicating with the inside of the valve chamber 9 is provided in a protruding manner.
A sorter 24 such as a mesh for preventing particles having a certain diameter or more from flowing is provided at the opening end of the pressure action chamber 13a.

上記プランジャボックス12はシリンダ25内にVパッキ
ング26を介してプランジャ11を内蔵したもので駆動機構
(図示せず)を介して圧力作用室13aに突出させたプラ
ンジャ11を往復動させるものである。
The plunger box 12 has a built-in plunger 11 through a V-packing 26 in a cylinder 25, and reciprocates the plunger 11 protruding into the pressure action chamber 13a via a drive mechanism (not shown).

上記圧力作用室13aには、シリンダ25側Aと弁室9側
Bを仕切る弾性膜27が張設されており、弾性膜27のシリ
ンダ側には油等の作用媒体2Bが充満されている。
The pressure action chamber 13a is provided with an elastic film 27 that partitions the cylinder 25 side A and the valve chamber 9 side B, and the cylinder side of the elastic film 27 is filled with a working medium 2B such as oil.

次に上記装置を用いて第3図のような連続壁を構築す
る場合について説明する。
Next, a case where a continuous wall as shown in FIG. 3 is constructed using the above-described apparatus will be described.

まず、構築しようとする連続壁の施工位置に専用機1
の多重管ロッド2を据付ける。
First, the dedicated machine 1 is placed at the construction position of the continuous wall to be constructed.
Is installed.

次に、地盤条件に応じたロッド回転と進行速度で予定
深度まで削孔する(第4図(a)参照)。この削孔は多
重管ロッド2の先端ノズルからジェットにより自重で地
盤29内に貫入させる。
Next, a hole is drilled to a predetermined depth at a rod rotation and a traveling speed according to ground conditions (see FIG. 4 (a)). This hole is made to penetrate into the ground 29 by its own weight by a jet from the tip nozzle of the multiple pipe rod 2.

なお、多重管ロッドによらず、別途ボーリングした孔
内に多重管ロッド2を挿入させてもよい。削孔後、多重
管ロッド2を孔30の最下部から上方に向けて一定角度の
範囲内の回動させながら引き上げる(第4図(b)参
照)、多重管ロッド2の先端ノズルからは超高圧ポンプ
3の駆動によって硬化材を噴射する。
Instead of using the multiple pipe rod, the multiple pipe rod 2 may be inserted into a separately bored hole. After drilling, the multiple pipe rod 2 is lifted upward from the lowermost part of the hole 30 while rotating within a certain angle range (see FIG. 4 (b)). When the high-pressure pump 3 is driven, the hardening material is injected.

多重管ロッド2の引き上げ速度および回転速度は地盤
の性質、軟弱度によって設定する。
The lifting speed and the rotation speed of the multiple pipe rod 2 are set according to the properties and softness of the ground.

硬化材の成分は、ポルトランドセメント等のセメント
を主成分とし、モンモリロナイト・カルシウム等の混合
材、減水材等の混合材、セメント系土質改良剤等の混和
剤を適宜、組合わせると共に地盤に応じて成分比を代え
て水と共に混合したものである。
The components of the hardening material are mainly composed of cement such as Portland cement, and a mixture of montmorillonite and calcium, a mixture of water reducing materials and the like, and an admixture such as a cement-based soil conditioner are appropriately combined and combined according to the ground. It was mixed with water at a different component ratio.

硬化材の噴射によって地盤の組織が破壊され、第4図
(c)のような地盤中に横断面扇形の柱状パイル31が造
成される。
The structure of the ground is destroyed by the injection of the hardening material, and a columnar pile 31 having a sectorial cross section is formed in the ground as shown in FIG. 4 (c).

この断面半円形と形状パイル31を相隣るもの同志が互
いに一部が重なるようにして造成する。これによって、
第3図のような柱状パイル31の連続壁32が造成される。
The semicircular cross section and the shape pile 31 are formed so that adjacent ones partially overlap each other. by this,
The continuous wall 32 of the columnar pile 31 as shown in FIG. 3 is formed.

第5図は、所定径Dの内径を有する立坑33を示したも
ので、枡や管を設置するための底部のある内径の大きな
立坑33の構築は次のような方法で構築される。
FIG. 5 shows a shaft 33 having an inner diameter of a predetermined diameter D. A shaft 33 having a large inner diameter with a bottom for installing a basin or a pipe is constructed by the following method.

