JPH0448641A - Compound semiconductor device - Google Patents

Compound semiconductor device

Info

Publication number
JPH0448641A
JPH0448641A JP15591890A JP15591890A JPH0448641A JP H0448641 A JPH0448641 A JP H0448641A JP 15591890 A JP15591890 A JP 15591890A JP 15591890 A JP15591890 A JP 15591890A JP H0448641 A JPH0448641 A JP H0448641A
Authority
JP
Japan
Prior art keywords
sulfide
gate
source
compound semiconductor
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15591890A
Other languages
Japanese (ja)
Inventor
Masahiro Shioda
昌弘 塩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP15591890A priority Critical patent/JPH0448641A/en
Publication of JPH0448641A publication Critical patent/JPH0448641A/en
Pending legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To realize a FET of its thermal characteristic being stable and its source resistance being uniform, by providing sulfide layers comprising gallium sulfide and/or arsenic sulfide on at least partial regions of the surfaces of a compound semiconductor substrate between a source and gate electrode and between the gate and a drain electrode. CONSTITUTION:Sulfide layers 9 comprising gallium sulfide and arsenic sulfide are formed between a source and gate electrode 5, 8 and between the gate and a drain electrode 8, 6. An insulation film 10 (an SiN film for protecting a surface) is formed thereon. These sulfide layers 9 can be formed simply by applying ammonium sulfide to the GaAs substrate 1 or dipping the GaAs substrate 1 into the aqueous solution of ammonium sulfide prior to forming the insulation film 10. Thereafter, by cleaning the GaAs substrate l with flowing water, excessive ammonium sulfide is removable, and the sulfide layers 9 comprising gallium sulfide and arcenic sulfide of monoatomic layer can be formed on the surface of the GaAs substrate 1. These sulfide layers 9 are very stable thermally and are very stable for oxidizing too.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は化合物半導体装置に関し、更に詳しくはG L
 A s電界効果型トラツノスター(MESFET)、
GaAs   IC,GaAs/AIGaAS型やIn
G2LAs/AI InAs型などのHiEhElec
tron Mobility Transistor 
(HE M T )、さらにはInGaAsMESFE
T等の化合物半導体素子の素子構造に関するものである
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial application field The present invention relates to a compound semiconductor device.
A s field effect type Toratsunostar (MESFET),
GaAs IC, GaAs/AIGaAS type and In
HiEhElec such as G2LAs/AI InAs type
Tron Mobility Transistor
(HE M T ), and even InGaAsMESFE
The present invention relates to the element structure of a compound semiconductor element such as T.

(ロ)従来の技術 化合物半導体素子の中でも最もその製造技術か確立され
ているGaAs  MESFETを例に取ると、素子特
性を大きく支配する相互コノダクタンス(Cam)を向
上させるため、ゲート長の短縮やチャンネル層の高濃度
薄層化か行われている。
(b) Conventional technology Taking the GaAs MESFET, which has the most established manufacturing technology among compound semiconductor devices, as an example, in order to improve the mutual conductance (Cam), which largely controls the device characteristics, it is necessary to shorten the gate length and The channel layer is being made thinner and more concentrated.

この高濃度薄層化された能動層は数百人程度の厚みしか
なく、そのためトランノスタ特性はGaAs基板の表面
状態やゲート電極の方位やGaAs基板にかけられるス
トレス等の変化による影響を非常に受は昼くなっている
This highly concentrated thin active layer has a thickness of only a few hundred layers, and therefore its transnostar characteristics are extremely unaffected by changes in the surface condition of the GaAs substrate, the orientation of the gate electrode, the stress applied to the GaAs substrate, etc. It's noon.

