JPH0448861B2 - - Google Patents

Info

Publication number
JPH0448861B2
JPH0448861B2 JP61208193A JP20819386A JPH0448861B2 JP H0448861 B2 JPH0448861 B2 JP H0448861B2 JP 61208193 A JP61208193 A JP 61208193A JP 20819386 A JP20819386 A JP 20819386A JP H0448861 B2 JPH0448861 B2 JP H0448861B2
Authority
JP
Japan
Prior art keywords
alloy
amorphous
nozzle
amorphous alloy
alloys
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61208193A
Other languages
Japanese (ja)
Other versions
JPS6362838A (en
Inventor
Tsutomu Yoshitake
Yoshimi Kubo
Hitoshi Igarashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP61208193A priority Critical patent/JPS6362838A/en
Publication of JPS6362838A publication Critical patent/JPS6362838A/en
Publication of JPH0448861B2 publication Critical patent/JPH0448861B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0611Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by a single casting wheel, e.g. for casting amorphous metal strips or wires

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、高い結晶化温度を有する非晶質合金
及びその製造方法に関するものである。 (従来の技術) 近年、各種の非晶質材料が開発され、金属材料
の分野において、多くの注目を集めている。これ
らの合金は従来の結晶合金とは異なり、結晶構造
を持たない金属であり、その性質も従来の金属材
料にはみられないものが多く、機械的性質、耐磨
耗性、耐食性、軟磁性などにすぐれているため、
結晶質金属に代わりうる材料として、各種の用途
開発が行なわれ、さらに、その用途に適した材料
開発も行なわれている。これらの合金は、スパツ
タリング法等の気相急冷法あるいは液体急冷法に
よつて作製しうるが、工業的には最も生産性の高
い液体急冷法が多く用いられている。 (発明が解決しようとする問題点) 非晶質合金の最大の問題点は、熱的に不安定な
点にある。これは、非晶質状態が熱力学的に非平
衡な準安定状態であるということに由来するもの
で、非晶質合金の宿命ともいえることである。す
なわち、非晶質合金は一般に、それぞれ特有の結
晶化温度を有し、その温度を越えるとより熱的に
安定な結晶合金に変化してしまい、非晶質状態の
ときにみられたすぐれた諸特性がすべて失われて
しまうのである。この結晶化温度は、材料によつ
て異なるが、一般に絶対温度で測定した融点の
0.4〜0.6倍程度の値をとることが知られている。
従つて、結晶化温度の高い非晶質合金を得るため
には、融点の高い合金を液体急冷法などの方法で
非晶質化しなければならない。 しかしながら、従来の液体急冷装置は、鉄系合
金等の比較的融点の低い物質用に作られているも
のが多く、石英等の耐熱性のノズルを抵抗加熱も
しくは高周波加熱によつて加熱するという方式の
ものがほとんどである。従つて、最高使用温度は
ノズル材質の耐火度によつて制限され、1200〜
1400℃程度が限度である。また、温度が高くなる
とノズル材質と合金が反応することによる試料の
汚染も起こりうるため、急冷できる合金の種類は
限られていた。 これに対して、融点が約2400℃程度ときわめて
高いTa−Si−B三元系非晶質合金はその結晶化
温度が800℃〜960℃と非常に高く、非晶質合金の
問題点を大幅に改善することが可能となつた。
(特開昭61−012385号) さらに、このTa−Si−B三元系非晶質合金は、
一般の非晶質合金に特有の高強度、高硬度などの
すぐれた機械的特性を有しているために、例え
ば、耐磨耗性材料、高温で使われる構造材料の複
合強化材、および温度上昇を伴う電極用材料など
への応用が考えられる。 しかしながら、実際に前記Ta−Si−B系非晶
質合金を高温環境下で使用する場合には経時変化
が問題となつてくるために、使用温度範囲は最高
600℃程度に限定されてしまう。 本発明は、このような従来技術の問題点を解決
して、結晶化温度が高く、前記Ta系非晶質合金
よりもさらに高温環境に耐えることができ、か
つ、機械的特性、耐食性等にすぐれたTa−W非
晶質合金及びその製造方法を提供することにあ
る。 (問題点を解決するための手段) 本発明は(Ta1−xWx)yBzなる式で表わさ
れ、x=0.01〜0.8、y=0.7〜0.9、z=0.1〜0.3
であることを特徴とするTa−W系非晶質合金で
ある。さらにまた、本発明は、前記Ta−W系非
晶質合金を得るための製造方法として、すなわ
ち、前記Ta−W系非晶質合金と同じ合金組成の
原料合金を、水冷された金属製のるつぼの中で溶
解し、該溶解合金を水冷された金属製のノズルも
しくは高融点材料製のノズルを用いて、表面周速
が90m/sec以上で高速回転している冷却用ロー
ルの表面上に噴射して急速凝固させることによつ
て非晶質化することを特徴とするTa−W系非晶
質合金の製造方法である。 (作用) Ta−W−B系合金では、後に実施例で示すよ
うに、TaおよびWが合計で70at%〜90at%の組
成範囲で、非晶質合金を得ることができることを
本発明者は見い出した。この組成範囲をはずれる
と非晶質構造がほとんどみられなくなり、非晶質
合金に特徴的なすぐれた特性がすべて消去してし
まう。この組成範囲で非晶質相が形成される詳細
な理由は不明であるが、一般に非晶質相は共晶組
成付近で形成されやすいという傾向があり、この
場合にもその傾向にほぼあてはまると思われる。 また、xの範囲を0.01以上と限定したのは、
Taのみの場合よりもWを添加した場合のほうが
結晶化温度が高くなるからである。なおxの範囲
が0.8を越えると結晶化温度が低下するのでxは
0.8以内が望ましい。これらの非晶質合金の結晶
化温度は、その融点の高さに対応して、1000〜
1200℃という高い値である。これらの非晶質合金
の機械的特性は、非晶質合金に一般的にみられる
ように、高強度かつ高硬度である。また、耐食性
においても、TaおよびWのすぐれた耐食性に匹
敵するほどの耐食性を有している。 次に、本発明による製造方法は、液体急冷法の
一種であるが、原料合金の溶解を水冷された金属
製のるつぼの中で行なうので、原料合金とるつぼ
金属との反応はほとんどおこらない。るつぼ金属
が水冷されている場合には、たとえ高温度の溶解
金属が接触したとしても、るつぼ金属の温度が低
すぎるために合金化反応がきわめておこりにくい
からである。るつぼ金属の材質としては、水冷効
果を大きくするという点から熱伝導度の大きな物
質が望ましい。また、反応しにくいという点から
は高融点の物質も適当である。一例を挙げるなら
ば、銅、銀あるいはそれらの合金もしくはタング
ステン、モリブデンなどが考えられる。 また、溶解手段としては、アーク溶解、プラズ
マ溶解電子ビーム溶解、レーザビーム溶解などの
よく知られた方法を用いることができる。 このようにして溶解された原料合金は、水冷さ
れた金属製のノズルもしくは高融点材料製のノズ
ルを用いて高速回転している冷却用ロールの表面
上に噴射されて、急冷薄帯となる。この際、ノズ
ル口を通過させる理由は、融体の安定な流れを形
成することによつて、均一な連続した急冷薄帯を
得るためである。もし、ノズル口を通過させず
に、直接ロール表面に溶融物質を落下させるなら
ば、不均一かつ不連続的な薄帯しか得られないで
あろう。 また、この時、溶融物質とノズルが接触するの
で両者の間の反応が問題になるがノズルが水冷さ
れた金属製もしくは窒化ボロン、グラフアイト、
酸化マグネシウム等の高融点材料製であれば、接
触時間がきわめて短いために、両者の間の反応は
ほとんどおこらない。 以上のように、本発明の特許請求の範囲第1項
に記載のTa−W系非晶質合金は、第2項に記載
の製造方法によつて容易に作製することができ
る。また、液体急冷法は、通常、冷却ロールの表
面周速が50m/sec以下で行われることがほとん
どであるが、これを90m/sec以上にすることに
より、本発明のTa−W系合金をより容易に非晶
