JPS6362838A - Ta-w amorphous alloy and its production - Google Patents

Ta-w amorphous alloy and its production

Info

Publication number
JPS6362838A
JPS6362838A JP61208193A JP20819386A JPS6362838A JP S6362838 A JPS6362838 A JP S6362838A JP 61208193 A JP61208193 A JP 61208193A JP 20819386 A JP20819386 A JP 20819386A JP S6362838 A JPS6362838 A JP S6362838A
Authority
JP
Japan
Prior art keywords
alloy
amorphous
nozzle
amorphous alloy
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61208193A
Other languages
Japanese (ja)
Other versions
JPH0448861B2 (en
Inventor
Tsutomu Yoshitake
務 吉武
Yoshimi Kubo
佳実 久保
Hitoshi Igarashi
五十嵐 等
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61208193A priority Critical patent/JPS6362838A/en
Publication of JPS6362838A publication Critical patent/JPS6362838A/en
Publication of JPH0448861B2 publication Critical patent/JPH0448861B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0611Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by a single casting wheel, e.g. for casting amorphous metal strips or wires

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To easily manufacture an amorphous alloy having high crystallization temp. and combining high strength with high corrosion resistance, by spraying a molten alloy having a specific composition consisting of Ta, W, and B onto the surface of a rapidly rotating roll through a water-cooled nozzle so as to carry out rapid solidification. CONSTITUTION:The alloy 2 as raw material represented by a formula (Ta1-xWx)yBz [where the symbols (x), (y) and (z) stand for 0.01-1, 0.7-0.9, and 0.1-0.3, respectively] is melted in a water-cooled metallic crucible 1 by means of plasma from a plasma torch 5. Subsequently, rods 6 are pulled right and left to open the crucible 1, so that molten alloy is dropped into a water-cooled nozzle 3 made of metal or high-m.p. material such as BN, etc. At this time, a gas is previously introduced from a gas- introducing hole 7 into the upper chamber and also the lower chamber is evacuated by means of a vacuum pump 8. By using the resulting difference in pressure between both chambers, the above molten alloy is sprayed through the nozzle 3 onto the surface of a cooling roll 4 made of copper, etc., rapidly rotating at a surface speed of >=90m/sec to undergo rapid solidification. In this way, a Ta-W amorphous alloy excellent in mechanical properties, corrosion resistance, etc., and having high crystallization temp. can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高い結晶化温度を有する非晶質合金及びその
製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an amorphous alloy having a high crystallization temperature and a method for producing the same.

(従来の技術) 近年、各種の非晶質材料が開発され、金属材料の分野に
おいて、多くの注目を集めている。これらの合金は従来
の結晶合金とは異なり、結晶構造を持たない金属であり
、その性質も従来の金属材料にはみられないものが多く
、機械的性質、耐磨耗性、耐食性、軟磁性などにすぐれ
ているため、結晶質金属に代わりうる材料として、各種
の用途開発が行なわれ、さらに、その用途に適した材料
開発も行なわれている。これらの合金は、スパッタリン
グ法等の気相急冷法あるいは液体急冷法によって作製し
うるが、工業的には最も生産性の高い液体急冷法が多く
用いられている。
(Prior Art) In recent years, various amorphous materials have been developed and are attracting a lot of attention in the field of metal materials. Unlike conventional crystalline alloys, these alloys are metals that do not have a crystal structure, and many of their properties are not found in conventional metal materials, such as mechanical properties, abrasion resistance, corrosion resistance, and soft magnetism. Because of its excellent properties, various uses are being developed as a material that can replace crystalline metals, and materials suitable for these uses are also being developed. These alloys can be produced by a vapor phase quenching method such as a sputtering method or a liquid quenching method, but the liquid quenching method, which has the highest productivity, is often used industrially.