通常、素子の安定動作及び信頼性向上のために素子表面
、特にゲート電極近傍の素子表面に数百から数千人の層
厚のノリコン酸化膜あるいはノリフン窒化膜の絶縁膜が
表面保護膜として採用されており、これらの絶縁膜:よ
通常、Chemical VaporDepositi
o口(CVD)、あるいはPlasma Enhanc
effient Chemical Vapor De
position (P CV D )等の絶縁膜形成
技術を用いてGaAs基板上に形成される。
Normally, an insulating film of Noricon oxide film or NoriFun nitride film with a thickness of several hundred to several thousand layers is used as a surface protection film on the element surface, especially in the vicinity of the gate electrode, to improve stable operation and reliability of the element. These insulating films: Usually, Chemical Vapor Deposit
o-mouth (CVD) or Plasma Enhance
effective Chemical Vapor De
It is formed on a GaAs substrate using an insulating film forming technique such as position (PCVD).

しかし、第4図に示すように、これらの絶縁膜が形成さ
れる前の段階では半絶縁性GaAs基板lは大気にさら
されており、ゲート電極8近傍も含めGaAs基板1表
面にはn型不純物注入層2および高濃度n型不純物注入
層3を介して少なくと乙数十人厚のG2LAs表面酸化
層11が形成され、表面保護用SiN膜10で基[1止
金面が覆われている。
However, as shown in FIG. 4, before these insulating films are formed, the semi-insulating GaAs substrate 1 is exposed to the atmosphere, and the surface of the GaAs substrate 1, including the vicinity of the gate electrode 8, has n-type A G2LAs surface oxide layer 11 having a thickness of at least several dozen layers is formed through the impurity injection layer 2 and the high concentration n-type impurity injection layer 3, and the base plate 1 is covered with a surface protection SiN film 10. There is.

(ハ)発明が解決しようとする課題 このGaAsの表面酸化層【lはその主成分をGatO
i、As+O*とじており、その表面酸化層の状態は、
GaAs基板1が大気中にさらされる時間、その回数、
そのときの環境、温度等により決められる乙のである。
(c) Problem to be solved by the invention The surface oxidized layer of GaAs [l is the main component of GatO]
i, As+O*, and the state of the surface oxidation layer is:
The time and number of times the GaAs substrate 1 is exposed to the atmosphere,
This is determined by the environment, temperature, etc. at that time.

一般にG p−A s基板の表面空乏層厚は表面酸化層
の厚みやその表面の主成分がGa、Osであるか、AS
tO3であるか等の表面状態に大きく依存しており、基
板表面が何度ら大気にさらされるような現行のGaAs
MESFET製造プロセスにおいては、このような表面
酸化層11の状態を制御することは困難である。
In general, the surface depletion layer thickness of a Gp-As substrate is determined by the thickness of the surface oxide layer, whether the main component of the surface is Ga or Os,
Current GaAs depends greatly on surface conditions such as tO3, and the substrate surface is exposed to the atmosphere many times.
In the MESFET manufacturing process, it is difficult to control the state of such surface oxidized layer 11.

まfこ、第4図に示すような絶縁膜である表面保護用S
iN膜10で保護されているような場合においても、熱
処理によりその酸化膜の主成分がGa、0.になったり
AstOiになったりするため、あるいは絶縁膜そのも
のの膜中に不純物として含まれる酸素による鵡処理時の
GaAs基板表面の酸化の促進があるため、絶縁膜で覆
われた後でもG2LAs基板の表面状態を一定に保つこ
とは難しい。この上うなGaAs基板の表面状態の変化
は数百人の能動層上の表面空乏層の変化となり、製造プ
ロセスの工程毎のFET特性の変動や熱処理前後での不
安定動作の原因となっている。
Surface protection S is an insulating film as shown in Figure 4.
Even in the case where it is protected by the iN film 10, the main components of the oxide film are Ga, 0. Even after being covered with an insulating film, the G2LAs substrate is It is difficult to maintain a constant surface condition. Moreover, such changes in the surface state of the GaAs substrate result in changes in the surface depletion layer on the active layer, causing variations in FET characteristics at each step in the manufacturing process and unstable operation before and after heat treatment. .

