JPH0447699B2 - - Google Patents

Info

Publication number
JPH0447699B2
JPH0447699B2 JP58223096A JP22309683A JPH0447699B2 JP H0447699 B2 JPH0447699 B2 JP H0447699B2 JP 58223096 A JP58223096 A JP 58223096A JP 22309683 A JP22309683 A JP 22309683A JP H0447699 B2 JPH0447699 B2 JP H0447699B2
Authority
JP
Japan
Prior art keywords
endothermic
expanded particles
temperature
resin
properties
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58223096A
Other languages
Japanese (ja)
Other versions
JPS60115639A (en
Inventor
Shohei Yoshimura
Tooru Yamaguchi
Masahiro Hashiba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSP Corp
Original Assignee
JSP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSP Corp filed Critical JSP Corp
Priority to JP22309683A priority Critical patent/JPS60115639A/en
Publication of JPS60115639A publication Critical patent/JPS60115639A/en
Publication of JPH0447699B2 publication Critical patent/JPH0447699B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、型内成形により高弾性発泡成形体を
製造するための、結晶性シンジオタクチツク1,
2−ポリブタジエン樹脂(以下、1,2−ポリブ
タジエン樹脂という)からなる予備発泡粒子に関
するものである。 熱可塑性合成樹脂の予備発泡粒子を型内に充填
して加熱し、再発泡させると同時に粒子同士を融
着させて成形するいわゆるビーズ発泡成形法によ
る発泡成形体は、軽量で緩衝性、断熱性等にすぐ
れており、成形法も大量生産に適しているため、
緩衝材、包装材料、断熱材、建材などに広く利用
されている。しかしながら、従来のビーズ発泡法
による発泡成形体の製造は、ポリスチレン系樹
脂、ポリエチレン、ポリプロピレン等を原料とす
るものに限られ、熱可塑性エラストマー樹脂を用
いてゴム弾性を示す発泡成形体を製造することは
行われていない。これは、熱可塑性エラストマー
樹脂をビーズ発泡法により型内成形しようとする
と、一応発泡と融着はするものの、その後の収縮
が大きいため変形(収縮を含む)が甚しく、しか
も気泡が粗大になるなど、とうてい満足な成形体
は得られないためである。したがつて、ゴム弾性
を有する発泡成形体は、従来、ポリウレタンフオ
ームのように、型内で発泡させながら重合させる
方法によつて作られているが、この方法は生産性
が低く、製品も、気泡が連続気泡であるため圧縮
特性において劣るという問題があつた。 本発明の目的は、上述のように従来熱可塑性エ
ラストマーについては実施が困難であつたビーズ
発泡成形による高弾性発泡成形体の製造を可能に
することにある。 上記目的を達成することに成功した本発明は、
固有粘度が0.7以上、密度が0.900〜0.925g/cm3
あり且つ示差走査熱量分析において T2−T1≧35℃ (但しT1[℃]はDSC曲線の最大吸熱点におけ
る吸熱量Qmax[cal/g℃]の2分の1以上の吸
熱量を示す温度範囲の下限、T2[℃]は上記温度
範囲の上限である) の条件を満足する吸熱特性を示す無架橋の結晶性
シンジオタクチツク1,2−ポリブタジエン樹脂
よりなる予備発泡粒子を提供するものである。 ここで示差走査熱量分析は、試料約10mgを示差
走査熱量計のカプセルにとり、室温から約170℃
まで、20℃/分の昇温速度で昇温することにより
行う。DSC曲線とは、上記示差走査熱量分析の
結果を、温度を横軸にし1℃当りの吸熱量を縦軸
にしてプロツトした曲線である。DSC曲線が複
数の吸熱ピークを持つことによりQmaxの2分の
1以上の吸熱量を示す温度範囲が複数存在する場
合、T1としては各温度範囲の下限の低いほうを
とり、T2としては各温度範囲の上限の高いほう
をとる。 図面の曲線Iは、本発明による予備発泡粒子の
代表的な例のDSC曲線である。 本発明の目的との関係で特に好ましい本発明の
予備発泡粒子は、示差走査熱量分析においてさら
に Qtotal≧3.0cal/g (但しQtotal[cal/g]は試料の融解開始か
ら融解終了迄の間の全吸熱量である) の条件を満足する吸熱特性を示す1,2−ポリブ
タジエン樹脂よりなるものであつて、このような
吸熱特性の予備発泡粒子は、架橋ポリエチレンと
ほぼ同等の成形性を示す。 1,2−ポリブタジエン樹脂は、ゴムとプラス
チツクの中間的な性質を示す柔軟な熱可塑性樹脂
として知られている。この樹脂は、その構造単位
ごとに、第3級炭素原子に結合した水素原子とビ
ニル基とを持つので、一般のゴム材料と同様にイ
オウや過酸化物によつて、あるいは光増感剤存在
下に紫外線を照射することによつて、容易に架橋
させることができるという特徴を持つ。そのた
め、成形法や用途にもこの特徴を生かしたものが
多いが、本発明の予備発泡粒子を構成させるのは
無架橋のものである。 1,2−ポリブタジエン樹脂から発泡体を製造
する方法としては、この樹脂とエチレン−酢酸ビ
ニル共重合体とのブレンド物に発泡剤を加えて射
出成形することにより低発泡成形体を製造する方
法、および加硫物からスポンジを製造する方法が
知られているが、この樹脂のみをビーズ発泡法に
より無架橋で発泡させて高倍率発泡成形体とする
ことは知られていない。 本発明の予備発泡粒子は、他の多くの熱可塑性
エラストマー樹脂の予備発泡粒子とは異なり、型
内成形における成形性がきわめてよく、またこれ
から得られる発泡成形体はすぐれた柔軟性、クツ
シヨン性および圧縮回復性を持つ。 1,2−ポリブタジエン樹脂からなる予備発泡
粒子であつても樹脂の密度が0.900g/cm3未満のも
のは、結晶化度が低いため型内成形性および成形
体の形状保持性が悪く、更に耐熱性も劣る。また
密度が0.925g/cm3をこえるものは、融着可能な温
度が高すぎるため、やはり型内成形性が悪い。特
に好ましいのは密度が0.905〜0.920g/cm3のもの
であり、最も好ましいのは密度が0.905〜
0.915g/cm3のものである。 また、固有粘度が0.7未満の1,2−ポリブタ
ジエン樹脂は、分子量が小さく、そのため結晶化
度も低いから、そのような樹脂からなる予備発泡
粒子は型内成形性および成形体の形状保持性が悪
く、さらに耐熱性も劣る。 従来、ポリスチレン系樹脂に比べてビーズ発泡
成形が困難なポリオレフイン系樹脂の場合は、樹
脂を架橋させて成形性を向上させるのが普通であ
るが、架橋容易でポリオレフイン以上に架橋によ
る成形性の向上が期待された1,2−ポリブタジ
エン樹脂が架橋によつてはまつたく成形性が改良
されず、無架橋のまま上記のような特定の吸熱特
性を付与することによつて初めて好結果が得られ
たのは驚くべきことであつた。 上記吸熱特性を持つ1,2−ポリブタジエン樹
脂予備発泡粒子が特にすぐれた型内成形性を有す
る理由は次のように考えられる。まずQtotlaは、
この値が1,2−ポリブタジエン樹脂の結晶化度
に比例する値であることから明らかなように、あ
る値以上にすることが、1,2−ポリブタジエン
樹脂がほんらい具備する物性を高度に発揮させる