(発明が解決しようとする問題点) 非晶質合金の最大の問題点は、熱的に不安定な点にある
。これは、非晶質状態が熱力学的に非平衡な準安定状態
であるということに由来するもので、非晶質合金の宿命
ともいえることである。すなわち、非晶質合金は一般に
、それぞれ特有の結晶化温度を有し、その温度を越える
とより熱的に安定な結晶合金に変化してしまい、非晶質
状態のときにみられたすぐれた緒特性がすべて失われて
しまうのである。この結晶化温度は、材料によって異な
るが、一般に絶対温度で測定した融点の0゜4〜0.6
倍程度の値をとることが知られている。従って、結晶化
温度の高い非晶質合金を得るためには、融点の高い合金
を液体急冷法などの方法で非晶質化しなければならない
(Problems to be Solved by the Invention) The biggest problem with amorphous alloys is that they are thermally unstable. This is due to the fact that the amorphous state is a thermodynamically non-equilibrium metastable state, and can be said to be the fate of amorphous alloys. In other words, each amorphous alloy generally has its own unique crystallization temperature, and once that temperature is exceeded, it changes to a more thermally stable crystalline alloy, resulting in the superior properties observed in the amorphous state. All original characteristics are lost. This crystallization temperature varies depending on the material, but is generally 0.4 to 0.6 of the melting point measured in absolute temperature.
It is known that the value is about twice as high. Therefore, in order to obtain an amorphous alloy with a high crystallization temperature, an alloy with a high melting point must be made amorphous by a method such as a liquid quenching method.

しかしながら、従来の液体急冷装置は、鉄系合金等の比
較的融点の低い物質用に作られているものが多く、石英
等の耐熱性のノズルを抵抗加熱もしくは高周波加勢によ
って加熱するという方式のものがほとんどである。従っ
て、最高使用温度はノズル材質の耐火度によって制限さ
れ、1200〜1400°C程度が限度である。また、
温度が高くなるとノズル材質と合金が反応することによ
る吠料の汚染も起こりうるため、急冷できる合金の種類
は限られていた。
However, conventional liquid quenching equipment is often made for materials with relatively low melting points, such as iron-based alloys, and uses a method in which a heat-resistant nozzle made of quartz or other material is heated by resistance heating or high-frequency energy. Most of them are. Therefore, the maximum operating temperature is limited by the fire resistance of the nozzle material, and is limited to about 1200 to 1400°C. Also,
The types of alloys that can be rapidly cooled have been limited, as the nozzle material and the alloy may react with each other as the temperature rises, potentially causing contamination of the powder.

これに対して、融点が約2400°C程度ときわめて高
いTa−8i−B三元系非晶質合金はその結晶化温度が
8006C〜960°Cと非常に高く、非晶質合金の問
題点を大幅に改善することが可能となった。(特願昭6
1−012385号) さらに、このTa−8i−B三元系非晶質合金は、一般
の非晶質合金に特有の高強度、高硬度などのすぐれた機
械的特性を有しているために、例えば、耐磨耗性材料、
高温で使われる構造材料の複合強化材、および温度上昇
を伴う電極用材料などへの応用が考えられる。
On the other hand, the Ta-8i-B ternary amorphous alloy, which has an extremely high melting point of about 2400°C, has a crystallization temperature of 8006°C to 960°C, which is a problem with amorphous alloys. It has become possible to significantly improve the (Tokugan Sho 6
1-012385) Furthermore, this Ta-8i-B ternary amorphous alloy has excellent mechanical properties such as high strength and high hardness that are characteristic of general amorphous alloys. , e.g. wear-resistant materials,
Potential applications include composite reinforcing materials for structural materials used at high temperatures and materials for electrodes that are subject to temperature increases.

しかしながら、実際に前記Ta−8i−B系非晶質合金
を高温環境下で使用する場合には経時変化が問題をなっ
てくるために、使用温度範囲は最高600°C程度に限
定されてしまう。
However, when the Ta-8i-B amorphous alloy is actually used in a high-temperature environment, aging becomes a problem, so the operating temperature range is limited to a maximum of about 600°C. .