まず、対象地盤の深さ方向に沿って一定深さの位置に
多重管ロッド2を挿入し、底面撹拌部34の径が少なくと
もD以上になるようにして多重管ロッド2を回転操作し
ながら操作ロッドの側面に設けられた噴出部から超高圧
ポンプによって地盤硬化材を噴射する。これによって立
坑33の底部となるべき地盤中に掘削すべき立坑の断面形
状より大で一定の厚みlのある底面撹拌部34が形成され
る。その底部は、大きな立坑を比較的小規模のガス用枡
や下水枡、雨水枡を設置する立坑として利用するために
不可欠である。次に、掘削すべき立坑の周辺部に沿って
地盤硬化材の噴出により形成される柱状撹拌部の形状
が、掘削すべき立坑の外周のみに形成されるよう、第6
図のように直径Dの円35の周縁に沿って一定間隔b1...b
10で多重管ロッド2を操作し、掘削すべき立坑である円
35の外側のみに約180〜200度程度の扇形の柱状パイル36
を、互いに隣り合うもの同志が一部重なるようにして連
続する柱状撹拌部による連続壁を造成する。次に、柱状
パイル36によって囲まれた連続壁内の内側部分37の土砂
等を除去して底部がある立坑33を構築する。
First, the multi-pipe rod 2 is inserted at a position at a certain depth along the depth direction of the target ground, and the multi-pipe rod 2 is operated while rotating so that the diameter of the bottom stirring section 34 is at least D or more. The ground hardening material is jetted from the jetting part provided on the side surface of the rod by an ultra-high pressure pump. As a result, a bottom agitating section 34 having a constant thickness 1 larger than the sectional shape of the shaft to be excavated is formed in the ground to be the bottom of the shaft 33. The bottom is indispensable for using a large shaft as a shaft for installing relatively small gas basins, sewage basins, and rainwater basins. Next, the shape of the columnar stirring portion formed by the ejection of the ground hardening material along the peripheral portion of the shaft to be excavated is set so as to be formed only on the outer periphery of the shaft to be excavated.
As shown in the figure, at regular intervals b1 ... b along the periphery of a circle 35 having a diameter D.
The multi-pipe rod 2 is operated at 10 and the circle which is the shaft to be excavated
A fan-shaped columnar pile of about 180 to 200 degrees only on the outside of 35
To form a continuous wall with a continuous columnar stirring unit such that adjacent ones partially overlap each other. Next, earth and sand and the like in the inner portion 37 in the continuous wall surrounded by the columnar pile 36 are removed to construct the shaft 33 having a bottom.

第7図および第8図は長円形の立坑38の構築工法を示
したもので、この場合、立坑38の底面部分38aを構築す
る際に、多重管ロッド2を互いに一定間隔ずらしてa、
a′の地点で2度操作する。そして、長円39の周囲に沿
ってb1...b10の地点で多重管ロッド2を一定間隔で回動
操作し、長円39の周囲に扇形状の柱状パイル40を互いに
一部が重なるようにして立坑38の側壁38bを構築する。
こうして、柱状パイル40によって囲まれた内側部分41の
土砂等を除去して長円形の底部を有する立坑38を構築す
る。
7 and 8 show a construction method of the oval shaft 38. In this case, when constructing the bottom portion 38a of the shaft 38, the multiple pipe rods 2 are shifted from each other by a predetermined distance,
Operate twice at point a '. Then, the multiple pipe rods 2 are rotated at regular intervals at points b1 to b10 along the periphery of the ellipse 39 so that the fan-shaped columnar piles 40 partially overlap each other around the ellipse 39. Then, the side wall 38b of the shaft 38 is constructed.
In this way, soil and the like in the inner portion 41 surrounded by the columnar pile 40 are removed to construct the shaft 36 having an oval bottom.

f 発明の効果 以上述べたように、本発明による立坑の構築工法によ
れば、以下のような効果を奏する。
f Effects of the Invention As described above, the vertical shaft construction method according to the present invention has the following effects.

超高圧ポンプの出力は従来のポンプに比べて2.5〜3
倍の出力を有するので、一回の噴射撹拌操作で第5図に
示すように立坑の底面部分に厚さlで幅が立坑の直径D
(3500mm程度)よりも広い底面撹拌部を構築することが
できる。次に、超高圧ポンプを用いて噴射撹拌工法を約
180〜200度程度の一定の角度の範囲内で行ない、略半円
状の柱状パイルを隣り合うもの同志が連続するように、
即ち、隣接する円の端部が接合して連続するか、又はそ
の端部の一部が重なるようにして構築する。このように
断面円又は楕円の略周上に沿って所定間隔で連続的に噴
射することにより、軟弱な地盤であっても容易に地盤中
に地盤と硬化材の柱状撹拌部を円または楕円の外側に沿
って連続的に底部のある立坑を形成することが出来る。
この連続壁内の内側部分の土砂を除去して容易に断面円
または楕円の底部のある立坑を構築することができるの
で作業能率の向上を図ることがてきる。
The output of the ultra-high pressure pump is 2.5 to 3 compared to the conventional pump
As shown in FIG. 5, a single injection and stirring operation has a thickness l and a width D
(Approximately 3500 mm), it is possible to construct a bottom stirring part wider. Next, the injection stirring method using an ultra-high pressure pump was
It is performed within a certain angle range of about 180 to 200 degrees, and a substantially semicircular columnar pile is made so that adjacent ones are continuous,
That is, the construction is made such that the ends of adjacent circles are joined and continuous, or a part of the ends overlap. In this way, by continuously injecting at predetermined intervals along substantially the circumference of the cross-section circle or ellipse, even if the ground is soft, the columnar stirring portion of the ground and hardened material can be easily formed in the ground by a circle or ellipse. A shaft with a bottom can be formed continuously along the outside.
The removal of earth and sand in the inner part of the continuous wall makes it possible to easily construct a shaft having a circular or elliptical bottom, thereby improving work efficiency.