上で不可欠である。しかしながら、この値があま
りに高いときは、成形時に発泡粒子間の融着不良
を起こし易いほか、成形に多量の熱エネルギーを
必要とするという不利がある。したがつてQtotal
は、約3〜15cal/gの範囲にあることが望まし
い(特に望ましい値は4〜12cal/gである)。ま
たT2−T1の値が35℃以上と大きく、そして典型
的には図面の曲線IのようにDSC曲線が二つの
吸熱ピークを示すことは、予備発泡粒子を構成す
る樹脂が複数種類の結晶構造を含むことを意味す
る。1,2−ポリブタジエン樹脂の結晶の全部ま
たは大部分がある特定の結晶であつてDSC曲線
がシヤープな単一のピークを持つことによりT2
−T1が35℃に満たない予備発泡粒子(代表的な
例のDSC曲線を図面に曲線として示す)は、
実質的な融解開始から融解終了までの温度範囲が
狭いため、成形するさい発泡粒子の融着に必要な
温度まで加熱すると事実上すべての結晶が融解し
てしまい易く、そのため、発泡粒子間の融着が完
成するまでに気泡が破壊されてしまうが、上述の
ような結晶構造とそれに基づく吸熱特性(すなわ
ち融解特性)を持つ本発明の予備発泡粒子は、実
質的な融解開始から融解終了までの温度範囲が広
いから、この温度範囲の中間付近の温度で成形す
れば、低融点結晶部分が溶解して発泡粒子間の融
着に貢献する一方、高融点の結晶部分は融解する
ことなく予備発泡粒子の発泡構造を維持するの
で、良好な成形が行われることになる。 本発明の予備発泡粒子において特に好ましいの
は、そのDSC曲線上の融解終了温度よりも20℃
低い温度を境にしてそれよりも高温側における全
吸熱量をQh[cal/g]としたとき、 0.15≦Qh/Qtotal≦0.5 であるものであつて、このような特性のものは前
記低融点部分と高融点部分のそれぞれの作用に過
不足がなく、成形性が特にすぐれている。 本発明の予備発泡粒子において、平均気泡直径
は約20〜2000μ(好ましくは50〜1500μ)、平均気
泡数は300個/mm2以下(好ましくは100個/mm2
下)、発泡倍率は3〜50倍(好ましくは5〜40
倍)、平均粒径は1〜20mm(好ましくは3〜15mm)
の範囲で、成形しようとする発泡成形体の物性に
応じて適宜選定することができる。 本発明による予備発泡粒子は、前記範囲内の密
度を有する1,2−ポリブタジエン樹脂の粒子
を、その100重量部当り100〜500重量部の水、3
〜50重量部の発泡剤(たとえばジクロロジフルオ
ロメタン)、0.1〜3重量部の分散剤(たとえば微
粒状酸化アルミニウム)と共に密閉容器にとり、
前記測定条件による原料樹脂のDSC曲線におけ
る結晶の融解開始温度よりも高く融解終了温度よ
りも低い温度まで昇温して発泡剤を樹脂に含浸さ
せたのち加圧状態から容器底部の排出孔を開放し
て内容物を容器内よりも低圧の雰囲気に放出する
ことにより製造することができる。なお前述のよ
うな好ましい吸熱特性を有する予備発泡粒子は、
上記方法による製造工程において上記温度範囲の
昇温状態を約0.5〜3時間保つことにより製造す
ることができるが、所望の吸熱特性を付与するの
に必要な加熱条件は原料樹脂の結晶化度(密度)
により異なる。 本発明による予備発泡粒子は、ポリスチレン系
樹脂やポリオレフイン樹脂の予備発泡粒子を型内
成形する場合と同様に、加圧空気中で養生して
0.01〜5Kg/cm2(G)の内圧を保持させたのち金
型内に充填し熱湯または水蒸気で加熱することに
より容易に成形することができる。特に前述のよ
うな好ましい吸熱特性を有するものは、成形適温
の範囲が広いため、成形し易く、また大型の成形
体を製造する場合でも成形体全体にわたり均質な
製品を容易に得ることができる。そして本発明の
予備発泡粒子から得られる型内成形体は、柔軟
性、クツシヨン性、圧縮回復性など多くの特性に
おいて従来の発泡成形体よりもすぐれた性能を示
すものであるから、クツシヨン材、包装材料、自
動車用バンパー芯材、内装材などに特に好適なも
のである。 以下実施例および比較例を示して本発明を説明
する。 実施例および比較例 平均粒径2.5mmの1,2−ポリブタジエン樹脂
粒子400g、水1200g、微粒状酸化アルミニウム
1.5gおよび発泡剤(ジクロロジフルオロメタン)
を密閉容器にとり、所定の温度tまで昇温して1
時間その温度を保持し発泡剤を樹脂に含浸させた
のち、窒素で容器内圧を30Kg/cm2にした加圧状態
から容器底部の排出孔を開放して内容物を大気中
に放出することにより樹脂粒子を発泡させる。 上記製法において、原料樹脂、発泡剤の量およ
び加熱温度を種々変更することにより種々の予備
発泡粒子を製造した。発泡条件および得られた予
備発泡粒子の特性を第1表に示す。また各予備発
泡粒子は空気で加圧養生して1.2Kg/cm2(G)の
内圧を付与したのち30mm×300mm×300mmの内法を
有する金型を用いて成形性を試験した。 成形性およびその試験において得られた代表的
な成形体の特性を第1表にあわせて示す。 なお成形性の試験方法および成形体の特性の評
価基準は次のとおりである。 成形性試験法 成形温度を段階的に変えながら複数の成形試験
を行い、成形体の面方向収縮率が7%をこえず表
面が均一かつ平滑になる成形温度を“成形適温”
とする。成形適温の上限から下限迄の幅の大小、
および成形適温において成形された成形体の特性
から、成形性の良否を判定する。 柔軟性 防衛庁規格(DNS Z−0503)に従つて試験
し、次の基準で判定する(但し、満足な成形体が
得られなかつた比較例3〜6については試験を省
略した)。 ○:全く破壊せず、割れもない ×:割れを起こす 圧縮弾性回復性 JIS K6767に従つて試験し、次の基準で判定す
る(但し、満足な成形体が得られなかつた比較例
3〜6については試験を省略した)。 ○:圧縮永久歪5%以下 ×:圧縮永久歪が5%をこえる
The present invention provides a crystalline syndiotactic device 1 for producing a highly elastic foam molded article by in-mold molding.
This invention relates to pre-expanded particles made of 2-polybutadiene resin (hereinafter referred to as 1,2-polybutadiene resin). Foam molded products made using the so-called bead foam molding method, in which pre-expanded particles of thermoplastic synthetic resin are filled into a mold and heated to re-foam and simultaneously fuse the particles together, are lightweight, have cushioning properties, and have good heat insulation properties. etc., and the molding method is suitable for mass production.