本発明は、このような従来技術の問題点を解決して、結
晶化温度が高く、前記Ta系非晶質合金よりもさらに高
温環境に耐えることができ、かつ、機械的特性、耐食性
等にすぐれたTa−W非晶質合金及びその製造方法を提
供することにある。
The present invention solves the problems of the prior art, has a high crystallization temperature, can withstand higher temperature environments than the Ta-based amorphous alloy, and has improved mechanical properties, corrosion resistance, etc. An object of the present invention is to provide an excellent Ta-W amorphous alloy and a method for producing the same.

(問題点を解決するための手段) 本発明は(Tal−xWx)yBzなる式で表わされ、
x =0.01〜1. y =0.7〜0.9. z=
0.1〜0.3であることを特徴とするTa−W系非晶
質合金である。さらにまた、本発明は、前記Ta−W系
非晶質合金を得るための製造方法として、すなわち前記
Ta−W系非晶質合金と同じ合金組成の原料合金を、水
冷された金属製のるつぼの中で溶解し、該溶解合金を水
冷された金属製のノズルもしくは高融点材料製のノズル
を用いて、高速回転している冷却用ロールの表面上に噴
射して急速凝固させることによって非晶質化することを
特徴とするTa−W系非結晶質合金の製造方法である。
(Means for solving the problem) The present invention is expressed by the formula (Tal-xWx)yBz,
x=0.01~1. y=0.7-0.9. z=
It is a Ta-W based amorphous alloy characterized by having a molecular weight of 0.1 to 0.3. Furthermore, the present invention provides a manufacturing method for obtaining the Ta-W amorphous alloy, in which a raw material alloy having the same alloy composition as the Ta-W amorphous alloy is placed in a water-cooled metal crucible. The molten alloy is rapidly solidified by being injected onto the surface of a cooling roll rotating at high speed using a water-cooled metal nozzle or a nozzle made of a high-melting point material. This is a method for producing a Ta-W based amorphous alloy, which is characterized in that it undergoes crystallization.

また、この際、前記冷却用ロールの表面周速が90m/
secであるならば、製造方法としてはより好ましい。
In addition, at this time, the surface peripheral speed of the cooling roll is 90 m/
sec, it is more preferable as a manufacturing method.

(作用) Ta−W−B系合金では、後に実施例で示すように、T
aおよびWが合計で70at%〜90at%の組成範囲
で、非晶質合金を得ることができることを本発明者は見
い出した。この組成範囲をはずれると非晶質構造がほと
んどみちれなくなり、非晶質合金に特徴的なすぐれた特
性がすべて消失してしまう。この組成範囲で非晶質相が
形成される詳細な理由は不明であるが、一般に非晶質相
は共晶組成付近で形成されやすいという傾向があり、こ
の場合にもその傾向にほぼあてはまると思われる。
(Function) In Ta-W-B alloys, as shown in Examples later, T
The present inventors have discovered that an amorphous alloy can be obtained in a composition range in which a and W are in the range of 70 at% to 90 at% in total. When the composition is outside this range, the amorphous structure becomes almost invisible, and all the excellent properties characteristic of amorphous alloys are lost. Although the detailed reason why an amorphous phase is formed in this composition range is unknown, there is a general tendency for an amorphous phase to be formed near a eutectic composition, and this tendency is likely to apply in this case as well. Seem.

また、Xの範囲を0.01以上に限定したのは、Taの
みの場合よりもWを添加した場合のほうが結晶化温度が
高くなるからである。これらの非晶質合金の結晶化温度
は、その融点の高さに対応して、1000°C〜120
0°Cという高い値である。これらの非晶質合金の機械
的特性は、非晶質合金に一般的にみられるように、高強
度かつ高硬度であ、る。また、耐食性においても、Ta
およびWのすぐれた耐食性に匹敵するほどの耐食性を有
している。
Furthermore, the reason why the range of X is limited to 0.01 or more is because the crystallization temperature becomes higher when W is added than when Ta is added. The crystallization temperatures of these amorphous alloys range from 1000°C to 120°C, corresponding to their high melting points.
This is a high value of 0°C. The mechanical properties of these amorphous alloys are high strength and hardness, as is commonly found in amorphous alloys. In addition, in terms of corrosion resistance, Ta
and has corrosion resistance comparable to that of W.

