JPH0442779B2 - - Google Patents

Info

Publication number
JPH0442779B2
JPH0442779B2 JP60179633A JP17963385A JPH0442779B2 JP H0442779 B2 JPH0442779 B2 JP H0442779B2 JP 60179633 A JP60179633 A JP 60179633A JP 17963385 A JP17963385 A JP 17963385A JP H0442779 B2 JPH0442779 B2 JP H0442779B2
Authority
JP
Japan
Prior art keywords
gas
flow path
fuel
separation plate
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60179633A
Other languages
Japanese (ja)
Other versions
JPS6240169A (en
Inventor
Isao Yoshinaga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60179633A priority Critical patent/JPS6240169A/en
Publication of JPS6240169A publication Critical patent/JPS6240169A/en
Publication of JPH0442779B2 publication Critical patent/JPH0442779B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0263Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant having meandering or serpentine paths
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は燃料電池のガス分離板に関するもの
で、特に燃料ガス及び酸化剤ガスの流路となる溝
の構造を改良した燃料電池に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] This invention relates to a gas separation plate for a fuel cell, and in particular to a fuel cell in which the structure of grooves serving as flow paths for fuel gas and oxidizing gas is improved. be.

〔従来の技術〕 第3図は例えば特開昭58−166659号公報に示さ
れた従来の燃料電池の単電池構成を示し、図にお
いて、マトリツクス5を挟んで一対の多孔質の電
極4,6を配置するとともに、一方の電極の背面
に水素ガスを含む燃料ガスを接触させ、他方の電
極の背面に酸素ガスを含む酸化剤ガスを接触さ
せ、この時に起る電気化学的反応を利用して両電
極間から電気エネルギーを取出すことができるも
のである。
[Prior Art] FIG. 3 shows a conventional single cell structure of a fuel cell disclosed in, for example, Japanese Patent Application Laid-Open No. 58-166659. At the same time, the back of one electrode is brought into contact with a fuel gas containing hydrogen gas, and the back of the other electrode is brought into contact with an oxidizing gas containing oxygen gas, and the electrochemical reaction that occurs at this time is utilized. Electrical energy can be extracted from between both electrodes.

上記の原理にもとづく燃料電池は電解質を含浸
したマトリツクス5を中心に挟むようにして、両
側に多孔質の電極4,6を配設する。また、これ
ら両電極のマトリツクス5に接する側には触媒層
が夫々形成されて単電池を構成する。
A fuel cell based on the above principle has a matrix 5 impregnated with an electrolyte sandwiched between the porous electrodes 4 and 6 on both sides. Furthermore, a catalyst layer is formed on each of the sides of these electrodes that are in contact with the matrix 5 to constitute a single cell.

この単電池の両電極の夫々の背面に、燃料ガス
及び酸化剤ガスの夫々の流路となる溝をもつガス
分離板1が配設される。このガス分離板1の夫々
の溝は一方の面の溝と他方の面の溝が互に直交す
る方向に形成されている。
A gas separation plate 1 having grooves serving as flow paths for fuel gas and oxidizing gas is disposed on the back surfaces of both electrodes of this unit cell. Each groove of this gas separation plate 1 is formed in a direction in which the groove on one surface and the groove on the other surface are perpendicular to each other.

この溝は面内に均一にガスを供給するために多
数設けてあり、燃料ガスを溝2aに流すと、多孔
質の燃料極6及び触媒層を通して水素ガスがマト
リツクス5の境界面に達する。ここで電気化学反
応が生じ、水素がイオン化し、電解液により移動
し、酸素(空気)を溝2に流すと、同様にして触
媒層の境界面にある酸素(空気)と反応する。こ
のような電気化学反応を利用して発電している。
A large number of grooves are provided to uniformly supply gas within the surface. When fuel gas flows through the grooves 2a, hydrogen gas reaches the boundary surface of the matrix 5 through the porous fuel electrode 6 and the catalyst layer. An electrochemical reaction occurs here, hydrogen is ionized and moved by the electrolyte, and when oxygen (air) flows into the groove 2, it similarly reacts with the oxygen (air) at the interface of the catalyst layer. Electricity is generated using such electrochemical reactions.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来のガス分離板は第3図に示すように板状の
黒鉛質部材に多数の平行した溝2,2a及び凸部
となるリブ3,3aから構成されているので、溝
を流れるガス流速は0.3m/s程度と非常に遅く、
層流となり、ガス流量は溝の等価直径の4乗に比
例するため、溝寸法精度の影響を大きく受ける。
したがつて、各溝のガス流量を均一とするために
は溝を精度良く加工する必要があり、コストが高
くなるという問題点があつた。
As shown in Fig. 3, the conventional gas separation plate is composed of a large number of parallel grooves 2, 2a and ribs 3, 3a which are convex parts in a plate-shaped graphite member, so that the gas flow rate through the grooves is Very slow, about 0.3m/s.
Since the flow is laminar and the gas flow rate is proportional to the fourth power of the equivalent diameter of the groove, it is greatly affected by the groove dimensional accuracy.
Therefore, in order to make the gas flow rate uniform in each groove, it is necessary to process the grooves with high precision, resulting in a problem of increased cost.