It is widely used in cushioning materials, packaging materials, insulation materials, building materials, etc. However, the production of foam molded products using the conventional bead foaming method is limited to those using polystyrene resins, polyethylene, polypropylene, etc. as raw materials, and it is difficult to manufacture foam molded products that exhibit rubber elasticity using thermoplastic elastomer resins. has not been carried out. This is because when trying to mold thermoplastic elastomer resin in a mold using the bead foaming method, although it foams and fuses, the subsequent shrinkage is large, resulting in severe deformation (including shrinkage) and the formation of coarse bubbles. This is because a very satisfactory molded product cannot be obtained. Therefore, foamed molded products with rubber elasticity have conventionally been made by polymerizing while foaming in a mold, like polyurethane foam, but this method has low productivity and the product is Since the cells were open cells, there was a problem in that the compression properties were poor. An object of the present invention is to enable the production of a highly elastic foam molded article by bead foam molding, which has conventionally been difficult to implement with thermoplastic elastomers, as described above. The present invention, which has succeeded in achieving the above object,
The intrinsic viscosity is 0.7 or more, the density is 0.900 to 0.925 g/cm 3 , and in differential scanning calorimetry, T 2 −T 1 ≧35°C (However, T 1 [°C] is the endothermic amount Qmax [at the maximum endothermic point of the DSC curve] A non-crosslinked crystalline synthetic resin that exhibits an endothermic property that satisfies the lower limit of the temperature range that exhibits an endothermic amount of 1/2 or more of [cal/g°C], and T 2 [°C] is the upper limit of the above temperature range. The present invention provides pre-expanded particles made of otakutic 1,2-polybutadiene resin. In the differential scanning calorimetry analysis, approximately 10 mg of the sample is placed in a capsule of a differential scanning calorimeter, and the temperature is increased from room temperature to approximately 170°C.
This is done by increasing the temperature at a rate of 20°C/min. The DSC curve is a curve obtained by plotting the results of the differential scanning calorimetry analysis described above, with temperature on the horizontal axis and heat absorption per 1°C on the vertical axis. If the DSC curve has multiple endothermic peaks and there are multiple temperature ranges in which the amount of endothermic energy is more than half of Qmax, the lower limit of each temperature range is taken as T 1 , and the lower limit of each temperature range is taken as T 2 . Take the higher upper limit of each temperature range. Curve I in the drawing is a DSC curve of a representative example of pre-expanded particles according to the invention. The pre-expanded particles of the present invention, which are particularly preferred in relation to the purpose of the present invention, are further characterized in differential scanning calorimetry with Qtotal≧3.0 cal/g (where Qtotal [cal/g] is the period from the start of melting to the end of melting of the sample). The pre-expanded particles are made of a 1,2-polybutadiene resin that exhibits endothermic properties satisfying the following conditions (total endothermic amount), and pre-expanded particles with such endothermic properties exhibit moldability almost equivalent to that of crosslinked polyethylene. 