次に、本発明による製造方法は、液体急冷法の一種であ
るが、原料合金の溶解を水冷された金属製のるつぼの中
で行なうので、原料合金とるつぼ金属との反応はほとん
どおこらない。るつぼ金属が水冷されている場合には、
たとえ高温度の溶解金属が接触したとしても、るつぼ金
属の温度が低すぎるために合金化反応がきわめておこり
にくいからである。るつぼ金属の材質としては、水冷効
果を大きくするという点から熱伝導度の大きな物質が望
ましい。また、反応しにくいという点からは高融点の物
質も適当である。−例を挙げるならば、銅、銀あるいは
それらの合金もしくはタングステン、モリブデンなどが
考えられる。
Next, the manufacturing method according to the present invention is a type of liquid quenching method, but since the raw material alloy is melted in a water-cooled metal crucible, almost no reaction occurs between the raw material alloy and the crucible metal. If the crucible metal is water cooled,
This is because even if high-temperature molten metal comes into contact, the temperature of the crucible metal is too low for an alloying reaction to occur. The material of the crucible metal is preferably a material with high thermal conductivity in order to increase the water cooling effect. In addition, substances with high melting points are also suitable from the viewpoint of being difficult to react. - For example, copper, silver or their alloys, tungsten, molybdenum, etc. can be considered.

また、溶解手段としては、アーク溶解、プラズマ溶解電
子ビーム溶解、レーザビーム溶解などのよく知られた方
法を用いることができる。
Further, as the melting means, well-known methods such as arc melting, plasma melting, electron beam melting, and laser beam melting can be used.

このようにして溶解された原料合金は、水冷された金属
製のノズルもしくは高融点材料製のノズルを用いて高速
回転している冷却用ロールの表面上に噴射されて、急冷
薄帯となる。この際、ノズル口を通過させる理由は、融
体の安定な流れを形成することによって、均一な連続し
た急冷薄帯を得るためである。もし、ノズル口を通過さ
せずに、直接ロール表面に溶融物質を落下させるならば
、不均一かつ不連続的な薄帯しか得られないであろう。
The raw material alloy thus melted is injected onto the surface of a cooling roll rotating at high speed using a water-cooled metal nozzle or a nozzle made of a high-melting point material to form a quenched ribbon. At this time, the reason for passing the melt through the nozzle opening is to form a stable flow of the melt to obtain a uniform and continuous quenched ribbon. If the molten material were to fall directly onto the roll surface without passing through the nozzle orifice, only a non-uniform and discontinuous ribbon would be obtained.

また、この時、溶融物質とノズルが接触するので両者の
間の反応が問題になるがノズルが水冷された金属製もし
くは窒化ボロン、グラファイト、酸化マグネシウム等の
高融点材料製であれば、接触時間がきわめて短いために
、両者の間の反応はほとんどおこらない。
In addition, since the molten substance and the nozzle come into contact at this time, reactions between the two become a problem, but if the nozzle is made of water-cooled metal or a high melting point material such as boron nitride, graphite, or magnesium oxide, the contact time is is so short that almost no reaction occurs between the two.

以上のように、本発明の特許請求の範囲第1項に記載の
Ta−W系非晶質合金は、第2項に記載の製造方法によ
って容易に作製することができる。また、液体急冷法は
、通常、冷却ロールの表面周速が50m/sec以下で
行われることがほとんどであるが、これを90m/se
e以上にすることにより、本発明のTa−W系合金をよ
り容易に非晶質化することができる。
As described above, the Ta-W amorphous alloy described in claim 1 of the present invention can be easily produced by the manufacturing method described in claim 2. In addition, the liquid quenching method is usually carried out at a cooling roll surface peripheral speed of 50 m/sec or less;
By making it more than e, the Ta-W alloy of the present invention can be made amorphous more easily.