この発明は上記のような問題点を解消するため
になされたもので、燃料ガス流路又は酸化剤ガス
流路の断面寸法精度の影響を少なくして電極反応
面にガスを供給することができる燃料電池を得る
ことを目的とする。
This invention was made to solve the above-mentioned problems, and it is possible to supply gas to the electrode reaction surface while reducing the influence of the cross-sectional dimensional accuracy of the fuel gas flow path or the oxidant gas flow path. The purpose is to obtain fuel cells.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る燃料電池は、ガス分離板の表面
部を、燃料ガス又は酸化剤ガスの流通する方向に
ガス分離板を対向する両端部間に亘つてかつ一方
の端部から他方の端部の方向へ見て互いに重なら
ないように区分して複数の区域とし、この区域の
各々に単一の流路を複数回折返した要素流路を形
成し、要素流路を並列にして燃料ガス流路又は酸
化剤ガス流路としたものである。
In the fuel cell according to the present invention, the surface portion of the gas separation plate is extended between both opposing ends of the gas separation plate in the direction in which the fuel gas or oxidant gas flows, and from one end to the other end. A fuel gas flow path is formed by dividing a plurality of areas so as not to overlap each other when viewed in the direction, forming an element flow path in which a single flow path is turned back multiple times in each of these areas, and making the element flow paths in parallel. Or an oxidant gas flow path.

〔作用〕[Effect]

この発明においては、ガス分離板に形成される
溝の本数が低減され、各溝を流れるガス流速が増
し、そのガス流は層流から乱流となり、さらに、
電極反応面の全域にわたつてガスを供給すること
ができる。
In this invention, the number of grooves formed in the gas separation plate is reduced, the gas flow rate flowing through each groove is increased, the gas flow changes from laminar flow to turbulent flow, and further,
Gas can be supplied over the entire area of the electrode reaction surface.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を図について説明す
る。第1図において、7はガス分離板、8,8a
は燃料ガスあるいは酸化剤ガスの流路、即ち燃料
ガス流路又は酸化剤ガス流路を構成する要素流路
としての溝であり、溝8,8aを3個並列にして
反応ガスを流す。9,9aは燃料ガスあるいは酸
化剤ガスのリブである。
An embodiment of the present invention will be described below with reference to the drawings. In Fig. 1, 7 is a gas separation plate, 8, 8a
is a channel for fuel gas or oxidizing gas, that is, a groove as an element channel constituting the fuel gas channel or oxidizing gas channel, and three grooves 8 and 8a are arranged in parallel to allow the reaction gas to flow. 9 and 9a are ribs for fuel gas or oxidant gas.

図示では複数個の溝8,8a及びリブ9,9a
は簡略した個数にしたが、溝8,8aは1mmない
し3mm幅および深さの溝が従来と溝本数の1/10〜
1/50のものが設けられている。
In the illustration, a plurality of grooves 8, 8a and ribs 9, 9a are shown.
The number of grooves 8 and 8a was simplified, but the grooves 8 and 8a have a width and depth of 1 mm to 3 mm, which is 1/10 to 1/10 of the number of grooves compared to conventional grooves.
1/50 scale is provided.