1,2-polybutadiene resin is known as a flexible thermoplastic resin that exhibits properties intermediate between those of rubber and plastic. This resin has a hydrogen atom bonded to a tertiary carbon atom and a vinyl group in each structural unit, so like general rubber materials, it may be affected by sulfur, peroxides, or the presence of photosensitizers. It has the characteristic that it can be easily crosslinked by irradiating the bottom with ultraviolet rays. Therefore, there are many molding methods and uses that take advantage of this feature, but the pre-expanded particles of the present invention are made of non-crosslinked particles. A method for producing a foam from a 1,2-polybutadiene resin includes a method of producing a low-foam molded product by adding a blowing agent to a blend of this resin and an ethylene-vinyl acetate copolymer and injection molding the mixture; Although a method for manufacturing sponge from a vulcanizate is known, it is not known to foam only this resin without crosslinking by a bead foaming method to form a high-magnification foam molded product. The pre-expanded particles of the present invention, unlike the pre-expanded particles of many other thermoplastic elastomer resins, have extremely good moldability in in-mold molding, and the foamed articles obtained from them have excellent flexibility, cushioning properties, and It has compression recovery properties. Even if it is a pre-expanded particle made of 1,2-polybutadiene resin, if the density of the resin is less than 0.900 g/ cm3 , the degree of crystallinity is low, resulting in poor moldability in the mold and poor shape retention of the molded product. Heat resistance is also poor. Also, if the density exceeds 0.925 g/cm 3 , the temperature at which fusion is possible is too high, resulting in poor in-mold moldability. Particularly preferred are those with a density of 0.905 to 0.920 g/ cm3 , and most preferred are those with a density of 0.905 to 0.920 g/cm3.
It has a weight of 0.915g/ cm3 . In addition, 1,2-polybutadiene resins with an intrinsic viscosity of less than 0.7 have a small molecular weight and therefore a low degree of crystallinity, so pre-expanded particles made of such resins have poor in-mold formability and shape retention of molded objects. It is bad, and its heat resistance is also poor. Conventionally, in the case of polyolefin resins, which are difficult to bead foam molded compared to polystyrene resins, it is common practice to crosslink the resin to improve moldability. The moldability of 1,2-polybutadiene resin, which was expected to be effective, was not improved by crosslinking, and good results were obtained only by imparting the above-mentioned specific endothermic properties without crosslinking. It was surprising. The reason why the 1,2-polybutadiene resin pre-expanded particles having the above-mentioned endothermic properties have particularly excellent in-mold moldability is considered as follows. First of all, Qtotla is
As is clear from the fact that this value is proportional to the crystallinity of the 1,2-polybutadiene resin, increasing the value above a certain value allows the 1,2-polybutadiene resin to exhibit its physical properties to a high degree. is essential on. However, when this value is too high, there are disadvantages in that poor fusion between expanded particles tends to occur during molding, and a large amount of thermal energy is required for molding. Therefore, Qtotal
is preferably in the range of about 3 to 15 cal/g (a particularly desirable value is 4 to 12 cal/g). Furthermore, the fact that the value of T 2 - T 1 is as large as 35°C or more, and that the DSC curve typically shows two endothermic peaks as shown in curve I in the drawing, indicates that the resin constituting the pre-expanded particles is composed of multiple types of resin. It means containing a crystal structure. All or most of the crystals of 1,2-polybutadiene resin are a certain type of crystal and the DSC curve has a sharp single peak, resulting in T 2