溶解合金を急冷凝固して非晶質化するには、急冷速度が
大きいほど有利であるが、ロール周速を上げることは急
冷薄帯の厚さを薄くすることにつながるので、急冷速度
が大きくなり、非晶質化がより容易になるのである。
In order to rapidly solidify a molten alloy and make it amorphous, a higher quenching rate is more advantageous; however, increasing the peripheral speed of the rolls leads to a reduction in the thickness of the quenched ribbon. Therefore, it becomes easier to become amorphous.

(実施例) 第1図に、本発明のTa−W系非晶質合金を作製する装
置の一例を示す。図において、1は水冷された銅製るつ
ぼ、2は原料合金、3は窒化ボロン製のノズル、4は急
冷用ロール、5はプラズマトーチである。るつば1は左
右のブロックに分かれており、棒6によって左右に開閉
できるようになっている。
(Example) FIG. 1 shows an example of an apparatus for producing the Ta-W amorphous alloy of the present invention. In the figure, 1 is a water-cooled copper crucible, 2 is a raw material alloy, 3 is a boron nitride nozzle, 4 is a quenching roll, and 5 is a plasma torch. The crucible 1 is divided into left and right blocks, and can be opened and closed to the left and right using a rod 6.

従って、棒6を内側に押し込んだ状態で試料2をプラズ
マによって溶解し、その後、棒6を外側に引っ張ると、
るつぼ1が左右に開き、試料2は敢力によって、ノズル
3の中に落下する。その際、あらかじめ、上側のチャン
バーにはガス導入ロアからガスを導入し、下側のチャン
バーは真空ポンプ8によって排気しておけば、上下間の
圧力差によって、試料2はノズル3よりロール4の表面
上に噴出して急冷薄帯となる。ノズル3の穴径は0.5
mm〜1.0mmとした。ロール4は直径250mmの
銅製で、これを8000rpmの速度で回転させて用い
た。周速度は約105m/seeである。
Therefore, if the sample 2 is melted by plasma with the rod 6 pushed inward, and then the rod 6 is pulled outward,
The crucible 1 opens left and right, and the sample 2 falls into the nozzle 3 by force. At that time, if gas is introduced into the upper chamber from the gas introduction lower and the lower chamber is evacuated by the vacuum pump 8, the sample 2 will be transferred from the nozzle 3 to the roll 4 due to the pressure difference between the upper and lower chambers. It erupts onto the surface and becomes a quenched ribbon. The hole diameter of nozzle 3 is 0.5
mm to 1.0 mm. The roll 4 was made of copper and had a diameter of 250 mm, and was rotated at a speed of 8000 rpm. The circumferential speed is approximately 105 m/see.

この装置を用いて、Ta−W−B系合金の液体急冷を行
ない、得られた薄帯の構造をX線回折によって調べた。
Using this apparatus, a Ta--W--B alloy was liquid-quenched, and the structure of the obtained ribbon was investigated by X-ray diffraction.

その結果、TaおよびWが合計で70〜90at%の組
成範囲では、いずれの薄帯も結晶による鋭い回折ピーク
はみられず、ブロードなハローパターンが得られたこと
から非晶質相であることが確認された。次に第1表に示
差熱分析によって測定したこれらの試料の結晶化温度を
示す。いずれの試料も1000°C以上の高い結晶化温
度を示しており、Ta−8i−B系非晶質合金の場合よ
りもさらに506C〜200°C高い結晶化温度を有し
ていることがわかる。またこれらの試料は800°Cで
1000時間焼鈍した後も非晶質構造を維持しており、
非常に耐熱性の高い非晶質合金であることが判明した。
As a result, in the composition range of 70 to 90 at% of Ta and W in total, no sharp diffraction peaks due to crystals were observed in any of the ribbons, and a broad halo pattern was obtained, indicating that the ribbons were in an amorphous phase. was confirmed. Next, Table 1 shows the crystallization temperatures of these samples measured by differential thermal analysis. All samples show a high crystallization temperature of 1000°C or more, which indicates that the crystallization temperature is 506C to 200°C higher than that of the Ta-8i-B amorphous alloy. . Furthermore, these samples maintained their amorphous structure even after being annealed at 800°C for 1000 hours.
It turned out to be an amorphous alloy with extremely high heat resistance.

