JPH0448452Y2 - - Google Patents

Info

Publication number
JPH0448452Y2
JPH0448452Y2 JP1986041713U JP4171386U JPH0448452Y2 JP H0448452 Y2 JPH0448452 Y2 JP H0448452Y2 JP 1986041713 U JP1986041713 U JP 1986041713U JP 4171386 U JP4171386 U JP 4171386U JP H0448452 Y2 JPH0448452 Y2 JP H0448452Y2
Authority
JP
Japan
Prior art keywords
liquid level
refrigerant
temperature
burner
refrigerant tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1986041713U
Other languages
Japanese (ja)
Other versions
JPS62171766U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1986041713U priority Critical patent/JPH0448452Y2/ja
Publication of JPS62171766U publication Critical patent/JPS62171766U/ja
Application granted granted Critical
Publication of JPH0448452Y2 publication Critical patent/JPH0448452Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は吸収式冷凍機、詳しくは発生器におけ
る加熱制御弁を開閉制御可能にした吸収式冷凍機
に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to an absorption refrigerating machine, and more particularly to an absorption refrigerating machine in which opening and closing of a heating control valve in a generator can be controlled.

(従来の技術) 従来、吸収式冷凍機において、社団法人日本冷
凍空調工業会発行(発行日昭和56年11月)の「ガ
ス吸収冷温水機Q&A」の第137頁に記載されて
いるように、冷水又は温水の出口又は入口温度を
検出し、これら冷水又は温水温度により、発生器
におけるバーナに燃料を供給する燃料供給管の燃
料電磁弁の開閉制御を行なうようにしたものが知
られている。
(Prior art) Conventionally, in absorption chillers, as described on page 137 of "Gas absorption chiller/heater Q&A" published by the Japan Refrigeration and Air Conditioning Industry Association (issued in November 1982). It is known that the outlet or inlet temperature of cold water or hot water is detected, and the opening/closing control of a fuel solenoid valve in a fuel supply pipe that supplies fuel to a burner in a generator is performed based on the temperature of the cold water or hot water. .

即ち、例えば冷水に出口温度を検出して容量制
御を行なう場合、第4図に示した運転モードの如
く冷水出口温度が設定温度より低下して、第4図
()の温度になつたとき、前記燃料電磁弁を閉
じて、バーナの運転を停止すると共に、冷水出口
温度が設定温度より上昇して、第4()の温度
よりなると前記燃料電磁弁を開いて前記バーナを
運転することにより行なうのである。
That is, for example, when the outlet temperature of chilled water is detected and the capacity is controlled, when the chilled water outlet temperature falls below the set temperature and reaches the temperature shown in FIG. 4() as in the operation mode shown in FIG. The fuel solenoid valve is closed to stop the burner operation, and when the cold water outlet temperature rises above the set temperature and reaches the fourth () temperature, the fuel solenoid valve is opened and the burner is operated. It is.

(考案が解決しようとする問題点) 所で、以上の如く冷水出口温度を検出して前記
燃料電磁弁を開閉し、前記バーナの発停を行なう
場合、一般に冷水側の熱容量は余り大きくないた
め、前記バーナの運転停止後も冷媒ポンプを駆動
し、濃溶液の濃度が上昇しないようにする残留運
転(第4図()乃至()の領域)を行なつて
いるとしても、冷房負荷の少ない場合には、前記
バーナの発停回数が多くなり、この結果次の問題
が生じているのである。
(Problem to be solved by the invention) By the way, when the temperature of the cold water outlet is detected as described above and the fuel solenoid valve is opened and closed to start and stop the burner, generally the heat capacity of the cold water side is not very large. , even if the refrigerant pump is operated even after the burner has stopped operating to prevent the concentration of the concentrated solution from increasing (region of () to () in Figure 4), the cooling load is small. In this case, the number of times the burner starts and stops increases, resulting in the following problem.