- Pre-expanded particles with T 1 less than 35°C (a typical example DSC curve is shown as a curve in the drawing),
Because the temperature range from the actual start of melting to the end of melting is narrow, virtually all the crystals tend to melt when heated to the temperature required to fuse the foamed particles during molding, and therefore, the melting between the foamed particles tends to melt. However, the pre-foamed particles of the present invention, which have the above-mentioned crystal structure and endothermic properties (i.e., melting properties) based on the crystal structure, can be used from the substantial start of melting to the end of melting. Since the temperature range is wide, if molding is performed at a temperature near the middle of this temperature range, the low melting point crystalline portion will melt and contribute to the fusion between the foamed particles, while the high melting point crystalline portion will not melt and will allow pre-foaming. The foamed structure of the particles is maintained, resulting in good molding. It is particularly preferable for the pre-expanded particles of the present invention to be 20°C higher than the melting end temperature on the DSC curve.
When the total heat absorption at a higher temperature side than a low temperature is defined as Qh [cal/g], 0.15≦Qh/Qtotal≦0.5, and those with such characteristics have the above-mentioned low melting point. There is no excess or deficiency in the functions of the high melting point portion and the high melting point portion, and the moldability is particularly excellent. In the pre-expanded particles of the present invention, the average cell diameter is about 20 to 2000μ (preferably 50 to 1500μ), the average number of cells is 300 or less/mm 2 (preferably 100 or less), and the expansion ratio is 3 or more. 50 times (preferably 5-40
times), average particle size is 1 to 20 mm (preferably 3 to 15 mm)
It can be appropriately selected within this range depending on the physical properties of the foamed product to be molded. The pre-expanded particles according to the present invention include particles of 1,2-polybutadiene resin having a density within the above range, 100 to 500 parts by weight of water per 100 parts by weight, and 3.
Place in a closed container with ~50 parts by weight of a blowing agent (e.g. dichlorodifluoromethane), 0.1-3 parts by weight of a dispersant (e.g. finely divided aluminum oxide),
After increasing the temperature to a temperature higher than the melting start temperature of the crystals and lower than the melting end temperature in the DSC curve of the raw resin under the measurement conditions to impregnate the resin with the foaming agent, the discharge hole at the bottom of the container is opened under pressure. It can be manufactured by releasing the contents into an atmosphere at a lower pressure than the inside of the container. Note that the pre-expanded particles having the preferable endothermic properties as described above are
In the manufacturing process using the above method, it can be manufactured by maintaining the temperature in the above temperature range for about 0.5 to 3 hours, but the heating conditions necessary to impart the desired endothermic properties are determined by the crystallinity of the raw resin ( density)