また、半円状の柱状パイルは、その半径が超高圧ポン
プの出力の増大に比例して大きくなっているので、従来
のものに比べて少ない数の噴射によって比較的大きな底
部のある立坑を構築できるので、小型の雨水枡(ホー
ル)や中空の管を埋設する立坑の掘削に関する作業能率
の向上を図ることができる。
In addition, since the radius of the semicircular columnar pile increases in proportion to the increase in the output of the ultra-high pressure pump, a relatively large bottom shaft is constructed with a smaller number of injections than the conventional one. Therefore, it is possible to improve the work efficiency of excavating the shaft for burying a small rainwater basin (hole) or a hollow pipe.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の立坑の構築工法に用いる各装置を示す
概念図、第2図は、本発明に用いる超高圧ポンプを示す
断面図、第3図は本発明による立坑の構築工法による連
続壁を示す斜視図、第4図(a)ないし(c)は立坑の
構築順序を示す概念断面図、第5図ないし第8図は本発
明の立坑の構築工法による円または楕円の立坑の構築工
法を示し、第5図は断面図、第6図、第7図、第8図は
概念図である。第9図および第10図は従来の立坑の構築
工法を示し、第9図は断面図、第10図は概念図である。 1……専用機、2……多重管ロッド 3……超高圧ポンプ、29……地盤 31,36,40……柱状パイル、32……連続壁 34……底面撹拌部、33,38……立坑
FIG. 1 is a conceptual diagram showing each apparatus used in the shaft construction method of the present invention, FIG. 2 is a cross-sectional view showing an ultra-high pressure pump used in the present invention, and FIG. FIGS. 4 (a) to 4 (c) are conceptual sectional views showing the construction order of the shaft, and FIGS. 5 to 8 are constructions of circular or elliptical shafts by the shaft construction method of the present invention. FIG. 5 is a sectional view, and FIGS. 6, 7, and 8 are conceptual views. 9 and 10 show a conventional shaft construction method, FIG. 9 is a sectional view, and FIG. 10 is a conceptual diagram. 1 ... dedicated machine, 2 ... multiple pipe rods 3 ... ultra-high pressure pump, 29 ... ground 31,36,40 ... columnar pile, 32 ... continuous wall 34 ... bottom stirrer, 33,38 ... Shaft

フロントページの続き (73)特許権者 999999999 藤森 脩一 神奈川県藤沢市鵠沼松が岡2丁目19番5 号 (72)発明者 小岩 儀信 千葉県千葉市三角町703番地 栄興産業 株式会社内 (56)参考文献 特開 昭56−100922(JP,A) 特開 昭53−31311(JP,A) 特開 昭62−174412(JP,A) (58)調査した分野(Int.Cl.6,DB名) E02D 3/12 102Continued on the front page (73) Patent holder 999999999 Shuichi Fujimori 2-195-5 Kugenumamatsugaoka, Fujisawa City, Kanagawa Prefecture Document JP-A-56-100922 (JP, A) JP-A-53-31311 (JP, A) JP-A-62-174412 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) E02D 3/12 102