即ち、一般にバーナの発停時には、危険防止の
ためバーナブロアによりプリパージ又はポストパ
ージを行なうのであるが、これらプリパージ又は
ポストパージにより、前記バーナの燃焼室及び発
生器を冷却することになり、この冷却のため溶液
中の熱エネルギーが無駄に失われ、それだけ成績
係数が低下するのであり、その上、バーナ発停回
数の増加により部品の寿命が短かくなるのであ
る。
In other words, when starting and stopping a burner, a burner blower is generally used to perform pre-purge or post-purge to prevent danger, but these pre-purges or post-purges cool the combustion chamber and generator of the burner, and this cooling As a result, thermal energy in the solution is wasted and the coefficient of performance decreases accordingly.Furthermore, the lifespan of parts is shortened due to an increase in the number of times the burner is turned on and off.

しかして、前記バーナの発停回数を少なくする
には、前記冷水出口温度による燃料電磁弁の開閉
に大きなデフアレンシヤルをとることが考えられ
るが、デフアレンシヤルが大きいと冷房負荷に対
し正確な運転制御が行なえず、却つて熱エネルギ
ーを無駄にすることになつて、前記した問題の解
決にならないのである。
Therefore, in order to reduce the number of times the burner starts and stops, it is conceivable to set a large differential in the opening and closing of the fuel solenoid valve depending on the chilled water outlet temperature, but if the differential is large, it will not be possible to accurately Operation control cannot be performed, and thermal energy is wasted, which does not solve the above-mentioned problem.

本考案の目的は、冷房負荷の増減に伴ない冷水
と熱交換する冷媒の蒸発量が変化することに着目
し、冷媒ポンプをもつた冷媒液の循環路に冷媒タ
ンクを設けて、このタンク内における冷媒液位を
検出し、この液位変化で発生器における加熱制御
弁を開閉制御することにより、前記発生器におけ
る加熱源の発停回数を少なくし、発停回数増加に
よる成績係数の低下を解消し、かつ、部品寿命の
短縮を解消する如くしたのである。
The purpose of this invention was to focus on the fact that the amount of evaporation of the refrigerant that exchanges heat with chilled water changes as the cooling load increases and decreases. By detecting the refrigerant liquid level at , and controlling the opening and closing of the heating control valve in the generator based on this liquid level change, the number of times the heating source in the generator starts and stops can be reduced, and the coefficient of performance can be prevented from decreasing due to the increase in the number of starts and stops. This problem was solved, and the shortening of component life was also avoided.

(問題点を解決するための手段) 本考案は、蒸発器7の冷媒出入口間に、冷媒循
環器15を設けて、該循環路15の前記蒸発器7
における出口側に冷媒タンク12を設けると共
に、該冷媒タンク12に高液位と低液位とを検出
可能とした液温計30を設ける一方、前記加熱制
御弁5を前記冷媒タンク12の液位が高液位で閉
とし、低液位で開とする制御機構40を設けたも
のである。
(Means for solving the problem) The present invention provides a refrigerant circulator 15 between the refrigerant inlet and outlet of the evaporator 7, and the evaporator 7 of the circulation path 15
A refrigerant tank 12 is provided on the outlet side of the refrigerant tank 12, and a liquid thermometer 30 that can detect high and low liquid levels is provided in the refrigerant tank 12. A control mechanism 40 is provided which closes the valve at a high liquid level and opens at a low liquid level.

(作用) 以上の構成により、冷媒タンク12における高
液位及び低液位で、前記加熱制御弁5を開閉する
から、高液位から低液位に、また、低液位から高
液位になるまでの時間を稼ぐことができ、冷水出
口温度を検出して加熱制御弁の開閉を行なう従来
例に対し、加熱源の発停回数を少なくできるので
ある。
(Function) With the above configuration, the heating control valve 5 is opened and closed at high and low liquid levels in the refrigerant tank 12, so that from high liquid level to low liquid level and from low liquid level to high liquid level. The number of times the heating source starts and stops can be reduced compared to the conventional example in which the heating control valve is opened and closed by detecting the cold water outlet temperature.