It depends. The pre-expanded particles according to the present invention are cured in pressurized air, similar to when pre-expanded particles of polystyrene resin or polyolefin resin are molded in a mold.
After maintaining an internal pressure of 0.01 to 5 kg/cm 2 (G), it can be easily molded by filling it into a mold and heating it with hot water or steam. In particular, those having preferable endothermic properties as described above have a wide range of suitable molding temperatures, so they are easy to mold, and even when producing a large molded product, it is possible to easily obtain a homogeneous product over the entire molded product. Since the in-mold molded product obtained from the pre-expanded particles of the present invention exhibits superior performance in many properties such as flexibility, cushioning properties, and compression recovery properties, it can be used as a cushioning material, It is particularly suitable for packaging materials, automobile bumper core materials, interior materials, etc. The present invention will be explained below with reference to Examples and Comparative Examples. Examples and Comparative Examples 400 g of 1,2-polybutadiene resin particles with an average particle size of 2.5 mm, 1200 g of water, finely divided aluminum oxide
1.5g and blowing agent (dichlorodifluoromethane)
is placed in a sealed container, heated to a predetermined temperature t, and heated to 1.
After maintaining the temperature for a period of time to impregnate the resin with the foaming agent, the pressure inside the container is increased to 30 kg/cm 2 with nitrogen, and then the discharge hole at the bottom of the container is opened to release the contents into the atmosphere. Foam the resin particles. In the above manufacturing method, various pre-expanded particles were manufactured by variously changing the raw material resin, the amount of the blowing agent, and the heating temperature. Table 1 shows the foaming conditions and the properties of the pre-expanded particles obtained. Further, each pre-expanded particle was pressurized and cured with air to give an internal pressure of 1.2 kg/cm 2 (G), and then its moldability was tested using a mold having an internal diameter of 30 mm x 300 mm x 300 mm. Table 1 also shows the moldability and characteristics of typical molded bodies obtained in the test. The test method for moldability and the evaluation criteria for the characteristics of the molded article are as follows. Formability test method Multiple molding tests are performed while changing the molding temperature in stages, and the molding temperature at which the in-plane shrinkage rate of the molded product does not exceed 7% and the surface is uniform and smooth is determined as the "appropriate molding temperature".
shall be. The size of the width from the upper limit to the lower limit of the suitable molding temperature,
The quality of moldability is determined from the characteristics of the molded article molded at the appropriate molding temperature. Flexibility Tested in accordance with the Defense Agency standard (DNS Z-0503) and judged based on the following criteria (however, the test was omitted for Comparative Examples 3 to 6 in which a satisfactory molded product could not be obtained). ○: No breakage or cracking at all ×: Compressive elastic recovery that causes cracking Tested in accordance with JIS K6767 and judged based on the following criteria (However, Comparative Examples 3 to 6 in which a satisfactory molded product was not obtained) (examination was omitted for some cases). ○: Compression set 5% or less ×: Compression set exceeds 5%