質化することができる。溶解合金を急冷凝固して
非晶質化するには、急冷速度が大きいほど有利で
あるが、ロール周速を上げることは急冷薄帯の厚
さを薄くすることにつながるので、急冷速度が大
きくなり、非晶質化がより容易になるのである。 (実施例) 第1図に、本発明のTa−W系非晶質合金を作
製する装置の一例を示す。図において、1は水冷
された銅製るつぼ、2は原料合金、3は窒化ボロ
ン製のノズル、4は急冷用ロール、5はプラズマ
トーチである。るつぼ1は左右のブロツクに分か
れており、棒6によつて左右に開閉できるように
なつている。従つて、棒6を内側に押し込んだ状
態で試料2をプラズマによつて溶解し、その後、
棒6を外側に引つ張ると、るつぼ1が左右に開
き、試料2は重力によつて、ノズル3の中に落下
する。その際、あらかじめ、上側のチヤンバーに
はガス導入口7からガスを導入し、下側のチヤン
バーは真空ポンプ8によつて排気しておけば、上
下間の圧力差によつて、試料2はノズル3よりロ
ール4の表面上に噴出して急冷薄帯となる。ノズ
ル3の穴径は0.5mm〜1.0mmとした。ロール4は直
径250mmの銅製で、これを8000rpmの速度で回転
させて用いた。周速度は約105m/secである。 この装置を用いて、Ta−W−B系合金の液体
急冷を行ない、得られた薄帯の構造をX線回折に
よつて調べた。その結果、TaおよびWが合計で
70〜90at%の組成範囲では、いずれの薄帯も結晶
による鋭い回折ピークはみられず、ブロードなハ
ローパターンが得られたことから非晶質相である
ことが確認された。次に第1表に示差熱分析によ
つて測定したこれらの試料の結晶化温度を示す。
ただし第1表の試料No.6、12、18は本発明の範囲
外である。いずれの試料も1000℃以上の高い結晶
化温度を示しており、Ta−Si−B系非晶質合金
の場合よりもさらに50℃〜200℃高い結晶化温度
を有していることがわかる。またこれらの試料は
800℃で1000時間焼鈍した後も非晶質構造も維持
しており、非常に耐熱性の高い非晶質合金である
ことが判明した。さらにこれらの試料の機械的性
質は、ビツカース硬さが900〜1600の範囲である
というすぐれた特性を示しており、また、これら
の試料を濃塩酸、濃硝酸、濃硫酸、濃王水の中に
一日放置しても何ら腐食された様子を見られず、
重量変化も認められなかつた。
(Industrial Application Field) The present invention relates to an amorphous alloy having a high crystallization temperature and a method for producing the same. (Prior Art) In recent years, various amorphous materials have been developed and are attracting a lot of attention in the field of metal materials. Unlike conventional crystalline alloys, these alloys are metals that do not have a crystal structure, and many of their properties are not found in conventional metal materials, such as mechanical properties, abrasion resistance, corrosion resistance, and soft magnetism. Because it is excellent in
As a material that can replace crystalline metals, various uses are being developed, and materials suitable for these uses are also being developed. These alloys can be produced by a vapor phase quenching method such as a sputtering method or a liquid quenching method, but the liquid quenching method, which has the highest productivity, is often used industrially. (Problems to be Solved by the Invention) The biggest problem with amorphous alloys is that they are thermally unstable. This is due to the fact that the amorphous state is a thermodynamically non-equilibrium metastable state, and can be said to be the fate of amorphous alloys. In other words, each amorphous alloy generally has its own unique crystallization temperature, and once that temperature is exceeded, it changes to a more thermally stable crystalline alloy, resulting in the superior properties observed in the amorphous state. All properties are lost. This crystallization temperature varies depending on the material, but is generally below the melting point measured in absolute temperature.
It is known that it takes a value of about 0.4 to 0.6 times.
Therefore, in order to obtain an amorphous alloy with a high crystallization temperature, an alloy with a high melting point must be made amorphous by a method such as a liquid quenching method. However, conventional liquid quenching equipment is often made for materials with relatively low melting points, such as iron-based alloys, and uses a method that heats a heat-resistant nozzle made of quartz or other material using resistance heating or high-frequency heating. Most of them are. Therefore, the maximum operating temperature is limited by the fire resistance of the nozzle material, and is 1200~
The maximum temperature is around 1400℃. Furthermore, as the temperature rises, the nozzle material and the alloy may react and contaminate the sample, so the types of alloys that can be rapidly cooled are limited. On the other hand, the Ta-Si-B ternary amorphous alloy, which has an extremely high melting point of approximately 2400°C, has a crystallization temperature of 800°C to 960°C, which causes problems with amorphous alloys. It has become possible to make significant improvements.
(Japanese Patent Application Laid-Open No. 61-012385) Furthermore, this Ta-Si-B ternary amorphous alloy is