要素流路である溝8aは、第1図に示すよう
に、ガス分離板7の上面部をガスの流路する方向
即ち図の右下から左上の方向にガス分離板の対向
する両端部間に亘つてかつ一方の端部から他方の
端部の方向へ見て互いに重ならないように区分し
て3個の区域とし、この区域の各々に単一の流路
を複数回折り返して溝8aを形成し、ガス分離板
の右方の端部から左方の端部の方向にガスを流通
させるようにしたものである。また、ガス分離板
7の下面部にガス分離板7の上面部を流通するガ
スの流通方向と直交する方向にガスが流通するよ
うに同様の溝8が設けられている。
As shown in FIG. 1, the groove 8a, which is an element flow path, is formed between opposite ends of the gas separation plate in the direction in which the gas flows through the upper surface of the gas separation plate 7, that is, from the lower right to the upper left in the figure. The groove 8a is divided into three areas extending over the area and not overlapping each other when viewed from one end to the other, and in each of these areas, a single flow path is folded several times to form a groove 8a. The gas separation plate is configured to allow gas to flow from the right end to the left end of the gas separation plate. Further, similar grooves 8 are provided on the lower surface of the gas separation plate 7 so that gas flows in a direction perpendicular to the direction of gas flow on the upper surface of the gas separation plate 7.

次の動作について説明する。ガス分離板7の溝
(ガス流路)の本数を、従来の1/10〜1/50に減ら
すことによつて、流速が増えて、流れが層流から
乱流になり、溝を流れるガス流量が溝の等価直径
の2.7乗に比例するために、層流の場合の4乗に
比べて、溝の寸法の加工精度に対する要求がゆる
やかになり、溝の加工費が低減される。また、溝
の本数が減少しても、ガス流路を蛇行させること
によつて、電極の反応面に広くガスを供給でき
る。
The following operation will be explained. By reducing the number of grooves (gas flow paths) in the gas separation plate 7 to 1/10 to 1/50 of the conventional number, the flow velocity increases, the flow changes from laminar flow to turbulent flow, and the gas flowing through the grooves increases. Since the flow rate is proportional to the 2.7th power of the equivalent diameter of the groove, compared to the 4th power in the case of laminar flow, the requirement for machining accuracy of the groove dimensions is relaxed, and the cost of machining the groove is reduced. Moreover, even if the number of grooves is reduced, gas can be widely supplied to the reaction surface of the electrode by making the gas flow path meander.

ところで上記実施例では、ガス流路の溝を第1
図8aのように蛇行させる場合について述べた
が、第2図に示すように蛇行の方向を90゜かえて
も上記実施例と同様の効果が得られる。
By the way, in the above embodiment, the groove of the gas flow path is
Although the case of meandering as shown in FIG. 8a has been described, the same effect as in the above embodiment can be obtained even if the meandering direction is changed by 90 degrees as shown in FIG.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、ガス分離板
の表裏部にガスの流通方向に並列に区分された区
域を設け、この区域の各々に単一の流路を複数回
折り返して要素流路を形成し、要素流路の断面寸
法精度の影響を小さくして電極反応面にガスを供
給するようにしたので、燃料ガス流路又は酸化剤
ガス流路の断面寸法精度をゆるくすることがで
き、加工費を低減して安価なガス分離板を得るこ
とができる。
As described above, according to the present invention, areas are provided on the front and back sides of the gas separation plate that are divided in parallel in the gas flow direction, and a single flow path is folded back multiple times in each of these areas to form an element flow path. Since gas is supplied to the electrode reaction surface while reducing the influence of the cross-sectional dimensional accuracy of the element flow path, the cross-sectional dimensional accuracy of the fuel gas flow path or the oxidant gas flow path can be relaxed. , it is possible to reduce the processing cost and obtain an inexpensive gas separation plate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による燃料電池の
ガス分離板を示す斜視図、第2図はこの発明のさ
らに他の実施例によるガス分離板を示す斜視図、
第3図は従来の燃料電池の単電池構成を示す斜視
図である。 図において、4は空気極、5は電解質層、6は
燃料極、7はガス分離板、8,8aは溝である。 尚、図中同一符号は同一又は相当部分を示す。
FIG. 1 is a perspective view showing a gas separation plate of a fuel cell according to one embodiment of the present invention, FIG. 2 is a perspective view showing a gas separation plate according to still another embodiment of the invention,
FIG. 3 is a perspective view showing a single cell configuration of a conventional fuel cell. In the figure, 4 is an air electrode, 5 is an electrolyte layer, 6 is a fuel electrode, 7 is a gas separation plate, and 8 and 8a are grooves. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 1 電解質層を挟んで一対の多孔質の電極を配設
した単電池をガス電離板を介して複数個積層し、
各電極の背面に沿つて燃料ガス及び酸化剤ガスを
夫々流通させて電気エネルギーを出力するもので
あつて、前記ガス分離板の一方の面に前記ガス分
離板の対向する両端部の一方から他方へ前記燃料
ガスを流通させる燃料ガス流路を形成し、他方の
面に前記ガス分離板の対向する両端部の一方から
他方へ前記酸化剤ガスを流通させる酸化剤ガス流
路を形成した燃料電池において、 前記燃料ガス及び前記酸化剤ガス流路の少なく
とも一方を、前記ガス分離板を前記燃料ガス又は
前記酸化剤ガスの流通方向に前記対向する両端部
間に亘つてかつ一方の前記端部から他方の前記端
部の方へ見て重ならないように区分して複数の区
域とし、この区域の各々の単一の流路を複数回折
り返して形成した要素流路を設け、前記要素流路
を並列にして前記燃料ガス又は前記酸化剤ガスを
流すように構成したことを特徴とする燃料電池。
[Claims] 1. A plurality of unit cells each having a pair of porous electrodes arranged with an electrolyte layer sandwiched therebetween are stacked together with a gas ionization plate interposed therebetween,
Electrical energy is output by flowing a fuel gas and an oxidizing gas along the back surface of each electrode, and the electrical energy is output from one side of the gas separation plate to the other. a fuel gas flow path that allows the fuel gas to flow through the fuel cell, and an oxidizing gas flow path that allows the oxidizing gas to flow from one of the opposing ends of the gas separation plate to the other on the other surface thereof. At least one of the fuel gas and the oxidant gas flow path is connected to the gas separation plate between the opposing ends in the flow direction of the fuel gas or the oxidant gas and from one of the ends. A plurality of areas are divided so as not to overlap when viewed toward the other end, and an element flow path is provided by folding each single flow path of each area multiple times, and the element flow path is A fuel cell characterized in that the fuel gas or the oxidant gas is configured to flow in parallel.
JP60179633A 1985-08-13 1985-08-13 Fuel cell Granted JPS6240169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60179633A JPS6240169A (en) 1985-08-13 1985-08-13 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60179633A JPS6240169A (en) 1985-08-13 1985-08-13 Fuel cell