(ニ)課題を解決するための手段及び作用この発明は、
化合物半導体基板上に形成された、該半導体暴阪とオー
ミブク接合にて対峙しているノース・ドレイン両電極と
上記化合物半導体基板と7ヨブトキ一接合にて対峙して
いるゲート電極とを宵し、ソース・ゲート両電極間に印
加する電圧によりソース・ドレイノミ流を制御すること
を動作原理とする化合物半導体装置におし)て、ソース
・ゲート両電極間とゲート・トレイン両電極間における
化合物半導体基板表面の少なくとも一部の領域にガリウ
ム硫化物および/またはひ素硫化物からなる硫化物層を
設けたしのである。
(d) Means and operation for solving the problem This invention includes:
A north drain electrode, which is formed on a compound semiconductor substrate and faces the semiconductor substrate at an ohmic junction, and a gate electrode, which faces the compound semiconductor substrate at a 7-way junction, In a compound semiconductor device whose operating principle is to control the source/drain current by a voltage applied between the source and gate electrodes, the compound semiconductor substrate is used between the source and gate electrodes and between the gate and train electrodes. A sulfide layer made of gallium sulfide and/or arsenic sulfide is provided on at least a portion of the surface.

すなわち、この発明は、ソース・ゲート間、ドレイン・
ゲート間の少なくとし一部の領域のG2LAs表面上に
硫化物層を形成することによりGaAs表面を酸化から
守り、熱的に特性の安定した、かつ、ソース抵抗が均一
なFETが実現できる。
In other words, the present invention provides the
By forming a sulfide layer on the G2LAs surface in at least a partial region between the gates, the GaAs surface is protected from oxidation, and an FET with stable thermal characteristics and uniform source resistance can be realized.

具体的に、第1.2図に本発明の化合物半導体装置(G
 2LA s M E S F E T )の断面図を
示す。
Specifically, Fig. 1.2 shows a compound semiconductor device (G
2LAsMESFET) is shown.

第1.2図の半導体装置においてはソース・ゲートを極
5および8間及びゲート・ドレイン電極8及び6間の半
絶縁性GaAs基板1表面に、ガリウム硫化物、ひ素流
化物からなる硫化物層9が形成されており、そのうえに
絶縁膜(表面保護用SiN膜)10が形成されている。
In the semiconductor device shown in FIG. 1.2, the source gate is formed by a sulfide layer made of gallium sulfide and arsenic fluid on the surface of the semi-insulating GaAs substrate 1 between the electrodes 5 and 8 and between the gate and drain electrodes 8 and 6. 9 is formed, and an insulating film (SiN film for surface protection) 10 is formed thereon.

これらの硫化物層っけ絶縁膜形成府にGaAs基1i1
に硫化アンモニウム(NH,)2Sを塗布あるいはG 
a 、A s基板上を硫化アンモニウム(NH4)、S
水溶液に浸漬することて簡単に形成できる。
GaAs base 1i1 is formed on these sulfide layered insulating film formation areas.
ammonium sulfide (NH,)2S or G
ammonium sulfide (NH4), S
It can be easily formed by immersing it in an aqueous solution.

その際、GaAs基板表面のG a A s表面酸化膜
(G a y O)、AS!03)は硫化アンモニウム
の強い還元力によりそれぞれガリウム硫化物、ひ素ml
化物に置き換えられてしまう。このことはthe 21
st  Conference  on  5olid
  5tate  Devices  and  Ma
Lerials、 1989. pp、337−340
においてら述へられている。
At that time, a GaAs surface oxide film (G a y O) on the surface of the GaAs substrate, AS! 03) are gallium sulfide and arsenic ml, respectively, due to the strong reducing power of ammonium sulfide.
It will be replaced by a monster. This is the 21
st Conference on 5olid
5tate Devices and Ma
Reals, 1989. pp, 337-340
It is explained in the following.