Because it has excellent mechanical properties such as high strength and high hardness that are typical of general amorphous alloys, it can be used as a wear-resistant material, as a composite reinforcement for structural materials used at high temperatures, and as a Possible applications include materials for electrodes that involve a rise in temperature. However, when the Ta-Si-B amorphous alloy is actually used in a high-temperature environment, deterioration over time becomes a problem, so the maximum operating temperature range is
The temperature is limited to around 600℃. The present invention solves the problems of the prior art, has a high crystallization temperature, can withstand higher temperature environments than the Ta-based amorphous alloy, and has improved mechanical properties, corrosion resistance, etc. An object of the present invention is to provide an excellent Ta-W amorphous alloy and a method for manufacturing the same. (Means for solving the problem) The present invention is expressed by the formula (Ta 1 −xWx)yBz, where x=0.01-0.8, y=0.7-0.9, z=0.1-0.3
It is a Ta-W based amorphous alloy characterized by the following. Furthermore, the present invention provides a manufacturing method for obtaining the Ta-W amorphous alloy, in which a raw material alloy having the same alloy composition as the Ta-W amorphous alloy is heated in a water-cooled metal The molten alloy is melted in a crucible and applied to the surface of a cooling roll that is rotating at high speed at a surface peripheral speed of 90 m/sec or more using a water-cooled metal nozzle or a nozzle made of a high melting point material. This is a method for producing a Ta--W amorphous alloy, which is characterized in that it is made amorphous by being injected and rapidly solidified. (Function) In Ta-W-B alloys, as shown in Examples later, the present inventors have found that an amorphous alloy can be obtained in a composition range of 70 at% to 90 at% of Ta and W in total. I found it. When the composition is outside this range, almost no amorphous structure is observed, and all the excellent properties characteristic of amorphous alloys are lost. Although the detailed reason why an amorphous phase is formed in this composition range is unknown, there is a general tendency for an amorphous phase to be formed near a eutectic composition, and this tendency is likely to apply in this case as well. Seem. In addition, the range of x was limited to 0.01 or more because
This is because the crystallization temperature becomes higher when W is added than when only Ta is added. Note that when the range of x exceeds 0.8, the crystallization temperature decreases, so x
Desirably within 0.8. The crystallization temperatures of these amorphous alloys range from 1000 to 1000, corresponding to their high melting points.
This is a high value of 1200℃. The mechanical properties of these amorphous alloys are high strength and hardness, as is commonly found in amorphous alloys. Also, in terms of corrosion resistance, it has corrosion resistance comparable to that of Ta and W. Next, the manufacturing method according to the present invention is a type of liquid quenching method, but since the raw material alloy is melted in a water-cooled metal crucible, almost no reaction occurs between the raw material alloy and the crucible metal. This is because if the crucible metal is water-cooled, even if high-temperature molten metal comes into contact with it, the temperature of the crucible metal is too low, making it extremely difficult for an alloying reaction to occur. The material of the crucible metal is preferably a material with high thermal conductivity in order to increase the water cooling effect. In addition, substances with high melting points are also suitable from the viewpoint of being difficult to react. For example, copper, silver, alloys thereof, tungsten, molybdenum, etc. can be considered. Further, as the melting means, well-known methods such as