【表】 注:成形適温および成形適温幅の“〓”は、成形可能
な温度が事実上存在しないことをあらわす。
比較例1および2は表示した温度で一応成形可能
であるが、面方向収縮率が7%をこえ、成形状
態はよくない。
[Table] Note: "〓" in the suitable molding temperature and suitable molding temperature range indicates that there is virtually no moldable temperature.
Comparative Examples 1 and 2 can be molded at the indicated temperature, but the shrinkage rate in the plane direction exceeds 7% and the molding condition is not good.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明による予備発泡粒子(I)および
対照品()のDSC曲線である。
The figure is a DSC curve of pre-expanded particles according to the invention (I) and a control product ().

Claims (1)

【特許請求の範囲】 1 固有粘度が0.7以上、密度が0.900〜0.925g/
cm3であり且つ示差走査熱量分析において T2−T1≧35℃ (但しT1[℃]はDSC曲線の最大吸熱点における
吸熱量Qmax[cal/g℃]の2分の1以上の吸熱
量を示す温度範囲の下限、T2[℃]は上記温度範
囲の上限である)の条件を満足する吸熱特性を示
す無架橋の結晶性シンジオタクチツク1,2−ポ
リブタジエン樹脂よりなる予備発泡粒子。 2 1,2−ポリブタジエン樹脂がその示差走査
熱量分析においてさらに Qtotal≧3.0cal/g (但しQtotal[cal/g]は試料の融解開始から
融解終了迄の間の全吸熱量である) の条件を満足する吸熱特性を示すものである特許
請求の範囲第1項記載の1,2−ポリブタジエン
樹脂予備発泡粒子。
[Claims] 1. Intrinsic viscosity of 0.7 or more, density of 0.900 to 0.925 g/
cm 3 and T 2 −T 1 ≧35°C in differential scanning calorimetry (however, T 1 [°C] is the absorption amount that is more than half of the endothermic amount Qmax [cal/g°C] at the maximum endothermic point of the DSC curve). Pre-expanded particles made of a non-crosslinked crystalline syndiotactic 1,2-polybutadiene resin exhibiting endothermic properties that satisfy the lower limit of the temperature range indicating the amount of heat (T 2 [°C] is the upper limit of the above temperature range) . 2 The 1,2-polybutadiene resin is subjected to differential scanning calorimetry under the condition that Qtotal ≥ 3.0 cal/g (where Qtotal [cal/g] is the total endothermic amount from the start of melting to the end of melting of the sample). 1,2-Polybutadiene resin pre-expanded particles according to claim 1, which exhibit satisfactory endothermic properties.
JP22309683A 1983-11-29 1983-11-29 Prefoamed particle of 1,2-polybutadiene resin Granted JPS60115639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22309683A JPS60115639A (en) 1983-11-29 1983-11-29 Prefoamed particle of 1,2-polybutadiene resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22309683A JPS60115639A (en) 1983-11-29 1983-11-29 Prefoamed particle of 1,2-polybutadiene resin