さらにこれらの試料の機械的性質は、ビッカース硬さが
900〜1600の範囲であるというすぐれた特性を示
しており、また、これらの試料を濃塩酸、濃硝酸、濃硫
酸、濃王水の中に一日放置しても何ら腐食された様子を
見られず、重量変化も認められなか2つ、た。
Furthermore, the mechanical properties of these samples are excellent, with Vickers hardness ranging from 900 to 1600. Even after being left for a day, no signs of corrosion were observed, and no change in weight was observed.

m−・。m-・.

第1表 (発明の効果) 以上詳細に説明したように、本発明におけるTa−W系
非晶質合金及びその製造方法は高い結晶化温度を有し、
かつ、機械的性質、耐食性等にすぐれた非晶質合金が容
易に得られ、その効果は大きい。
Table 1 (Effects of the Invention) As explained in detail above, the Ta-W amorphous alloy of the present invention and its manufacturing method have a high crystallization temperature,
In addition, an amorphous alloy with excellent mechanical properties, corrosion resistance, etc. can be easily obtained, and its effects are significant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明のTa−W系非晶質合金を作製する装
置の一例を示す図である。図において、1は水冷された
銅製のるつぼ、2は原料合金、3は窒化ボロン製のノズ
ル、4は急冷用ロール、5はプラズマトーチ、6はるつ
ぼを開閉するための棒、7はガス井 1 図
FIG. 1 is a diagram showing an example of an apparatus for producing the Ta-W amorphous alloy of the present invention. In the figure, 1 is a water-cooled copper crucible, 2 is a raw material alloy, 3 is a boron nitride nozzle, 4 is a rapid cooling roll, 5 is a plasma torch, 6 is a rod for opening and closing the crucible, and 7 is a gas well. 1 figure

Claims (3)

【特許請求の範囲】[Claims] (1)(Ta1−xWx)yBzなる式で表わされ、x
=0.01〜1、y=0.7〜0.9、z=0.1〜0
.3であることを特徴とする非晶質合金。
(1) It is expressed by the formula (Ta1-xWx)yBz, and x
=0.01~1, y=0.7~0.9, z=0.1~0
.. 3. An amorphous alloy characterized by:
(2)(Ta1−xWx)yBzなる式で表わされ、x
=0.01〜1、y=0.7〜0.9、z=0.1〜0
.3である組成の原料合金を水冷された金属製のるつぼ
の中で溶解し、該溶解合金を水冷された金属製のノズル
もしくは高融点材料製のノズルを用いて、高速回転して
いる冷却用ロールの表面上に噴射して急冷凝固させるこ
とによって非晶質化させることを特徴とするTa−W系
非晶質合金の製造方法。
(2) It is expressed by the formula (Ta1-xWx)yBz, and x
=0.01~1, y=0.7~0.9, z=0.1~0
.. A raw material alloy having a composition of 3 is melted in a water-cooled metal crucible, and the molten alloy is cooled using a water-cooled metal nozzle or a nozzle made of a high melting point material, which is rotating at high speed. A method for producing a Ta--W amorphous alloy, characterized in that it is made amorphous by being injected onto the surface of a roll and rapidly solidified.
(3)冷却用ロールの表面周速が90m/sec以上で
あることを特徴とする、特許請求の範囲第2項に記載の
Ta−W系非晶質合金の製造方法。
(3) The method for producing a Ta-W amorphous alloy according to claim 2, wherein the surface circumferential speed of the cooling roll is 90 m/sec or more.
JP61208193A 1986-09-03 1986-09-03 Ta-w amorphous alloy and its production Granted JPS6362838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61208193A JPS6362838A (en) 1986-09-03 1986-09-03 Ta-w amorphous alloy and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61208193A JPS6362838A (en) 1986-09-03 1986-09-03 Ta-w amorphous alloy and its production