(実施例) 第1図に示したのものは、高温発生器1と低温
発生器2とを備えた二重効用吸収式冷凍機であつ
て、前記高温発生器1には、主として都市ガスを
燃料とするガスバーナ3を設け、その燃料供給管
4には、前記バーナ3への燃料供給を遮断する電
磁式加熱制御弁5を介装するのである。
(Example) The one shown in FIG. 1 is a dual-effect absorption refrigerating machine equipped with a high temperature generator 1 and a low temperature generator 2, and the high temperature generator 1 is mainly fueled with city gas. A gas burner 3 is provided, and an electromagnetic heating control valve 5 for cutting off fuel supply to the burner 3 is interposed in its fuel supply pipe 4.

又、吸収器6と並設する蒸発器7には、冷水入
口管8と冷水出口管9とに接続する熱交換チユー
ブ10を配設しており、この熱交換チユーブ10
の上部には、冷媒液(主として水)の散布管11
を、また、下部には冷媒受を兼用する冷媒タンク
12をそれぞれ設けている。そして、この冷媒タ
ンク12と前記散布管11との間には、冷媒ポン
プ13をもつた冷媒戻管14を接続し、前記散布
管11と冷媒タンク12及び冷媒戻管14とによ
り冷媒循環路15を形成しており、また、この循
環路15には、前記蒸発路7の上部に設ける凝縮
器16からの冷媒液管17を接続している。
Further, the evaporator 7 installed in parallel with the absorber 6 is provided with a heat exchange tube 10 connected to the cold water inlet pipe 8 and the cold water outlet pipe 9.
At the top of the refrigerant liquid (mainly water), there is a spray pipe 11.
In addition, a refrigerant tank 12 which also serves as a refrigerant receiver is provided at the bottom. A refrigerant return pipe 14 having a refrigerant pump 13 is connected between the refrigerant tank 12 and the dispersion pipe 11. A refrigerant liquid pipe 17 from a condenser 16 provided above the evaporation path 7 is connected to the circulation path 15.

しかして、高温発生器1における前記バーナ3
による加熱で蒸発した冷媒蒸気は、低温発生器2
に導かれた後低温溶液熱交換器18を経て凝縮器
16に、また、低温発生器2において前記高温発
生器1から高温溶液熱交換器19を経て導入され
る中間溶液から、前記冷媒蒸気による加熱で蒸発
した冷媒蒸気は前記低温発生器2から凝縮器16
にそれぞれ導かれ、冷却水管20の冷却水との熱
交換で凝縮し、前記冷媒液管17を介して前記循
環路15に入り、この循環路15の冷媒液と共に
前記散布管11から蒸発器7内の熱交換チユーブ
10に散布され、該チユーブ10を流れる冷水と
熱交換するのである。
Therefore, the burner 3 in the high temperature generator 1
The refrigerant vapor evaporated by the heating is sent to the low temperature generator 2.
from the intermediate solution introduced into the condenser 16 via the low temperature solution heat exchanger 18 and from the intermediate solution introduced from the high temperature generator 1 via the high temperature solution heat exchanger 19 in the low temperature generator 2. Refrigerant vapor evaporated by heating is transferred from the low temperature generator 2 to the condenser 16.
The coolant is condensed through heat exchange with the cooling water in the cooling water pipe 20, enters the circulation path 15 through the refrigerant liquid pipe 17, and flows from the distribution pipe 11 to the evaporator 7 together with the refrigerant liquid in the circulation path 15. The water is dispersed in the heat exchange tube 10 inside the tube and exchanges heat with the cold water flowing through the tube 10.

そして、この熱交換により冷水から熱を奪つて
蒸発し、前記低温発生器2から低温溶液熱交換器
18を経て前記吸収器6に散布される濃溶液に吸
収され、溶液と共に溶液ポンプ21を介して、低
温溶液熱交換器18及び高温溶液熱交換器19を
経て再び高温発生器1に戻るサイクルを繰返すの
である。
Through this heat exchange, heat is removed from the cold water and evaporated, which is absorbed by the concentrated solution distributed from the low-temperature generator 2 to the absorber 6 via the low-temperature solution heat exchanger 18, and is passed along with the solution through the solution pump 21. Then, the cycle of passing through the low temperature solution heat exchanger 18 and the high temperature solution heat exchanger 19 and returning to the high temperature generator 1 is repeated.