arc melting, plasma melting, electron beam melting, and laser beam melting can be used. The raw material alloy thus melted is injected onto the surface of a cooling roll rotating at high speed using a water-cooled metal nozzle or a nozzle made of a high-melting point material to form a quenched ribbon. At this time, the reason for passing the melt through the nozzle opening is to form a stable flow of the melt to obtain a uniform and continuous quenched ribbon. If the molten material were to fall directly onto the roll surface without passing through the nozzle orifice, only a non-uniform and discontinuous ribbon would be obtained. At this time, the molten substance and the nozzle come into contact, so reactions between the two become a problem, but the nozzle may be made of water-cooled metal, boron nitride, graphite, etc.
If the material is made of a high melting point material such as magnesium oxide, the contact time is extremely short, so almost no reaction occurs between the two. As described above, the Ta-W amorphous alloy described in claim 1 of the present invention can be easily produced by the manufacturing method described in claim 2. In addition, the liquid quenching method is usually carried out at a cooling roll surface speed of 50 m/sec or less, but by increasing this to 90 m/sec or more, the Ta-W alloy of the present invention can be It can be more easily amorphized. In order to rapidly solidify a molten alloy and make it amorphous, a higher quenching rate is more advantageous; however, increasing the peripheral speed of the rolls leads to a reduction in the thickness of the quenched ribbon. Therefore, it becomes easier to become amorphous. (Example) FIG. 1 shows an example of an apparatus for producing the Ta-W amorphous alloy of the present invention. In the figure, 1 is a water-cooled copper crucible, 2 is a raw material alloy, 3 is a boron nitride nozzle, 4 is a quenching roll, and 5 is a plasma torch. The crucible 1 is divided into left and right blocks, and can be opened and closed to the left and right by means of a rod 6. Therefore, the sample 2 is melted by plasma with the rod 6 pushed inside, and then
When the rod 6 is pulled outward, the crucible 1 opens left and right, and the sample 2 falls into the nozzle 3 by gravity. At that time, if gas is introduced into the upper chamber from the gas inlet 7 and the lower chamber is evacuated by the vacuum pump 8, the sample 2 will be moved through the nozzle due to the pressure difference between the upper and lower chambers. 3 onto the surface of the roll 4 to form a quenched ribbon. The hole diameter of the nozzle 3 was 0.5 mm to 1.0 mm. The roll 4 was made of copper and had a diameter of 250 mm, and was rotated at a speed of 8000 rpm. The circumferential speed is approximately 105 m/sec. Using this apparatus, a Ta-W-B alloy was liquid-quenched, and the structure of the obtained ribbon was investigated by X-ray diffraction. As a result, Ta and W are in total
In the composition range of 70 to 90 at%, no sharp diffraction peaks due to crystals were observed in any of the ribbons, and a broad halo pattern was obtained, confirming that the ribbons were in an amorphous phase. Next, Table 1 shows the crystallization temperatures of these samples measured by differential thermal analysis.
However, Sample Nos. 6, 12, and 18 in Table 1 are outside the scope of the present invention. It can be seen that all the samples exhibit a high crystallization temperature of 1000°C or higher, which is 50°C to 200°C higher than that of the Ta-Si-B amorphous alloy. Also, these samples
The amorphous structure was maintained even after annealing at 800°C for 1000 hours, indicating that the alloy is an extremely heat-resistant amorphous alloy. Furthermore, the mechanical properties of these samples show excellent properties with a Bitkers hardness ranging from 900 to 1600. Even if I left it for a day, I didn't see any signs of corrosion.
No change in weight was observed.