Publications (2)

Publication Number Publication Date
JPS60115639A JPS60115639A (en) 1985-06-22
JPH0447699B2 true JPH0447699B2 (en) 1992-08-04

Family

ID=16792764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22309683A Granted JPS60115639A (en) 1983-11-29 1983-11-29 Prefoamed particle of 1,2-polybutadiene resin

Country Status (1)

Country Link
JP (1) JPS60115639A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53121065A (en) * 1977-03-31 1978-10-23 Takiron Co Production of easily disposable soft foam
JPS5763334A (en) * 1980-10-02 1982-04-16 Takiron Co Ltd Preparation of flame-retardant flexible foam
JPS5890931A (en) * 1981-11-25 1983-05-30 Takiron Co Ltd Manufacture of foamed body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53121065A (en) * 1977-03-31 1978-10-23 Takiron Co Production of easily disposable soft foam
JPS5763334A (en) * 1980-10-02 1982-04-16 Takiron Co Ltd Preparation of flame-retardant flexible foam
JPS5890931A (en) * 1981-11-25 1983-05-30 Takiron Co Ltd Manufacture of foamed body

Also Published As

Publication number Publication date
JPS60115639A (en) 1985-06-22

Similar Documents

Publication Publication Date Title
EP0071981B1 (en) Foamed molded articles of polypropylene resin
US4504534A (en) Core material for automobile bumpers
US4399087A (en) Process for producing foamed polyolefin articles from aged pre-foamed particles of polyolefin resins
EP0123144B1 (en) Polypropylene resin prefoamed particles
CA1108350A (en) Expanded particulate material of polyolefin resin
WO1996031558A1 (en) Foamed particles of propylene homopolymer and moldings of said particles
JPS5943492B2 (en) Manufacturing method of polypropylene resin foam molding
JPH011741A (en) Non-crosslinked linear low density polyethylene pre-expanded particles
JPS60168632A (en) Expanded molding of bridged polypropylene resin
JPH0559139B2 (en)
EP0068467A1 (en) Polypropylene foamed molded articles and process for production thereof
JPS6042432A (en) Foamed particle
JPH0365259B2 (en)
JPS6344779B2 (en)
JPH0447699B2 (en)
KR101928927B1 (en) Olefin block copolymer foam particle with excellent impact resistance
JP2603858B2 (en) Method for producing spherical polyethylene expanded particles
JPS59176336A (en) Expanded polypropylene resin particles
JPH032890B2 (en)
JPS63258939A (en) Polypropylene resin prefoamed beads
JP3126449B2 (en) Polyolefin resin foam particles
JPS6344778B2 (en)
JPS6324618B2 (en)
JPH0464335B2 (en)
JPS60110430A (en) Foamed molding and manufacture thereof