所で、前記散布管11から蒸発器7内に散布さ
れ冷水と熱交換して蒸発する冷媒液は、一般に最
大冷水負荷に対応した流量となる如く設定される
のであつて、冷水負荷が低下すると吸熱量が少な
くなつて未蒸発液が生じ、この未蒸発液は前記熱
交換チユーブ10を流下して前記冷媒タンク12
に貯溜されるのである。
By the way, the refrigerant liquid that is sprayed into the evaporator 7 from the spray pipe 11 and evaporated by exchanging heat with the cold water is generally set to have a flow rate that corresponds to the maximum chilled water load. As the amount of heat absorbed decreases, unevaporated liquid is generated, and this unevaporated liquid flows down the heat exchange tube 10 and is transferred to the refrigerant tank 12.
It is stored in

ところで、前記冷媒タンク12の液面高さは、
冷水負荷に対応して変位し、冷水負荷が低いとき
には液面高さは溶液サイクル中の濃度が低下する
ため、冷媒量が減少するため、低下する。逆に、
冷水負荷の増大に伴ない液面高さが高くなる。冷
媒タンク12の液面高さが最高である事を検出し
バーナ3を停止すれば、冷水負荷の低い場合でも
液面高さが最低水位になるまでバーナ13は再起
動せず、このためバーナ3のON・OFF回数を低
減することが出来る。
By the way, the liquid level height of the refrigerant tank 12 is
It is displaced in response to the chilled water load, and when the chilled water load is low, the liquid level decreases because the concentration during the solution cycle decreases and the amount of refrigerant decreases. vice versa,
The liquid level height increases as the chilled water load increases. If it is detected that the liquid level in the refrigerant tank 12 is at its maximum level and the burner 3 is stopped, the burner 13 will not be restarted until the liquid level reaches its minimum level even when the chilled water load is low. It is possible to reduce the number of ON/OFF operations in step 3.

本考案は、以上の如く冷媒タンク12を設ける
と共に、この冷媒タンク12に、高液位と低液位
とを検出可能とした液面計30を設けると共に、
この液面計30からの検出信号により前記加熱制
御弁5を、前記冷媒タンク12の液位で開閉制御
する制御機構40を設けるのである。
The present invention provides the refrigerant tank 12 as described above, and also provides the refrigerant tank 12 with a liquid level gauge 30 that can detect high liquid level and low liquid level.
A control mechanism 40 is provided which controls opening and closing of the heating control valve 5 according to the liquid level of the refrigerant tank 12 based on the detection signal from the liquid level gauge 30.

前記液面計30はホルダー31を介して3本の
電極棒32を取付けたものであつて、前記冷媒タ
ンク12に1対の連通管33,34を介して取付
けている。
The liquid level gauge 30 has three electrode rods 32 attached to it via a holder 31, and is attached to the refrigerant tank 12 via a pair of communication pipes 33 and 34.

また、前記制御機構40は、前記液面計30の
液面検出スイツチ(図示せず)と前記加熱制御弁
5とを直列に接続して構成するのであつて、前記
冷媒タンク12の液位が高液位で前記加熱制御弁
5を閉じて前記バーナ3の運転を停止し、また、
前記液位が低液位で前記加熱制御弁5を開いて前
記バーナ3の運転を行なう如く成すのである。
Further, the control mechanism 40 is configured by connecting a liquid level detection switch (not shown) of the liquid level gauge 30 and the heating control valve 5 in series, so that the liquid level in the refrigerant tank 12 is At a high liquid level, the heating control valve 5 is closed to stop the operation of the burner 3, and
This is done so that when the liquid level is low, the heating control valve 5 is opened and the burner 3 is operated.