その後GaAs基板lを流水で洗浄することにより余分
な硫化アンモニウム(N H4) tSは除去でき、G
aAs基板1表面に単原子層のガリウム硫化物、ひ素硫
化物からなる硫化物層9を形成することが可能となる。
After that, excess ammonium sulfide (NH4) tS can be removed by washing the GaAs substrate l with running water, and G
It becomes possible to form a monoatomic layer of sulfide layer 9 made of gallium sulfide and arsenic sulfide on the surface of the aAs substrate 1.

そして、これらの硫化物層9は熱的に非常に安定してお
り、かつ酸化に対しても非常に安定している。従ってG
aAsMESF’ETの特性安定性が増す。また、トラ
ンジスタのソース・ゲート間直列抵抗が安定することか
ら入力インピーダンスの均一化にもつながる。
These sulfide layers 9 are very stable thermally and also very stable against oxidation. Therefore, G
Characteristic stability of aAsMESF'ET increases. Furthermore, since the series resistance between the source and gate of the transistor is stabilized, the input impedance can be made uniform.

(ホ)実施例 本発明の一実施例として、上述したように、ソース・ゲ
ート電極間及びゲート・ドレイン電極間のG1As基板
表面に単原子層の硫化物をもつイオン注入型G2LAs
MESFETを例に取りその製造工程を第3図を参照し
て詳細に説明する。
(e) Example As an example of the present invention, as described above, an ion-implanted G2LA with a monoatomic layer of sulfide on the surface of the G1As substrate between the source and gate electrodes and between the gate and drain electrodes is used.
Taking MESFET as an example, its manufacturing process will be explained in detail with reference to FIG.

まず、半絶縁性GaAs基板lに通常のフォトエツチン
グ技術を用いてSiなどのn型不純物をドープしてなる
、n型GaAs層(以下、単にn層という)2及び高濃
度n型GλAs層(以下、単にn層層という)3形成用
の注入マスクを形成し、第3図(a)に示すような注入
層すなわち、0層2およびn゛層3形成する。
First, a semi-insulating GaAs substrate 1 is doped with an n-type impurity such as Si using a normal photoetching technique to form an n-type GaAs layer (hereinafter simply referred to as n-layer) 2 and a highly doped n-type GλAs layer ( An injection mask for forming 3 (hereinafter simply referred to as an n layer) is formed, and injection layers as shown in FIG. 3(a), that is, an 0 layer 2 and an n' layer 3 are formed.

この際の注入条件はn層か30KV、 5x l O”
70m”、n”層が80 KV、  5 X l O”
/cta’である。
The implantation conditions at this time are n-layer, 30KV, 5x l O”
70 m”, n” layer 80 KV, 5 X l O”
/cta'.

同時にG aAs基板1は大気にさらされているから、
その表面全面に、注入層2および3を介してGates
、AstOsのGtAs表面酸化膜11が形成される。
At the same time, since the GaAs substrate 1 is exposed to the atmosphere,
Gates are applied to the entire surface through injection layers 2 and 3.
, a GtAs surface oxide film 11 of AstOs is formed.

その後、第3図(b)に示すようなアニール用SiN膜
(膜厚300人)4をGaAs基板11上に、全面に、
表面酸化膜11を介して形成し、その状態で900度、
10秒間のアニールを行う。
Thereafter, a SiN film (thickness: 300) 4 for annealing as shown in FIG. 3(b) is placed on the entire surface of the GaAs substrate 11.
Formed through the surface oxide film 11, and heated at 900 degrees in that state.
Perform annealing for 10 seconds.

その後、アニール用SiN膜4を除去し、続いて、通常
のフォトエツチング技術及びアロイ技術を用いて、第3
図(c)に示すようなソース電極5、ドレイン電極6を
形成する。
Thereafter, the SiN film 4 for annealing is removed, and then a third
A source electrode 5 and a drain electrode 6 as shown in Figure (c) are formed.

