JPH0448860B2 - - Google Patents

Info

Publication number
JPH0448860B2
JPH0448860B2 JP61208192A JP20819286A JPH0448860B2 JP H0448860 B2 JPH0448860 B2 JP H0448860B2 JP 61208192 A JP61208192 A JP 61208192A JP 20819286 A JP20819286 A JP 20819286A JP H0448860 B2 JPH0448860 B2 JP H0448860B2
Authority
JP
Japan
Prior art keywords
alloy
amorphous
nozzle
amorphous alloy
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61208192A
Other languages
Japanese (ja)
Other versions
JPS6362837A (en
Inventor
Tsutomu Yoshitake
Yoshimi Kubo
Hitoshi Igarashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP61208192A priority Critical patent/JPS6362837A/en
Publication of JPS6362837A publication Critical patent/JPS6362837A/en
Publication of JPH0448860B2 publication Critical patent/JPH0448860B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0611Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by a single casting wheel, e.g. for casting amorphous metal strips or wires

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、高い結晶化温度を有するTa−W系
非晶質合金及びその製造方法に関するものであ
る。 (従来の技術) 近年、各種の非晶質材料が開発され、金属材料
の分野において、多くの注目を集めている。これ
らの合金は、従来の結晶合金とは異なり、結晶構
造を持たない金属であり、その性質も従来の金属
材料にはみられないものが多く、機械的性質、耐
磨耗性、耐食性、軟磁性などにすぐれているた
め、結晶質金属に代わりうる材料として、各種の
用途開発が行なわれ、さらに、その用途に適した
材料開発も行なわれている。これらの合金は、ス
パツタリング法等の気相急冷法あるいは液体急冷
法によつて作製しうるが、工業的には最も生産性
の高い液体急冷法が多く用いられている。 (発明が解決しようとする問題点) 非晶質合金の最大の問題点は、熱的に不安定な
点にある。これは、非晶質状態が熱力学的に非平
衡な準安定状態であるということに由来するもの
で、非晶質合金の宿命ともいえることである。す
なわち、非晶質合金は一般に、それぞれ特有の結
晶化温度を有し、その温度を越えるとより熱的に
安定な結晶合金に変化してしまい、非晶質状態の
ときにみられたすぐれた諸特性がすべて失なわれ
てしまうのである。この結晶化温度は、材料によ
つて異なるが、一般に絶対温度で測定した融点の
0.4〜0.6倍程度の値をとることが知られている。
従つて、結晶化温度の高い非晶質合金を得るため
には、融点の高い合金を液体急冷法などの方法で
非晶質化しなければならない。 しかしながら、従来の液体急冷装置は、鉄系合
金等の比較的融点の低い物質用に作られているも
のが多く、石英等の耐熱性のノズルを抵抗加熱も
しくは高周波加熱によつて加熱するという方式の
ものがほとんどである。従つて、最高使用温度は
ノズル材質の耐火度によつて制限され、1200〜
1400℃程度が限度である。また、温度が高くなる
とノズル材質と合金が反応することによる試料の
汚染も起こりうるため、急冷できる合金の種類は
限られていた。 これに対して、融点が約2400℃程度ときわめて
高いTa−Si−B三元系非晶質合金はその結晶化
温度が800℃〜960℃と非常に高く、非晶質合金の
問題点を大幅に改善することが可能となつた。
(特開昭62−170450号)。 さらに、このTa−Si−B三元系非晶質合金は、
一般の非晶質合金に特有の強度、高硬度などのす
ぐれた機械的特性を有しているために、例えば、
耐磨耗性材料、高温で使われる構造材料の複合強
化材、および温度上昇を伴う電極用材料などへの
応用が考えられる。 しかしながら、実際に前記Ta−Si−B系非晶
質合金を高温環境下で使用する場合には、経時変
化が問題となつてくるために、使用温度範囲は最
高600℃程度に限定されてしまう。 本発明は、このような従来技術の問題点を解決
して、結晶化温度が高く、前記Ta系非晶質合金
よりもさらに高温環境に耐えることができ、か
つ、機械的特性、耐食性等にすぐれた非晶質合金
及びその製造方法を提供することにある。 (問題点を解決するための手段) 本発明は、(Ta1-xWx)y(Si1-zBz)uなる式
で表わされ、x=0.01〜0.8、z=0.01〜0.99、y
=0.7〜0.9、u=0.1〜0.3であることを特徴とす
るTa−W系非晶質合金である。さらにまた、本
発明は、前記Ta−W系非晶質合金を得るための
製造方法として、すなわち、前記Ta−W系非晶
質合金と同じ合金組成の原料合金を、水冷された
金属製のるつぼの中で溶解し、該溶解合金を水冷
された金属製のノズルもしくは高融点材料製のノ
ズルを用いて、高速回転している冷却用ロールの
表面上に噴射して急速凝固させることによつて非
晶質化することを特徴とするTa−W系非晶質合
金の製造方法である。また、この際、前記冷却用
ロールの表面周速が90m/secであるならば、製
造方法としてはより好ましい。 (作用) Ta−W−Si−B系合金では、TaとWが70at%
〜90at%の組成範囲で非晶質合金を得ることがで
きることを本発明者は初めて見い出した。この組
成範囲をはずれると非晶質構造がほとんどみられ
なくなり、非晶質合金に特徴的なすぐれた特性が
すべて消去してしまう。この組成範囲で非晶質相
が形成される詳細な理由は不明であるが、一般に
非晶質相は共晶組成付近で形成されやすいという
傾向があり、この場合にもその傾向にほぼあては
まると思われる。 また、xの範囲を0.01以上と限定したのは、
Taのみの場合よりもWを添加した場合のほうが
結晶化温度が高くなるからである。さらに、Zの
範囲を0.01〜0.99と限定したのは、この範囲にお
いて、SiまたはBを微量添加した場合やいずれか
一方だけを添加した場合よりも結晶化温度が高く
なるからである。これらの非晶質合金の結晶化温
度は、その融点の高さに対して、1000℃〜1200℃
という高い値である。これらの非晶質合金の機械
的特性は、非晶質合金に一般的にみられるよう
に、高強度かつ高硬度である。また、耐食性にお
いても、Ta又はWのすぐれた耐食性に匹敵する
ほどの耐食性を有している。 次に、本発明による製造方法は、液体急冷法の
一種であるが、原料合金の溶解を水冷された金属
製のるつぼの中で行なうので、原料合金とるつぼ
金属との反応はほとんどおこらない。るつぼ金属
が水冷されている場合には、たとえ高温度の溶解
金属が接触したとしても、るつぼ金属の温度が低
すぎるために合金化反応がきわめておこりにくい
からである。 るつぼ金属の材質としては、水冷効果を大きく
するという点から熱伝導度の大きな物質が望まし
い。また、反応しにくいという点からは高融点の
物質も適当である。一例を挙げるならば、銅、
銀、あるあるいはそれらの合金、もしくはタング
ステン、モリブデンなどが考えられる。 また、溶解手段としては、アーク溶解、プラズ
マ溶解、電子ビーム溶解、レーザビーム溶解など
のよく知られた方法を用いることができる。 このようにして溶解された原料合金は水冷され
た金属製のノズルもしくは高融点材料製のノズル
を用いて、高速回転している冷却用ロールの表面
上に噴射されて、急冷薄帯となる。この際、ノズ
ル口を通過させる理由は、融体の安定な流れを形
成することによつて、均一な連続した急冷薄帯を
得るためである。もし、ノズル口を通過させず
に、直接ロール表面に溶融物質を落下させるなら
ば、不均一かつ不連続的な薄帯しか得られないで
あろう。 また、この時、溶融物質とノズルが接触するの
で、両者の間の反応が問題になるが、ノズルが水
冷された金属製もしくは窒化ボロン、グラフアイ
ト、酸化マグネシウム等の高融点材料製であれ
ば、接触時間がきわめて短いために、両者の間の
反応はほとんどおこらない。 以上のように、本発明の特許請求の範囲第1項
に記載のTa−W系非晶質合金は、第2項に記載
の製造方法によつて容易に作製することができ
る。また、液体急冷法は、通常、冷却ロールの表
面周速が50m/sec以下で行なわれることがほと
んどであるが、これを90m/sec以上にすること
により、本発明のTa−W系合金をより容易に非
晶質化することができる。溶解合金を急冷凝固し
て非晶質化するには、急冷速度が大きいほど有利
であるが、ロール周速を上げることは急冷薄帯の
厚さを薄くすることにつながるので、急冷速度が
大きくなり、非晶質化がより容易になるのであ
る。 (実施例) 第1図に、本発明のTa−W系非晶質合金を作
製する装置の一例を示す。図において、1は水冷
された胴製のるつぼ、2は原料合金、3は窒化ボ
ロン製のノズル、4は急冷用ロール、5はプラズ
マトーチである。るつぼ1は左右のブロツクに分
かれており、棒6によつて左右に開閉できるよう
になつている。従つて、棒6を内側に押し込んだ
状態で試料2をプラズマによつて溶解し、その
後、棒6を外側に引つ張ると、るつぼ1が左右に
開き、試料2は重力によつて、ノズル3の中に落
下する、その際、あらかじめ上側のチヤンバーに
はガス導入口7からガスを導入し、下側のチヤン
バーは真空ポンプ8によつて排気しておけば、上
下間の圧力差によつて、試料2はノズル3よりロ
ール4の表面上に噴出して急冷薄帯となる。ノズ
ル3の穴径は0.5mm〜1.0mmとした。ロール4は直
径250mmの銅製で、これを800rpmの速度で回転さ
せて用いた。周速度は約105m/secである。 この装置を用いて、Ta−W−Si−B合金の液
体急冷を行ない、得られた薄帯の構造をX線回折
によつて調べた。その結果、TaとWが70〜90at
%の組成範囲では、いずれの薄帯も結晶による鋭
い回折ピークはみられず、ブロードなハローパタ
ーンが得られたことから非晶質相であることが確
認された。次に、第1表に示差分析によつて測定
したこれらの試料の結晶化温度を示す。ただし第
1表の試料No.6、12、24は本発明の範囲外であ
る。
(Industrial Application Field) The present invention relates to a Ta-W based amorphous alloy having a high crystallization temperature and a method for producing the same. (Prior Art) In recent years, various amorphous materials have been developed and are attracting a lot of attention in the field of metal materials. These alloys are metals that do not have a crystal structure, unlike conventional crystalline alloys, and many of their properties are not found in conventional metal materials, such as mechanical properties, abrasion resistance, corrosion resistance, and softness. Due to its excellent magnetism, various uses are being developed as a material that can replace crystalline metals, and materials suitable for these uses are also being developed. These alloys can be produced by a vapor phase quenching method such as a sputtering method or a liquid quenching method, but the liquid quenching method, which has the highest productivity, is often used industrially. (Problems to be Solved by the Invention) The biggest problem with amorphous alloys is that they are thermally unstable. This is due to the fact that the amorphous state is a thermodynamically non-equilibrium metastable state, and can be said to be the fate of amorphous alloys. In other words, each amorphous alloy generally has its own unique crystallization temperature, and once that temperature is exceeded, it changes to a more thermally stable crystalline alloy, resulting in the superior properties observed in the amorphous state. All properties are lost. This crystallization temperature varies depending on the material, but is generally below the melting point measured in absolute temperature.
It is known that it takes a value of about 0.4 to 0.6 times.
Therefore, in order to obtain an amorphous alloy with a high crystallization temperature, an alloy with a high melting point must be made amorphous by a method such as a liquid quenching method. However, conventional liquid quenching equipment is often made for materials with relatively low melting points, such as iron-based alloys, and uses a method that heats a heat-resistant nozzle made of quartz or other material using resistance heating or high-frequency heating. Most of them are. Therefore, the maximum operating temperature is limited by the fire resistance of the nozzle material, and is 1200~
The limit is about 1400℃. Furthermore, as the temperature rises, the nozzle material and the alloy may react and contaminate the sample, so the types of alloys that can be rapidly cooled are limited. On the other hand, the Ta-Si-B ternary amorphous alloy, which has an extremely high melting point of approximately 2400°C, has a crystallization temperature of 800°C to 960°C, which causes problems with amorphous alloys. It has become possible to make significant improvements.
(Unexamined Japanese Patent Publication No. 170450/1983). Furthermore, this Ta-Si-B ternary amorphous alloy is
Because it has excellent mechanical properties such as strength and high hardness unique to general amorphous alloys, for example,
Potential applications include wear-resistant materials, composite reinforcement materials for structural materials used at high temperatures, and materials for electrodes that are subject to elevated temperatures. However, when the Ta-Si-B amorphous alloy is actually used in a high-temperature environment, aging becomes a problem, so the operating temperature range is limited to a maximum of about 600°C. . The present invention solves the problems of the prior art, has a high crystallization temperature, can withstand higher temperature environments than the Ta-based amorphous alloy, and has improved mechanical properties, corrosion resistance, etc. An object of the present invention is to provide an excellent amorphous alloy and a method for manufacturing the same. (Means for Solving the Problems) The present invention is expressed by the formula (Ta 1-x W x )y(Si 1-z B z )u, where x=0.01 to 0.8, z=0.01 to 0.99. ,y
It is a Ta-W based amorphous alloy characterized by u = 0.7 to 0.9 and u = 0.1 to 0.3. Furthermore, the present invention provides a manufacturing method for obtaining the Ta-W amorphous alloy, in which a raw material alloy having the same alloy composition as the Ta-W amorphous alloy is heated in a water-cooled metal The molten alloy is melted in a crucible and is rapidly solidified by spraying it onto the surface of a cooling roll rotating at high speed using a water-cooled metal nozzle or a nozzle made of a high-melting point material. This is a method for producing a Ta--W based amorphous alloy, which is characterized in that it becomes amorphous over time. Further, in this case, it is more preferable as a manufacturing method if the surface circumferential speed of the cooling roll is 90 m/sec. (Function) In Ta-W-Si-B alloy, Ta and W are 70at%
The present inventors have discovered for the first time that an amorphous alloy can be obtained in a composition range of ~90 at%. When the composition is outside this range, almost no amorphous structure is observed, and all the excellent properties characteristic of amorphous alloys are lost. Although the detailed reason why an amorphous phase is formed in this composition range is unknown, there is a general tendency for an amorphous phase to be formed near a eutectic composition, and this tendency is likely to apply in this case as well. Seem. In addition, the range of x was limited to 0.01 or more because
This is because the crystallization temperature becomes higher when W is added than when only Ta is added. Furthermore, the reason why the range of Z is limited to 0.01 to 0.99 is because in this range, the crystallization temperature becomes higher than when a trace amount of Si or B is added, or when only one of them is added. The crystallization temperature of these amorphous alloys is between 1000°C and 1200°C, relative to their high melting points.
This is a high value. The mechanical properties of these amorphous alloys are high strength and hardness, as is commonly found in amorphous alloys. Also, in terms of corrosion resistance, it has corrosion resistance comparable to that of Ta or W. Next, the manufacturing method according to the present invention is a type of liquid quenching method, but since the raw material alloy is melted in a water-cooled metal crucible, almost no reaction occurs between the raw material alloy and the crucible metal. This is because if the crucible metal is water-cooled, even if high-temperature molten metal comes into contact with it, the temperature of the crucible metal is too low, making it extremely difficult for an alloying reaction to occur. The material of the crucible metal is preferably a material with high thermal conductivity in order to increase the water cooling effect. In addition, substances with high melting points are also suitable from the viewpoint of being difficult to react. For example, copper,
Possible materials include silver, or alloys thereof, tungsten, molybdenum, etc. Further, as the melting means, well-known methods such as arc melting, plasma melting, electron beam melting, and laser beam melting can be used. The raw material alloy thus melted is injected onto the surface of a cooling roll rotating at high speed using a water-cooled metal nozzle or a nozzle made of a high-melting point material to form a quenched ribbon. At this time, the reason for passing the melt through the nozzle opening is to form a stable flow of the melt to obtain a uniform and continuous quenched ribbon. If the molten material were to fall directly onto the roll surface without passing through the nozzle orifice, only a non-uniform and discontinuous ribbon would be obtained. Also, since the molten substance and the nozzle come into contact at this time, reactions between the two become a problem, but if the nozzle is made of water-cooled metal or a high melting point material such as boron nitride, graphite, or magnesium oxide, , because the contact time is extremely short, almost no reaction occurs between the two. As described above, the Ta-W amorphous alloy described in claim 1 of the present invention can be easily produced by the manufacturing method described in claim 2. In addition, the liquid quenching method is usually carried out at a cooling roll surface speed of 50 m/sec or less, but by increasing this to 90 m/sec or more, the Ta-W alloy of the present invention can be It can be more easily amorphized. In order to rapidly solidify a molten alloy and make it amorphous, a higher quenching rate is more advantageous; however, increasing the peripheral speed of the rolls leads to a reduction in the thickness of the quenched ribbon. Therefore, it becomes easier to become amorphous. (Example) FIG. 1 shows an example of an apparatus for producing the Ta-W amorphous alloy of the present invention. In the figure, 1 is a water-cooled crucible made of a shell, 2 is a raw material alloy, 3 is a nozzle made of boron nitride, 4 is a quenching roll, and 5 is a plasma torch. The crucible 1 is divided into left and right blocks, and can be opened and closed to the left and right by means of a rod 6. Therefore, when the rod 6 is pushed inward and the sample 2 is melted by the plasma, and then the rod 6 is pulled outward, the crucible 1 opens left and right, and the sample 2 is moved by gravity into the nozzle. 3. At that time, if gas is introduced into the upper chamber from the gas inlet port 7 and the lower chamber is evacuated by the vacuum pump 8, the pressure difference between the upper and lower chambers will Then, the sample 2 is ejected from the nozzle 3 onto the surface of the roll 4 and becomes a quenched ribbon. The hole diameter of the nozzle 3 was 0.5 mm to 1.0 mm. The roll 4 was made of copper and had a diameter of 250 mm, and was rotated at a speed of 800 rpm. The circumferential speed is approximately 105 m/sec. Using this apparatus, a Ta-W-Si-B alloy was liquid-quenched, and the structure of the obtained ribbon was investigated by X-ray diffraction. As a result, Ta and W are 70~90at
% composition range, no sharp diffraction peaks due to crystals were observed in any of the ribbons, and a broad halo pattern was obtained, confirming that they were in an amorphous phase. Next, Table 1 shows the crystallization temperatures of these samples measured by differential analysis. However, samples Nos. 6, 12, and 24 in Table 1 are outside the scope of the present invention.

【表】【table】

【表】 いずれの試料も1000℃以上の高い結晶化温度を
示しており、Ta−Si−B系非晶質合金の場合よ
りもさらに100℃〜200℃高い結晶化温度を有して
いることがわかる。また、これらの試料は800℃
で1000時間焼鈍した後も非晶質構造を維持してお
り、非常に耐熱性の高い非晶質合金であることが
判明した。さらに、これらの試料の機械的性質
は、ビツカース硬さが900〜1600の範囲であると
いうすぐれた特性を示しており、また、これらの
試料を濃塩酸、濃硝酸、濃硫酸、濃王水の中に一
日放置しても何ら腐食された様子は見られず、重
量変化も認められなかつた。 (発明の効果) 以上詳細に説明したように、本発明における
Ta−W系非晶質合金及びその製造方法は高い結
晶化温度を有し、かつ、機械的性質、耐食性等に
すぐれた非晶質合金が容易に得られ、その効果は
大きい。
[Table] All samples show a high crystallization temperature of 1000°C or more, which is 100°C to 200°C higher than that of the Ta-Si-B amorphous alloy. I understand. Also, these samples were heated to 800℃
The alloy maintained its amorphous structure even after being annealed for 1000 hours, proving it to be an extremely heat-resistant amorphous alloy. Furthermore, the mechanical properties of these samples showed excellent properties with a Bitkers hardness ranging from 900 to 1600, and these samples were also exposed to concentrated hydrochloric acid, concentrated nitric acid, concentrated sulfuric acid, and concentrated aqua regia. Even after being left inside for a day, no signs of corrosion were observed, and no change in weight was observed. (Effect of the invention) As explained in detail above, the present invention
The Ta-W amorphous alloy and its manufacturing method have a high crystallization temperature and can easily produce an amorphous alloy with excellent mechanical properties, corrosion resistance, etc., and the effects thereof are significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明のTa−W系非晶質合金を作
製する装置の一例を示す図である。図において、
1は水冷された銅製のるつぼ、2は原料合金、3
は窒化ボロン製のノズル、4は急冷用ロール、5
はプラズマトーチ、6はるつぼを開閉するための
棒、7はガス導入口、8は真空ポンプである。
FIG. 1 is a diagram showing an example of an apparatus for producing the Ta-W based amorphous alloy of the present invention. In the figure,
1 is a water-cooled copper crucible, 2 is a raw material alloy, and 3 is a water-cooled copper crucible.
is a nozzle made of boron nitride, 4 is a rapid cooling roll, 5 is a nozzle made of boron nitride,
is a plasma torch, 6 is a rod for opening and closing the crucible, 7 is a gas inlet, and 8 is a vacuum pump.

Claims (1)

【特許請求の範囲】 1 (Ta1-xWx)y(Si1-zBz)uなる式で表わさ
れ、x=0.01〜0.8、z=0.01〜0.99、y=0.7〜
0.9、u=0.1〜0.3であることを特徴とするTa−
W系非晶質合金。 2 (Ta1-xWx)y(Si1-zBz)uなる式で表わさ
れ、x=0.01〜0.8、z=0.01〜0.99、y=0.7〜
0.9、u=0.1〜0.3である組成の原料合金を、水冷
された金属製のるつぼの中で溶解し、該溶解合金
を、水冷された金属製のノズルもしくは高融点材
料製のノズルを用いて、表面周速が90m/sec以
上で高速回転している冷却用ロールの表面上に噴
射して急冷凝固させることによつて非晶質化させ
ることを特徴とするTa−W系非晶質合金の製造
方法。
[Claims] Represented by the formula 1 (Ta 1-x W x )y (Si 1-z B z )u, where x=0.01-0.8, z=0.01-0.99, y=0.7-
0.9, Ta- characterized by u=0.1~0.3
W-based amorphous alloy. 2 (Ta 1-x W x )y (Si 1-z B z )u, x=0.01~0.8, z=0.01~0.99, y=0.7~
A raw material alloy having a composition of 0.9, u = 0.1 to 0.3 is melted in a water-cooled metal crucible, and the melted alloy is transferred using a water-cooled metal nozzle or a nozzle made of a high melting point material. , a Ta-W based amorphous alloy characterized by being made amorphous by being injected onto the surface of a cooling roll rotating at high speed at a surface circumferential speed of 90 m/sec or more and rapidly solidifying it. manufacturing method.
JP61208192A 1986-09-03 1986-09-03 Ta-w amorphous alloy and its production Granted JPS6362837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61208192A JPS6362837A (en) 1986-09-03 1986-09-03 Ta-w amorphous alloy and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61208192A JPS6362837A (en) 1986-09-03 1986-09-03 Ta-w amorphous alloy and its production

Publications (2)

Publication Number Publication Date
JPS6362837A JPS6362837A (en) 1988-03-19
JPH0448860B2 true JPH0448860B2 (en) 1992-08-07

Family

ID=16552185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61208192A Granted JPS6362837A (en) 1986-09-03 1986-09-03 Ta-w amorphous alloy and its production

Country Status (1)

Country Link
JP (1) JPS6362837A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109913726B (en) * 2019-05-06 2021-01-22 北方民族大学 Ta-W-based alloy and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5499035A (en) * 1972-12-26 1979-08-04 Allied Chem Noncrystalline metal wire

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5499035A (en) * 1972-12-26 1979-08-04 Allied Chem Noncrystalline metal wire

Also Published As

Publication number Publication date
JPS6362837A (en) 1988-03-19

Similar Documents

Publication Publication Date Title
JP4190720B2 (en) Multi-component alloy
US4050931A (en) Amorphous metal alloys in the beryllium-titanium-zirconium system
JP2815215B2 (en) Manufacturing method of amorphous alloy solidified material
US4400208A (en) Process for the production of iron, phosphorus, carbon and chromium based amorphous metal alloys, and the alloys obtained
EP3036349B1 (en) Zirconium-based alloy metallic glass and method for forming a zirconium-based alloy metallic glass
JPH0448860B2 (en)
JP3737056B2 (en) High strength Zr-based metallic glass
JPH0558056B2 (en)
JPH0448861B2 (en)
JPH0448862B2 (en)
JP2000345309A (en) HIGH STRENGTH AND HIGH CORROSION RESISTANCE Ni BASE AMORPHOUS ALLOY
JP3849004B2 (en) Method for producing rapidly solidified bulk amorphous alloy material
JPS6053096B2 (en) Copper alloy for molten metal quenching roll
JPS63125669A (en) Production of thin amorphous ta-w alloy film
KR102453371B1 (en) Ni-based amorphous alloy for prevent corrosion of plant, and preparing method thereof
JPS63125667A (en) Production of thin amorphous ta-w alloy film
JPS63125668A (en) Production of thin amorphous ta-w alloy film
JPH05125499A (en) Aluminum-base alloy having high strength and high toughness
RU2061582C1 (en) Method for dispersion of material by melt extraction
JPS63125666A (en) Production of thin amorphous ta alloy film
JPS63130768A (en) Production of thin ta amorphous alloy film
JPS62220252A (en) Liquid rapid cooling device
JPS63130766A (en) Production of thin ta amorphous alloy film
JPS63227728A (en) Melting crucible and melting method
JP2020139231A (en) Molded article made of molybdenum-aluminum-titanium alloy

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term