しかして、以上の構成による吸収式冷凍機の運
転モードは、第2図の如くなるのであつて、冷水
負荷の上昇で冷媒タンク12の液位が低下し、第
2図Aの低液位になると、前記加熱制御弁5が開
き、前記バーナ3の運転が行なわれるのである
が、このバーナ3の運転により冷水負荷が低い場
合でも、前記冷媒タンク12の液位は直ちに高液
位となることなく、前記冷媒タンク12の体積に
応じて高液位になるまでの時間を稼げるのであ
り、冷媒タンク12の容量で稼ぐ時間だけ運転時
間を長くできるのである。
Therefore, the operation mode of the absorption chiller with the above configuration is as shown in Fig. 2, and as the chilled water load increases, the liquid level in the refrigerant tank 12 decreases to the low liquid level shown in Fig. 2A. When this occurs, the heating control valve 5 opens and the burner 3 is operated, but due to the operation of the burner 3, the liquid level in the refrigerant tank 12 immediately rises to a high level even when the chilled water load is low. Rather, the time required to reach a high liquid level can be acquired according to the volume of the refrigerant tank 12, and the operating time can be increased by the amount of time acquired by the capacity of the refrigerant tank 12.

また、前記冷媒タンク12の液位が第2図Bの
液位になると、前記加熱制御弁5を閉じ、前記バ
ーナ3の運転を停止すると共に、前記溶液ポンプ
21の駆動を継続して行なう残留運転が開始され
るのであるが、この残留運転は、前記冷媒タンク
12の高液位から開始されるため、前記冷媒タン
ク12の液位が第2図Cの低液位になるまで継続
されることになり、前記バーナ3の運転停止によ
る冷水温度の上昇を抑制できると共に、冷水温度
の上昇で直ちに前記バーナ3の運転が再開される
こともないのである。
Further, when the liquid level in the refrigerant tank 12 reaches the liquid level shown in FIG. The operation is started, but since this residual operation is started from a high liquid level in the refrigerant tank 12, it is continued until the liquid level in the refrigerant tank 12 reaches the low liquid level shown in FIG. 2C. Therefore, it is possible to suppress an increase in the temperature of the cold water due to the stoppage of operation of the burner 3, and the operation of the burner 3 is not restarted immediately due to a rise in the temperature of the cold water.

従つて、前記バーナ3の発停回数は、冷水温度
を検出して発停させる従来例に比較して大幅に減
少できるのである。
Therefore, the number of times the burner 3 is turned on and off can be significantly reduced compared to the conventional example in which the burner 3 is turned on and off by detecting the cold water temperature.

以上説明した実施例において、例えば前記冷水
入口管8に冷水サーモ(TH)を設けて、この冷
水モータ(TH)及び温度コントローラ(TC)
を用い、前記冷媒ポンプ13の発停を行なう如く
成してもよい。
In the embodiment described above, for example, a cold water thermostat (TH) is provided in the cold water inlet pipe 8, and the cold water motor (TH) and temperature controller (TC)
The refrigerant pump 13 may be started and stopped using the above-mentioned refrigerant pump 13.

即ち、第3図に示した運転モードの如く冷水温
度が設定温度より低いときには、即ち第3図
()の温度になると、前記冷媒ポンプ13の駆
動を停止し、また、設定温度より高い温度即ち第
3図()の温度になると駆動する如く成てもよ
い。
That is, when the chilled water temperature is lower than the set temperature as in the operation mode shown in FIG. 3, that is, when the temperature reaches the temperature shown in FIG. It may be configured such that it is activated when the temperature shown in FIG. 3() is reached.

斯くすることにより冷水温度を冷水負荷により
正確にマツチさせられることになる。第3図にお
いて、水平特性は、冷媒ポンプ13を停止して
も、前記散布管11から落下する冷媒がしばらく
続くことによるものである。
By doing so, the chilled water temperature can be more accurately matched to the chilled water load. In FIG. 3, the horizontal characteristic is due to the fact that even if the refrigerant pump 13 is stopped, the refrigerant continues to fall from the distribution pipe 11 for a while.

尚、冷水温度により前記冷媒ポンプ13を発停
させる場合、前記冷媒ポンプ13は、空運転防止
のため、前記冷媒ポンプ12の液面計30にも電
気的に連結させ、前記冷媒タンク12の液位が低
液位のとき、自動的に停止する如く成すのであ
る。
In addition, when starting and stopping the refrigerant pump 13 depending on the temperature of the chilled water, the refrigerant pump 13 is also electrically connected to the liquid level gauge 30 of the refrigerant pump 12 to prevent dry operation, and the liquid in the refrigerant tank 12 is connected electrically. It is designed to automatically stop when the liquid level is low.