Publications (2)

Publication Number Publication Date
JPS6362838A true JPS6362838A (en) 1988-03-19
JPH0448861B2 JPH0448861B2 (en) 1992-08-07

Family

ID=16552201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61208193A Granted JPS6362838A (en) 1986-09-03 1986-09-03 Ta-w amorphous alloy and its production

Country Status (1)

Country Link
JP (1) JPS6362838A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0875318A1 (en) * 1997-05-01 1998-11-04 Ykk Corporation Method and apparatus for production of amorphous alloy article by metal mold casting under pressure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5499035A (en) * 1972-12-26 1979-08-04 Allied Chem Noncrystalline metal wire

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5499035A (en) * 1972-12-26 1979-08-04 Allied Chem Noncrystalline metal wire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0875318A1 (en) * 1997-05-01 1998-11-04 Ykk Corporation Method and apparatus for production of amorphous alloy article by metal mold casting under pressure
US6044893A (en) * 1997-05-01 2000-04-04 Ykk Corporation Method and apparatus for production of amorphous alloy article formed by metal mold casting under pressure

Also Published As

Publication number Publication date
JPH0448861B2 (en) 1992-08-07

Similar Documents

Publication Publication Date Title
Park et al. The effect of Ag addition on the glass-forming ability of Mg–Cu–Y metallic glass alloys
JP4190720B2 (en) Multi-component alloy
US4050931A (en) Amorphous metal alloys in the beryllium-titanium-zirconium system
US4052201A (en) Amorphous alloys with improved resistance to embrittlement upon heat treatment
JPH0673513A (en) Production of aluminum-base alloy material having high strength and heat resistance
Lee et al. Synthesis of Ni-based bulk amorphous alloys by warm extrusion of amorphous powders
Jaafari et al. Kinetic analysis of crystallization process in [(Fe 0.9 Ni 0.1) 77 Mo 5 P 9 C 7.5 B 1.5] 100− x Cu x (x= 0.1 at.%) BMG: Non-isothermal condition
JPS6362838A (en) Ta-w amorphous alloy and its production
JPS6362837A (en) Ta-w amorphous alloy and its production
JPS62170450A (en) Ta amorphous alloy and its production
JPS6362839A (en) Ta-w amorphous alloy and its production
JP2003239051A (en) HIGH-STRENGTH Zr-BASE METALLIC GLASS
US4830086A (en) Mold member and rapidly solidifying water cooled rotary roll member
Coury et al. Comparative study between two die cast methods for processing Cu–Zr–Al bulk metallic glasses
USRE30080E (en) Titanium-beryllium base amorphous alloys
Abrosimova et al. Crystalline layer on the surface of Zr-based bulk metallic glasses
US4338131A (en) Nickel-boron binary amorphous alloys
Hididis et al. Technological aspects regarding the production of Cu-Zr glassy ribbons. Difficulties and proposals
JP2000345309A (en) HIGH STRENGTH AND HIGH CORROSION RESISTANCE Ni BASE AMORPHOUS ALLOY
JP3849004B2 (en) Method for producing rapidly solidified bulk amorphous alloy material
JPS63125669A (en) Production of thin amorphous ta-w alloy film
RU2061582C1 (en) Method for dispersion of material by melt extraction
JPS63125668A (en) Production of thin amorphous ta-w alloy film
JPS63125667A (en) Production of thin amorphous ta-w alloy film
Jaafari et al. Kinetic analysis of crystallization process in [(Fe. sub. 0.9 Ni. sub. 0.1). sub. 77Mo. sub. 5P. sub. 9C. sub. 7.5 B. sub. 1.5]. sub. 100-xCu. sub. x (x= 0.1 at.%) BMG

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term