【表】【table】

【表】 (発明の効果) 以上詳細に説明したように、本発明における
Ta−W系非晶質合金及びその製造方法は高い結
晶化温度を有し、かつ、機械的性質、耐食性等に
すぐれた非晶質合金が容易に得られ、その効果は
大きい。
[Table] (Effects of the invention) As explained in detail above, in the present invention
The Ta-W amorphous alloy and its manufacturing method have a high crystallization temperature and can easily produce an amorphous alloy with excellent mechanical properties, corrosion resistance, etc., and the effects thereof are significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明のTa−W系非晶質合金を作
製する装置の一例を示す図である。図において、
1は水冷された銅製のるつぼ、2は原料合金、3
は窒化ボロン製のノズル、4は急冷用ロール、5
はプラズマトーチ、6はるつぼを開閉するための
棒、7はガス導入口、8は真空ポンプである。
FIG. 1 is a diagram showing an example of an apparatus for producing the Ta-W based amorphous alloy of the present invention. In the figure,
1 is a water-cooled copper crucible, 2 is a raw material alloy, and 3 is a water-cooled copper crucible.
is a nozzle made of boron nitride, 4 is a rapid cooling roll, 5 is a nozzle made of boron nitride,
is a plasma torch, 6 is a rod for opening and closing the crucible, 7 is a gas inlet, and 8 is a vacuum pump.

Claims (1)

【特許請求の範囲】 1 (Ta1−xWx)yBzなる式で表わされ、x=
0.01〜0.8、y=0.7〜0.9、z=0.1〜0.3であるこ
とを特徴とするTa−W系非晶質合金。 2 (Ta1−xWx)yBzなる式で表わされ、x=
0.01〜0.8、y=0.7〜0.9、z=0.1〜0.3である組
成の原料合金を水冷された金属製のるつぼの中で
溶解し、該溶解合金を水冷された金属製のノズル
もしくは高融点材料製のノズルを用いて、表面周
速が90m/sec以上で高速回転している冷却用ロ
ールの表面上に噴射して急冷凝固させることによ
つて非晶質化させることを特徴とするTa−W系
非晶質合金の製造方法。
[Claims] Represented by the formula 1 (Ta1−xWx)yBz, where x=
A Ta-W based amorphous alloy characterized in that 0.01 to 0.8, y=0.7 to 0.9, and z=0.1 to 0.3. 2 (Ta1−xWx)yBz, x=
A raw material alloy having a composition of 0.01 to 0.8, y = 0.7 to 0.9, and z = 0.1 to 0.3 is melted in a water-cooled metal crucible, and the melted alloy is passed through a water-cooled metal nozzle or a high melting point material. The Ta- A method for producing a W-based amorphous alloy.
JP61208193A 1986-09-03 1986-09-03 Ta-w amorphous alloy and its production Granted JPS6362838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61208193A JPS6362838A (en) 1986-09-03 1986-09-03 Ta-w amorphous alloy and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61208193A JPS6362838A (en) 1986-09-03 1986-09-03 Ta-w amorphous alloy and its production

Publications (2)

Publication Number Publication Date
JPS6362838A JPS6362838A (en) 1988-03-19
JPH0448861B2 true JPH0448861B2 (en) 1992-08-07

Family

ID=16552201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61208193A Granted JPS6362838A (en) 1986-09-03 1986-09-03 Ta-w amorphous alloy and its production

Country Status (1)

Country Link
JP (1) JPS6362838A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3808167B2 (en) * 1997-05-01 2006-08-09 Ykk株式会社 Method and apparatus for manufacturing amorphous alloy molded article formed by pressure casting with mold

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5499035A (en) * 1972-12-26 1979-08-04 Allied Chem Noncrystalline metal wire

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5499035A (en) * 1972-12-26 1979-08-04 Allied Chem Noncrystalline metal wire

Also Published As

Publication number Publication date
JPS6362838A (en) 1988-03-19

Similar Documents

Publication Publication Date Title
JP4190720B2 (en) Multi-component alloy
US4052201A (en) Amorphous alloys with improved resistance to embrittlement upon heat treatment
US3989517A (en) Titanium-beryllium base amorphous alloys
US4050931A (en) Amorphous metal alloys in the beryllium-titanium-zirconium system
Lee et al. Synthesis of Ni-based bulk amorphous alloys by warm extrusion of amorphous powders
Jaafari et al. Kinetic analysis of crystallization process in [(Fe 0.9 Ni 0.1) 77 Mo 5 P 9 C 7.5 B 1.5] 100− x Cu x (x= 0.1 at.%) BMG: Non-isothermal condition
EP3036349B1 (en) Zirconium-based alloy metallic glass and method for forming a zirconium-based alloy metallic glass
Lee et al. Bulk glass formation in the Ni–Zr–Ti–Nb–Si–Sn alloy system
Kim et al. The effect of the melt spinning processing parameters on the martensitic transformation in Ti50–Ni35–Cu15 shape memory alloys
JPH0448861B2 (en)
JP2003239051A (en) HIGH-STRENGTH Zr-BASE METALLIC GLASS
JPH0558056B2 (en)
JPH0448860B2 (en)
JPH0448862B2 (en)
Redaei et al. Effect of cooling rate on glass forming ability of novel Fe-based bulk metallic glass
JP2000345309A (en) HIGH STRENGTH AND HIGH CORROSION RESISTANCE Ni BASE AMORPHOUS ALLOY
USRE30080E (en) Titanium-beryllium base amorphous alloys
JPS58197240A (en) Copper alloy for roll for rapidly cooling molten metal
JP3849004B2 (en) Method for producing rapidly solidified bulk amorphous alloy material
US4338131A (en) Nickel-boron binary amorphous alloys
KR102453371B1 (en) Ni-based amorphous alloy for prevent corrosion of plant, and preparing method thereof
JPH05125499A (en) Aluminum-base alloy having high strength and high toughness
JPS63125669A (en) Production of thin amorphous ta-w alloy film
JPS63227728A (en) Melting crucible and melting method
JPS63125667A (en) Production of thin amorphous ta-w alloy film

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term