又、前記冷媒タンク12は蒸発器7の下部に設
けて、冷媒液の受けと兼用させているが、蒸発器
7とは別個に設けてもよい。
Further, although the refrigerant tank 12 is provided below the evaporator 7 and serves as a receptacle for the refrigerant liquid, it may also be provided separately from the evaporator 7.

更に、前記制御機構40において、冷水が凍結
する温度に低下するのを防止するため、冷水凍結
温度又は冷水が凍結する程度の温度となる冷媒温
度を検出し、この検出信号により前記冷媒タンク
12の冷媒温度を検出し、この検出信号により前
記冷媒タンク12の液位に拘わらず前記加熱制御
弁5を閉じる如く成す安全スイツチを設けるのが
好ましい。
Further, in the control mechanism 40, in order to prevent the temperature from dropping to a temperature at which the cold water freezes, the temperature at which the cold water freezes or the refrigerant temperature reaches a temperature at which the cold water freezes is detected, and based on this detection signal, the temperature of the refrigerant tank 12 is It is preferable to provide a safety switch that detects the refrigerant temperature and closes the heating control valve 5 regardless of the liquid level in the refrigerant tank 12 based on the detection signal.

(考案の効果) 以上の如く本考案は、冷媒液の循環路に冷媒タ
ンク12を設け、このタンク12における液位
で、発生器1における加熱制御弁5の開閉を行な
い、熱源の発停を行なうようにしたから、冷媒タ
ンク12における液位が高液位から低液位に、ま
た、低液位から高液位になるまでの時間を稼ぐこ
とができ、冷水温度を検出して加熱制御弁の開閉
を行なうようにする従来例に比較して、発停回数
を大幅に減少できるのである。
(Effects of the invention) As described above, the present invention provides a refrigerant tank 12 in the refrigerant liquid circulation path, and uses the liquid level in this tank 12 to open and close the heating control valve 5 in the generator 1, thereby turning on and off the heat source. By doing so, it is possible to buy time for the liquid level in the refrigerant tank 12 to change from a high liquid level to a low liquid level, and from a low liquid level to a high liquid level, and to detect the chilled water temperature and perform heating control. Compared to the conventional example in which the valve is opened and closed, the number of times the valve starts and stops can be significantly reduced.

従つて、熱源の発停回数の増加による熱損失を
少なくし、成績係数を向上できると共に、熱源又
は加熱制御弁5の発停による寿命の低下も少なく
し、耐久性も向上できるのである。
Therefore, it is possible to reduce heat loss due to an increase in the number of times the heat source is turned on and off, and improve the coefficient of performance, and also to reduce the decrease in life due to the turn on and stop of the heat source or heating control valve 5, and to improve durability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案吸収式冷凍機の一実施例を示す
冷凍サイクル系統図、第2図はバーナの運転モー
ドを示す説明図、第3図は冷媒ポンプの運転モー
ドを示す説明図、第4図は従来例の運転モードを
示す説明図である。 1……高温発生器、5……加熱制御弁、7……
蒸発器、12……冷媒タンク、15……冷媒循環
路、30……液面計、40……制御装置。
Fig. 1 is a refrigeration cycle system diagram showing one embodiment of the absorption chiller of the present invention, Fig. 2 is an explanatory diagram showing the burner operating mode, Fig. 3 is an explanatory diagram showing the refrigerant pump operating mode, and Fig. 4 is an explanatory diagram showing the operating mode of the refrigerant pump. The figure is an explanatory diagram showing the operation mode of a conventional example. 1... High temperature generator, 5... Heating control valve, 7...
Evaporator, 12... Refrigerant tank, 15... Refrigerant circulation path, 30... Liquid level gauge, 40... Control device.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 発生器1における加熱制御弁5を開閉制御可能
とした吸収式冷凍機において、蒸発器7の冷媒出
入口間に、冷媒循環路15を設けて、該循環路1
5の前記蒸発器7における出口側に冷媒タンク1
2を設けると共に、該冷媒タンク12に高液位と
低液位とを検出可能とした液面計30を設ける一
方、前記加熱制御弁5を前記冷媒タンク12の液
位が高液位で閉じ、低液位で開とする制御機構4
0を設けたことを特徴とする吸収式冷凍機。
In an absorption refrigerator in which opening and closing of the heating control valve 5 in the generator 1 can be controlled, a refrigerant circulation path 15 is provided between the refrigerant inlet and outlet of the evaporator 7.
A refrigerant tank 1 is provided on the outlet side of the evaporator 7 of 5.
2, and the refrigerant tank 12 is provided with a liquid level gauge 30 capable of detecting a high liquid level and a low liquid level, and the heating control valve 5 is closed when the liquid level of the refrigerant tank 12 is high. , control mechanism 4 that opens at low liquid level
An absorption refrigerator characterized by having a zero.
JP1986041713U 1986-03-19 1986-03-19 Expired JPH0448452Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986041713U JPH0448452Y2 (en) 1986-03-19 1986-03-19

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986041713U JPH0448452Y2 (en) 1986-03-19 1986-03-19

Publications (2)

Publication Number Publication Date
JPS62171766U JPS62171766U (en) 1987-10-31
JPH0448452Y2 true JPH0448452Y2 (en) 1992-11-16

Family

ID=30856959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986041713U Expired JPH0448452Y2 (en) 1986-03-19 1986-03-19

Country Status (1)

Country Link
JP (1) JPH0448452Y2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8061562B2 (en) 2004-10-12 2011-11-22 S.C. Johnson & Son, Inc. Compact spray device
US9108782B2 (en) 2012-10-15 2015-08-18 S.C. Johnson & Son, Inc. Dispensing systems with improved sensing capabilities
JP7175353B1 (en) * 2021-07-07 2022-11-18 大陽日酸株式会社 Secondary refrigerant cooling circulation device and cooling circulation method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57161462A (en) * 1981-03-28 1982-10-05 Kogyo Gijutsuin Control of absorption heat pump or refrigerating machine
JPS59173666A (en) * 1983-03-23 1984-10-01 三洋電機株式会社 Controller for absoprtion refrigerator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57161462A (en) * 1981-03-28 1982-10-05 Kogyo Gijutsuin Control of absorption heat pump or refrigerating machine
JPS59173666A (en) * 1983-03-23 1984-10-01 三洋電機株式会社 Controller for absoprtion refrigerator

Also Published As

Publication number Publication date
JPS62171766U (en) 1987-10-31

Similar Documents

Publication Publication Date Title
KR100716706B1 (en) Operating Method of Single or Double Effect Absorption Refrigerator
JPH0448452Y2 (en)
JP3887204B2 (en) Two-stage absorption chiller / heater
JPH0448454Y2 (en)
JPH062982A (en) Absorption room cooling/heating system and controlling method therefor
JP2650654B2 (en) Absorption refrigeration cycle device
KR0141644B1 (en) Absorption Air Conditioning System
JPS602584B2 (en) Absorption chiller safety device
KR0149569B1 (en) Absorptive refrigerating cycle apparatus
JPS6118366Y2 (en)
JP3831425B2 (en) Control method of absorption chiller / heater
KR0149570B1 (en) Absorption type cooling or heating device
JPS6021721Y2 (en) Absorption chiller control device
JPS6118372Y2 (en)
JP3157668B2 (en) Absorption chiller / heater
KR0149568B1 (en) Absorption type airconditioner
JP2883372B2 (en) Absorption chiller / heater
JP4115020B2 (en) Control method of absorption refrigerator
JPH0356861Y2 (en)
JPS6117319Y2 (en)
JP3735744B2 (en) Cooling operation control method for absorption air conditioner
JPH05312429A (en) Absorption water cooling/heating apparatus
JPH0317474A (en) Absorption refrigerator
JP3326240B2 (en) Control method of absorption refrigerator
JP3281564B2 (en) Absorption air conditioner