その後、第3図(d)に示すようなレジストパターン7
を形成し、これをマスクとしてTi(to。
After that, a resist pattern 7 as shown in FIG.
Ti(to) is formed using this as a mask.

人)、Au(3000人)を電子ビーム蒸着機を用いて
蒸着し、有機溶剤を用いてリフトオフを行い、第3図(
e)に示すようなゲート電極8を得る。この状態では、
基板1はその表面に膜厚数十人の表面酸化膜11が形成
されている。
3,000 people) and Au (3,000 people) were deposited using an electron beam evaporator, and lift-off was performed using an organic solvent.
A gate electrode 8 as shown in e) is obtained. In this state,
A surface oxide film 11 having a thickness of several tens of layers is formed on the surface of the substrate 1.

その後、GaAs基板全体を(NH,)tsの5%水溶
液に3分間浸漬し、その後流水で10分間洗浄し、第3
図(f)に示すようなガリウム硫化物、ひ素硫化物から
なる硫化物層9を得る。
Thereafter, the entire GaAs substrate was immersed in a 5% aqueous solution of (NH,)ts for 3 minutes, and then washed with running water for 10 minutes.
A sulfide layer 9 made of gallium sulfide and arsenic sulfide as shown in Figure (f) is obtained.

その後、SiN膜(膜厚2000.入)10を表面保護
膜として形成し、第1図に示すようなGaAsMESF
ETを得る。
Thereafter, a SiN film (thickness 2000mm) 10 was formed as a surface protection film, and a GaAsMESF film as shown in FIG.
Get ET.

なお、本実施例では、GaAsMESFETを用いたが
、本発明は、GaAsHEMT、InGa A s H
E M T等の素子についても同様に育効である。
Although GaAs MESFET was used in this example, the present invention also uses GaAs HEMT, InGa As H
The same effect can be applied to elements such as EMT.

(へ)発明の効果 本発明のような熱的に安定でかつ酸化に対しても非常に
安定しているガリウム硫化物および/またはひ素硫化物
からなる硫化物層をGaAs基板表面に形成することで
製造プロセスが進行する毎のトランジスタ特性の変動を
小さくすることができ、特性そのもの(特に人力インピ
ーダンス)を均一化することができる効果がある。
(F) Effects of the Invention A sulfide layer made of gallium sulfide and/or arsenic sulfide, which is thermally stable and extremely stable against oxidation, as in the present invention, is formed on the surface of a GaAs substrate. This has the effect of making it possible to reduce variations in transistor characteristics as the manufacturing process progresses, and to make the characteristics themselves (particularly the human impedance) uniform.

【図面の簡単な説明】[Brief explanation of the drawing]