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】対象地盤の深さ方向に沿って操作される操
作ロッドを回動操作し、操作ロッドの側面に設けられた
噴出部から超高圧ポンプによって地盤硬化材を掘削すべ
き立坑の略周上に沿って所定間隔で噴射して地盤中に地
盤と硬化材の柱状撹拌部を形成してから立坑を掘削する
工法において、超高圧で立坑の底面部となるべき地盤中
に掘削すべき立坑の断面形状より大で一定の厚みのある
底面撹拌部を形成し、次に掘削すべき立坑の周辺部に沿
って地盤硬化材の噴出により形成される柱状撹拌部の形
状が、掘削すべき立坑の外周のみに形成されるよう、操
作ロッドを回転させながら引き上げて掘削すべき立坑の
外側のみに連続する柱状撹拌部による連続壁を構築し、
さらに連続壁内の土砂を除去して立坑を構築することを
特徴とする立坑の構築工法
An operating rod operated along the depth direction of a target ground is rotated, and a vertical shaft for excavating a ground hardening material by an ultra-high pressure pump from an ejection portion provided on a side surface of the operating rod. In the construction method of excavating a shaft by spraying at predetermined intervals along the circumference to form a columnar stirring part of the ground and hardened material in the ground, it is necessary to excavate under extremely high pressure into the ground that will be the bottom part of the shaft Form a bottom agitator with a certain thickness that is larger than the cross-sectional shape of the shaft, and then excavate the columnar agitator formed by the injection of ground hardening material along the periphery of the shaft to be excavated. Construct a continuous wall with a columnar stirring section that is continuous only on the outside of the shaft to be excavated by pulling up while rotating the operation rod so that it is formed only on the outer periphery of the shaft,
A shaft construction method characterized by the construction of a shaft by removing soil from the continuous wall.
JP63088622A 1988-03-31 1988-04-11 Shaft construction method Expired - Fee Related JP2864243B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP63088622A JP2864243B2 (en) 1988-04-11 1988-04-11 Shaft construction method
US07/328,052 US5026216A (en) 1988-03-31 1989-03-23 Shaft construction method
CA000595100A CA1334130C (en) 1988-03-31 1989-03-29 Shaft construction method
AU32314/89A AU610372B2 (en) 1988-03-31 1989-03-30 Shaft construction method
EP93200615A EP0550419B1 (en) 1988-03-31 1989-03-30 Shaft construction method
EP89303138A EP0335709B1 (en) 1988-03-31 1989-03-30 Shaft construction method
DE68925740T DE68925740T2 (en) 1988-03-31 1989-03-30 Pile form method
DE68912804T DE68912804T2 (en) 1988-03-31 1989-03-30 Shaft construction method.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP63088622A JP2864243B2 (en) 1988-04-11 1988-04-11 Shaft construction method
CA000595100A CA1334130C (en) 1988-03-31 1989-03-29 Shaft construction method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP27907693A Division JPH06193046A (en) 1993-10-01 1993-10-12 Pit construction method

Publications (2)

Publication Number Publication Date
JPH01260115A JPH01260115A (en) 1989-10-17
JP2864243B2 true JP2864243B2 (en) 1999-03-03

Family

ID=25672566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63088622A Expired - Fee Related JP2864243B2 (en) 1988-03-31 1988-04-11 Shaft construction method

Country Status (1)

Country Link
JP (1) JP2864243B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0811889B2 (en) * 1990-10-25 1996-02-07 中西 渉 Support lining layer construction method and its equipment

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5331311A (en) * 1976-09-03 1978-03-24 Nippon Sougou Bousui Kk Grouting method

Also Published As

Publication number Publication date
JPH01260115A (en) 1989-10-17

Similar Documents

Publication Publication Date Title
CA1334130C (en) Shaft construction method
US3786641A (en) Means for stabilizing structural layer overlying earth materials in situ
JP4520913B2 (en) Ground improvement method and existing structure foundation reinforcement method
JPH0469251B2 (en)
JP2864243B2 (en) Shaft construction method
KR101855413B1 (en) Hardener injection equipment for deep mixing method of soil stabiliazation and construction method using same
JP3626972B1 (en) Jet stirring method and jet stirring device
JPH09317373A (en) Method of shaft construction
AU610372B2 (en) Shaft construction method
EP1676009B1 (en) Apparatus and method to prepare in-situ pilings with pre-selected physical properties
WO1992021825A1 (en) Construction method of improving or strengthening ground
JPH06193046A (en) Pit construction method
JPH03119219A (en) Jet grout type underground retaining wall building method
AU632656B2 (en) Shaft construction method
JP4615841B2 (en) Synthetic pile construction method and synthetic pile
JP7471041B2 (en) High pressure jet mixing method
JP2879385B2 (en) Ground improvement or reinforcement method
JPH01247611A (en) Construction and device for foundation improvement with the joint use of agitator and jet
JP3285056B2 (en) Spread wing injection pipe for ground improvement
JP2000345546A (en) Improvement method for soft ground containing hard stratum
KR800000650B1 (en) Method of forming continuous underground walls on weak footing
JPH01250517A (en) Constructing method for vertical pile
JP2023066679A (en) Method to fill joint of steel pipe sheet pile with grout material after discharging sediment from the inside of the joint
JP2004027494A (en) Foundation improvement method and construction machinery
JP2942536B1 (en) Ground hardening material injection method and equipment

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees