JPS63130766A - Production of thin ta amorphous alloy film - Google Patents

Production of thin ta amorphous alloy film

Info

Publication number
JPS63130766A
JPS63130766A JP61277149A JP27714986A JPS63130766A JP S63130766 A JPS63130766 A JP S63130766A JP 61277149 A JP61277149 A JP 61277149A JP 27714986 A JP27714986 A JP 27714986A JP S63130766 A JPS63130766 A JP S63130766A
Authority
JP
Japan
Prior art keywords
alloy
thin
substrate
amorphous
alloy film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61277149A
Other languages
Japanese (ja)
Inventor
Tsutomu Yoshitake
務 吉武
Yoshimi Kubo
佳実 久保
Hitoshi Igarashi
五十嵐 等
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61277149A priority Critical patent/JPS63130766A/en
Publication of JPS63130766A publication Critical patent/JPS63130766A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain a thin Ta amorphous alloy film having a high crystallization temp. and excellent mechanical characteristics and corrosion resistance by heating and melting a Ta alloy contg. B at a specific ratio in a vacuum to evaporate the metal atoms and sticking the vapor on a substrate. CONSTITUTION:After the inside of a vacuum chamber 10 is evacuated 11 to order of 10<-3>Torr, the materials 1, 2 to be evaporated held in crucibles 3, 4 are heated and melted by the electron beams generated from electron beam sources 12, 13. Ta is used for the material 1 and a Ta0.4B0.6 alloy for the material 2. The crucibles 3, 4 are made of copper and are cooled with water by a cooling water introducing pipe 5. Ta and B are evaporated in the atom state from the molten material and are mixed with each other near the substrate 6 so that both are stuck in the form of a homogeneous alloy on the substrate 6. The structure of the resulted thin Ta-B alloy film is evaluated by an X-ray diffraction method. As a result, sharp diffraction peaks by crystals are not observed with any thin strips having the compsn. range of 60-90at% Ta. Since a broad halo pattern is obtd., it is verified that the thin amorphous alloy film is obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高い結晶化温度を有する非晶質合金薄膜の製造
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing an amorphous alloy thin film having a high crystallization temperature.

(従来の技術) 近年、各種の非晶質材料が開発され、金属材料の分野に
おいて、多くの注目を集めている。これらの合金は、従
来の結晶合金とは異なり、結晶構造を持たない合金であ
り、その性質も従来の金属材料にはみられないものが多
く、機械的性質、耐摩耗性、耐食性、軟磁性、電気的性
質などに優れているため、結晶質金属に代わりうる材料
として、各種の用途開発が行われ、さらに、その用途に
適した材料開発も行われている。これらの合金は、従来
、一般に、単ロール法等の液体急冷法によって作製され
ている。
(Prior Art) In recent years, various amorphous materials have been developed and are attracting a lot of attention in the field of metal materials. Unlike conventional crystalline alloys, these alloys do not have a crystalline structure, and many of their properties are not found in conventional metal materials, such as mechanical properties, wear resistance, corrosion resistance, and soft magnetism. Due to its excellent electrical properties, various uses are being developed as a material that can replace crystalline metals, and materials suitable for these uses are also being developed. These alloys have conventionally been generally produced by a liquid quenching method such as a single roll method.

(発明が解決しようとする問題点) 非晶質合金の最大の問題点は、熱的に不安定な点にある
。これは非晶質状態が熱力学的に非平衡な準安定状態そ
・あるということに由来するもので、非晶質合金の宿命
ともいえることである。即ち、非晶質合金は、一般に、
それぞれ特有の結晶化温度を有し、その温度を越えると
より熱的に安定な結晶合金に変化してしまい、非晶質状
態のときにみられた優れた緒特性が全て失われてしまう
のである。この結晶化温度は、材料によって異なるが、
一般に、絶対温度で測定した融点の0.4〜0.6倍程
度の値をとることが知られている。従って、結晶化温度
の高い合金を得るためには、融点の高い合金を非晶質化
しなければならない。
(Problems to be Solved by the Invention) The biggest problem with amorphous alloys is that they are thermally unstable. This is due to the fact that the amorphous state is a thermodynamically non-equilibrium metastable state, and can be said to be the fate of amorphous alloys. That is, amorphous alloys generally have
Each material has its own specific crystallization temperature, and once that temperature is exceeded, it transforms into a more thermally stable crystalline alloy and loses all of the excellent properties it had in its amorphous state. be. This crystallization temperature varies depending on the material, but
Generally, it is known that the value is about 0.4 to 0.6 times the melting point measured in absolute temperature. Therefore, in order to obtain an alloy with a high crystallization temperature, an alloy with a high melting point must be made amorphous.

Ta−B合金は、融点が約2300°C以上ときわめて
高い。このため液体急冷法によって作製されたTa−B
系非晶質合金は、その結晶化温度が800°C〜960
°Cと非常に高く、非晶質合金の問題点を大幅に改善す
ることが可能となった(特願昭61−012385号)
。さらに、このTa−B系非晶質合金は、一般の非晶質
合金に特有の高強度、高硬度などの優れた機械的性質を
有しているために、例えば、耐摩耗性材料、および、温
度上昇を伴う電極用材料などへの応用が考えられる。
The Ta-B alloy has an extremely high melting point of about 2300°C or higher. For this reason, Ta-B produced by liquid quenching method
The amorphous alloy has a crystallization temperature of 800°C to 960°C.
°C, making it possible to significantly improve the problems of amorphous alloys (Japanese Patent Application No. 61-012385)
. Furthermore, this Ta-B-based amorphous alloy has excellent mechanical properties such as high strength and high hardness that are characteristic of general amorphous alloys, so it can be used as a wear-resistant material and , and applications such as electrode materials that involve temperature rises are possible.

しかしながら、液体急冷法によって作製されるTa−B
系非晶質合金は、その形状が幅数mm〜数cmのリボン
状であるために、広い面積を有する非晶質合金を得るこ
とができないという問題点があった。さらに、ある物質
の上に、前記非晶質合金を薄膜状で形成することも、従
来の液体急冷法ではできなかった。
However, Ta-B prepared by liquid quenching method
Since the amorphous alloy has a ribbon shape with a width of several mm to several cm, there is a problem in that it is impossible to obtain an amorphous alloy having a wide area. Furthermore, it has not been possible to form the amorphous alloy in the form of a thin film on a certain substance using conventional liquid quenching methods.

本発明は、このような従来技術の問題点を解決して、高
い結晶化温度を有し、がっ、機械的特性、耐食性等にす
ぐれたTa系非晶質合金薄膜の製造方法を提供すること
を目的とする。
The present invention solves the problems of the prior art and provides a method for producing a Ta-based amorphous alloy thin film that has a high crystallization temperature and is excellent in strength, mechanical properties, corrosion resistance, etc. The purpose is to

(問題点を解決するための手段) 本発明は、Ta1−xBxなる式で表され、x=0.1
〜0.4である合金を、真空中において、金属を加熱溶
解し、金属原子を蒸発させることによって、基板上に付
着させ、非晶質薄膜を形成することを特徴とするTa系
非晶質合金薄膜の製造方法である。
(Means for solving the problem) The present invention is expressed by the formula Ta1-xBx, where x=0.1
A Ta-based amorphous alloy characterized by depositing an alloy having an amorphous diameter of ~0.4 on a substrate by heating and melting the metal in a vacuum and evaporating the metal atoms to form an amorphous thin film. This is a method for manufacturing an alloy thin film.

(作用) Ta−B系合金では、後に実施例で示すように、Taが
60at%〜90at%の組成範囲で、非晶質合金がで
きることを本発明者は見いだした。この組成範囲をはず
れると非晶質構造がほとんどみちれなくなり、非晶質合
金に特徴的な優れた特性がすべて消失してしまう。これ
らの非晶質合金の結晶化温度は、その融点の高さに対応
して、いずれも800°C以上という高い値である。ま
た、これらの非晶贋金ように、高強度かつ高硬度である
。また、耐食性においても、Taのすぐれた耐食性に匹
敵するほどの耐食性を有している。
(Function) As shown in Examples later, the present inventors have discovered that an amorphous alloy can be formed in a Ta-B alloy with a composition ranging from 60 at% to 90 at%. When the composition is outside this range, the amorphous structure becomes almost invisible, and all the excellent properties characteristic of amorphous alloys are lost. The crystallization temperatures of these amorphous alloys are as high as 800° C. or higher, corresponding to their high melting points. Also, like these amorphous golds, they have high strength and high hardness. Also, in terms of corrosion resistance, it has corrosion resistance comparable to that of Ta.

本発明による製造方法は、真空中において、金属を加熱
溶解して、金属原子を蒸発させることによって、基板上
に付着させ、非晶質薄膜を形成する方法であるが、この
際、原料合金の溶解を水冷されたるつぼのなかで行うの
で、原料合金とるつぼ金属の反応はほとんどおこらない
。るつぼ金属が十分に冷却されている場合には、たとえ
高温度の溶解金属が接触したとしても、るつぼ金属の温
度が低すぎるために合金化反応が極めて起こりにくいか
らである。
The manufacturing method according to the present invention is a method in which a metal is heated and melted in a vacuum to evaporate metal atoms, thereby depositing them on a substrate to form an amorphous thin film. Since melting is carried out in a water-cooled crucible, there is almost no reaction between the raw material alloy and the crucible metal. This is because if the crucible metal is sufficiently cooled, even if high-temperature molten metal comes into contact with it, the temperature of the crucible metal is too low and alloying reactions are extremely unlikely to occur.

また、基板は、水、液体窒素等の冷媒によって、冷却し
ておく必要がある。これは、薄膜作製中の基板温度が高
すぎると、形成された合金薄膜が、結晶質になってしま
い、非晶質相が得られないからである。
Further, the substrate needs to be cooled with a coolant such as water or liquid nitrogen. This is because if the substrate temperature during thin film production is too high, the formed alloy thin film will become crystalline and an amorphous phase will not be obtained.

さらに、溶解手段としては、電子ビーム溶解、レーザー
ビーム溶解などのよく知られた方法を用いることができ
る。
Further, as the melting means, well-known methods such as electron beam melting and laser beam melting can be used.

また、溶解される原料物質としては、目的組成のTa−
B合金、またはTaとB、あるいは、TaとTa−B合
金を別々に準備することができる。
In addition, the raw material to be dissolved is Ta-
B alloy, Ta and B, or Ta and Ta-B alloy can be prepared separately.

Ta−B合金の場合には、この合金を溶解することによ
って、また、TaとBを、あるいは、TaとTa−B合
金を別々に準備する場合には、それぞれを同時に別個に
溶解することによって、薄膜を形成することができる。
In the case of a Ta-B alloy, by melting this alloy, or if Ta and B or Ta and Ta-B alloys are prepared separately, by melting each simultaneously and separately. , a thin film can be formed.

また、得られる合金薄膜の組成は、原料となるTa−B
合金の組成を変化させることにより、また、TaとBあ
るいは、Ta−B合金の蒸気圧を調整することにより、
容易に変化させることが出来るため、目的とする組成の
非晶質合金薄膜を容易に得ることができる。
In addition, the composition of the obtained alloy thin film is Ta-B, which is the raw material.
By changing the composition of the alloy, and by adjusting the vapor pressure of Ta and B or Ta-B alloy,
Since it can be easily changed, an amorphous alloy thin film having a desired composition can be easily obtained.

以上のように、本発明の製造方法によって、Ta系非晶
質合金は、組成制御された、高純度の合金薄膜として、
大面積に、がっ、均質に、基板上に形成することができ
る。
As described above, by the production method of the present invention, a Ta-based amorphous alloy can be produced as a high-purity alloy thin film with controlled composition.
It can be formed uniformly over a large area on a substrate.

(実施例) 以下、本発明の一実施例を図により詳細に説明する。第
1図に、本発明のTa系非晶質合金薄膜を作製する装置
の一例を示す。第1図に示す装置は高真空電子ビーム蒸
着装置である。蒸発材料1,2は、それぞれるつぼ3,
4に保持されている。本実施例においては、蒸発材料1
にはTa、また、蒸発材料2には、純Bが溶解しに(か
ったのでTa0.4B0.6合金を使用した。各蒸発材
料は、るつぼ中に50g準備することができる。るつぼ
3,4は銅製であり、冷却水導入管5によって、水冷さ
れており、蒸発材料が溶解した状態においても、温度が
上昇することはない。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings. FIG. 1 shows an example of an apparatus for producing the Ta-based amorphous alloy thin film of the present invention. The apparatus shown in FIG. 1 is a high vacuum electron beam evaporation apparatus. Evaporated materials 1 and 2 are placed in crucibles 3 and 2, respectively.
It is held at 4. In this example, the evaporation material 1
For evaporation material 2, Ta0.4B0.6 alloy was used because pure B was difficult to dissolve.50g of each evaporation material can be prepared in the crucible.Crucible 3, 4 is made of copper and is water-cooled by a cooling water introduction pipe 5, so that the temperature does not rise even when the evaporation material is dissolved.

基板6は、基板ホルダー7に固定されている。基板には
、長さ50mm、幅25mmで厚さ0.2mmのガラス
を用いた。基板ホルダー7には、液体窒素導入管8より
導入された液体窒素9が蓄えられており、基板が十分冷
却される構造になっている。
The substrate 6 is fixed to a substrate holder 7. The substrate used was glass with a length of 50 mm, a width of 25 mm, and a thickness of 0.2 mm. The substrate holder 7 stores liquid nitrogen 9 introduced from a liquid nitrogen introduction pipe 8, and has a structure in which the substrate is sufficiently cooled.

薄膜作製に際しては、最初に、真空チャンバー10を真
空ポンプ11によって、10=Torr台の真空まで排
気する。こへ態で、電子ビーム源12.’13よヵ) j″:/′ す、電子ビームを発生させ、蒸発材料1,2を同時に加
熱、溶解させる。溶解した材料からは、TaおよびBが
原子状態で蒸発する。蒸着の最初1時間は、シャッター
14を閉じた状態で予備蒸着を行う。つぎに、予備蒸着
終了後、シャッターを開くことにより、基板上に薄膜を
作製した。蒸発材料1および2から飛び出した蒸発原子
は、基板付近でお互いに混合状態になり、基板に付着す
る際には、均質な合金として付着する。薄膜作製中の真
空度は、1O−7Torr台であった。また、薄膜作製
中の基板温度を熱電対15を通して、温度計16によっ
て測定したところ、−180°Cであった。蒸着は、1
時間行った。得られた薄膜の厚さは、5pm程度であっ
た。
When producing a thin film, first, the vacuum chamber 10 is evacuated to a vacuum level of 10 Torr using the vacuum pump 11. In this state, the electron beam source 12. '13 Yoka) j'':/' An electron beam is generated to simultaneously heat and melt the evaporation materials 1 and 2. Ta and B are evaporated in the atomic state from the molten materials. Preliminary vapor deposition was performed with the shutter 14 closed.Next, after the preliminary vapor deposition was completed, the shutter was opened to form a thin film on the substrate.The evaporated atoms ejected from the evaporation materials 1 and 2 They become mixed with each other in the vicinity, and when attached to the substrate, they adhere as a homogeneous alloy.The degree of vacuum during thin film fabrication was on the order of 10-7 Torr.Also, the substrate temperature during thin film fabrication was controlled by thermoelectric The temperature was -180°C as measured by thermometer 16 through pair 15.
Time went. The thickness of the obtained thin film was about 5 pm.

得られたTa−B合金薄膜の構造をX線回折法によって
評価した。その結果、薄膜の組成でTaが60at%〜
90at%の組成範囲ではいずれの薄帯も結晶による鋭
い回折ピークはみられず、ブロードなハローパターンが
得られたことから、非晶質合金薄膜が得られたことが確
認された。第1表に、示差熱分析で測定したこれらの試
料の結晶化温度を示す。いずれも800°C以上の高い
結晶化温度を示している。また、これらの試料の機械的
特性は、ビッカース硬度が800〜1500の範囲であ
るという優れた性質を示した。さらに、これらの試料は
濃塩酸、濃硝酸、濃硫酸、濃王水の中に一日放置しても
何等腐食された様子は見られず、重量変化も認められな
かった。
The structure of the obtained Ta-B alloy thin film was evaluated by X-ray diffraction method. As a result, the composition of the thin film showed that Ta was 60 at%~
In the composition range of 90 at %, no sharp diffraction peak due to crystals was observed in any of the ribbons, and a broad halo pattern was obtained, confirming that an amorphous alloy thin film was obtained. Table 1 shows the crystallization temperatures of these samples determined by differential thermal analysis. All exhibit high crystallization temperatures of 800°C or higher. Moreover, the mechanical properties of these samples showed excellent properties with Vickers hardness ranging from 800 to 1500. Furthermore, even when these samples were left in concentrated hydrochloric acid, concentrated nitric acid, concentrated sulfuric acid, and concentrated aqua regia for one day, no signs of corrosion were observed, and no change in weight was observed.

第1表 なお、本実施例では、高真空電子ビーム蒸着装置による
Ta系非晶質合金薄膜の製造方法を紹介し法、即ぢ、レ
ーザービーム蒸着法、クラスターイオンビーム蒸着法等
を利用してもさしつがえない。
Table 1 In this example, we will introduce a method for producing a Ta-based amorphous alloy thin film using a high-vacuum electron beam evaporation apparatus. I can't blame you.

(発明の効果) 以上詳細に説明したように、本発明によるTa系非晶質
合金薄膜の製造方法は高い結晶化温度を有し、かつ、機
械的特性、耐食性等にすぐれた非晶質合金薄膜が容易に
得られ、その効果は大きい。
(Effects of the Invention) As explained in detail above, the method for producing a Ta-based amorphous alloy thin film according to the present invention is an amorphous alloy that has a high crystallization temperature and has excellent mechanical properties, corrosion resistance, etc. A thin film can be easily obtained and the effect is great.

【図面の簡単な説明】[Brief explanation of the drawing]

Claims (1)

【特許請求の範囲】[Claims] Ta_1−_xB_xなる式で表され、x=0.1〜0
.4である組成の合金を、真空中において、金属を加熱
溶解し、該金属原子を蒸発させることによって、基板上
に薄膜を形成する真空蒸着装置を用いて、非晶質化させ
ることを特徴とするTa系非晶質合金薄膜の製造方法。
It is expressed by the formula Ta_1−_xB_x, where x=0.1 to 0
.. 4 is made amorphous using a vacuum evaporation device that forms a thin film on a substrate by heating and melting the metal in a vacuum and evaporating the metal atoms. A method for producing a Ta-based amorphous alloy thin film.
JP61277149A 1986-11-19 1986-11-19 Production of thin ta amorphous alloy film Pending JPS63130766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61277149A JPS63130766A (en) 1986-11-19 1986-11-19 Production of thin ta amorphous alloy film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61277149A JPS63130766A (en) 1986-11-19 1986-11-19 Production of thin ta amorphous alloy film

Publications (1)

Publication Number Publication Date
JPS63130766A true JPS63130766A (en) 1988-06-02

Family

ID=17579482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61277149A Pending JPS63130766A (en) 1986-11-19 1986-11-19 Production of thin ta amorphous alloy film

Country Status (1)

Country Link
JP (1) JPS63130766A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5499035A (en) * 1972-12-26 1979-08-04 Allied Chem Noncrystalline metal wire

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5499035A (en) * 1972-12-26 1979-08-04 Allied Chem Noncrystalline metal wire

Similar Documents

Publication Publication Date Title
US7520944B2 (en) Method of making in-situ composites comprising amorphous alloys
Chen et al. Crystallization temperature and activation energy of rf-sputtered near-equiatomic TiNi and Ti50Ni40Cu10 thin films
JPS63130766A (en) Production of thin ta amorphous alloy film
JPS63125669A (en) Production of thin amorphous ta-w alloy film
JPH0582464B2 (en)
JPS63130768A (en) Production of thin ta amorphous alloy film
JPS63125668A (en) Production of thin amorphous ta-w alloy film
JPS63125667A (en) Production of thin amorphous ta-w alloy film
JPS63125665A (en) Production of thin amorphous ta-w alloy film
JPS6169931A (en) Method for making intermetallic compound amorphous by chemical reaction
JPS63125663A (en) Production of thin amorphous ta-w alloy film
JPS63125664A (en) Production of thin amorphous ta alloy film
JPH0578194A (en) Preparation of graphite crystal
JPS63125670A (en) Production of thin amorphous ta-w alloy film
JPH02228434A (en) Manufacture of hydrogen storage alloy
Marchal et al. THE CRYSTALLIZATION OF Fe-Au AMORPHOUS ALLOYS
JPS63125662A (en) Production of thin amorphous ta alloy film
WO2002088408A1 (en) Nickel-titanium sputter target alloy
JP3976467B2 (en) Method for producing giant magnetostrictive alloy
JPH0558056B2 (en)
JPS6362837A (en) Ta-w amorphous alloy and its production
JPH0448861B2 (en)
JPS63130767A (en) Production of thin ta amorphous alloy film
Pelleg et al. Fabrication
Toloui et al. The influence of quenched-in crystals on the thermal stability of partially amorphous Zr 76 Ni 24 alloy