第1.2図はそれぞれ本発明の一実施例を示す構成説明
図および斜視図、第3図は上記実施例を工程毎に示す製
造工程説明図、第4図は従来のGaAsMESFETの
ゲート電極近傍の構造を示す構成説明図である。 1・ ・半絶縁性GaAs基板、 2  °nGaAs層、3− n ’G a A s層
、4 ・・アニール用SiN膜、 5 ・・ ソース電極、6 ・ トレイン電極、7・ 
・・ゲート電極形成相レジストパターン、8 ・  ゲ
ート電極、 9−・ガリウム硫化物およびひ素硫化物からなる硫化物
層、 10・・ ・表面保護用SiN膜、 !■・・・・・GaAs表面酸化膜。 第 図 第2図
Figures 1 and 2 are a configuration explanatory diagram and a perspective view showing one embodiment of the present invention, Figure 3 is a manufacturing process diagram showing each step of the above embodiment, and Figure 4 is the vicinity of the gate electrode of a conventional GaAs MESFET. FIG. 1. Semi-insulating GaAs substrate, 2 °nGaAs layer, 3-n'GaAs layer, 4. SiN film for annealing, 5. Source electrode, 6. Train electrode, 7.
...Gate electrode formation phase resist pattern, 8.Gate electrode, 9-.Sulfide layer consisting of gallium sulfide and arsenic sulfide, 10..SiN film for surface protection, ! ■...GaAs surface oxide film. Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1、化合物半導体基板上に形成された、該半導体基板と
オーミック接合にて対峙しているソース・ドレイン両電
極と、上記化合物半導体基板とショットキー接合にて対
峙しているゲート電極とを有し、ソース・ゲート両電極
間に印加する電圧によりソース・ドレイン電流を制御す
ることを動作原理とする化合物半導体装置において、ソ
ース・ゲート両電極間とゲート・ドレイン両電極間にお
ける化合物半導体基板表面の少なくとも一部の領域にガ
リウム硫化物および/またはひ素硫化物からなる硫化物
層を有することを特徴とする化合物半導体装置。
1. Source and drain electrodes formed on a compound semiconductor substrate and facing the semiconductor substrate through an ohmic junction, and a gate electrode facing the compound semiconductor substrate through a Schottky junction. In a compound semiconductor device whose operating principle is to control the source-drain current by a voltage applied between the source and gate electrodes, at least the surface of the compound semiconductor substrate between the source and gate electrodes and between the gate and drain electrodes is A compound semiconductor device characterized by having a sulfide layer made of gallium sulfide and/or arsenic sulfide in some regions.
JP15591890A 1990-06-13 1990-06-13 Compound semiconductor device Pending JPH0448641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15591890A JPH0448641A (en) 1990-06-13 1990-06-13 Compound semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15591890A JPH0448641A (en) 1990-06-13 1990-06-13 Compound semiconductor device

Publications (1)

Publication Number Publication Date
JPH0448641A true JPH0448641A (en) 1992-02-18

Family

ID=15616359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15591890A Pending JPH0448641A (en) 1990-06-13 1990-06-13 Compound semiconductor device

Country Status (1)

Country Link
JP (1) JPH0448641A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6207976B1 (en) 1997-12-17 2001-03-27 Fujitsu Limited Semiconductor device with ohmic contacts on compound semiconductor and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6207976B1 (en) 1997-12-17 2001-03-27 Fujitsu Limited Semiconductor device with ohmic contacts on compound semiconductor and manufacture thereof

Similar Documents

Publication Publication Date Title
KR970004457B1 (en) Semiconductor device and fabrication method
JPH0448641A (en) Compound semiconductor device
JPS5932173A (en) Manufacture of field effect transistor
JP3858888B2 (en) Etching method and semiconductor device manufacturing method
JPS61187277A (en) Manufacture of field-effect transistor
JPS61248570A (en) Mesfet device and manufacture thereof
JPH0329326A (en) Junction field-effect transistor
JP2645993B2 (en) Field effect type semiconductor device and method of manufacturing the same
JPH04343440A (en) Semiconductor device
JPS59111372A (en) Manufacture of semiconductor device
JPS6124265A (en) Manufacture of semiconductor device
JPS60144980A (en) Semiconductor device
JPS58145162A (en) Manufacture of semiconductor device
JPS63237565A (en) Manufacture of semiconductor element
JPS6112079A (en) Manufacture of semiconductor element
JPS6332273B2 (en)
JPS59101877A (en) Manufacture of field effect transistor
JPS60133761A (en) Semiconductor device and manufacture thereof
JPH01208867A (en) Semiconductor device and manufacture thereof
JPS6158274A (en) Manufacture of semiconductor device
JPH0410549A (en) Manufacture of field-effect transistor
JPS6070772A (en) Manufacture of field-effect transistor
JPS59195874A (en) Manufacture of field-effect transistor
JPS6216574A (en) Manufacture of field-effect transistor
JPH01208870A (en) Manufacture of compound semiconductor device