Publications (2)

Publication Number Publication Date
JPS6240169A JPS6240169A (en) 1987-02-21
JPH0442779B2 true JPH0442779B2 (en) 1992-07-14

Family

ID=16069174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60179633A Granted JPS6240169A (en) 1985-08-13 1985-08-13 Fuel cell

Country Status (1)

Country Link
JP (1) JPS6240169A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4988583A (en) * 1989-08-30 1991-01-29 Her Majesty The Queen As Represented By The Minister Of National Defence Of Her Majesty's Canadian Government Novel fuel cell fluid flow field plate
JPH0479164A (en) * 1990-07-23 1992-03-12 Mitsubishi Electric Corp Fuel cell device
US6500579B1 (en) 1999-08-19 2002-12-31 Mitsubishi Denki Kabushiki Kaisha Fuel cell structure
US6586128B1 (en) 2000-05-09 2003-07-01 Ballard Power Systems, Inc. Differential pressure fluid flow fields for fuel cells
DE10045098A1 (en) * 2000-09-12 2002-04-04 Siemens Ag Fuel cell system with improved reaction gas utilization
US6663997B2 (en) 2000-12-22 2003-12-16 Ballard Power Systems Inc. Oxidant flow field for solid polymer electrolyte fuel cell

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56134473A (en) * 1980-03-25 1981-10-21 Toshiba Corp Unit cell for fuel cell
JPS58161270A (en) * 1982-03-19 1983-09-24 Mitsubishi Electric Corp Stacked fuel cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56134473A (en) * 1980-03-25 1981-10-21 Toshiba Corp Unit cell for fuel cell
JPS58161270A (en) * 1982-03-19 1983-09-24 Mitsubishi Electric Corp Stacked fuel cell

Also Published As

Publication number Publication date
JPS6240169A (en) 1987-02-21

Similar Documents

Publication Publication Date Title
JP4700910B2 (en) Fuel cell flow field plate
US4761349A (en) Solid oxide fuel cell with monolithic core
JP2002260710A (en) Solid polymer cell assembly, fuel cell stack and supply method of reactive gas for fuel cell
JPH11250923A (en) Fuel cell
JPH04292865A (en) Solid electrolytic fuel cell
KR20040016842A (en) Fuel cell
US4997727A (en) Stack of flat, plane high-temperature fuel cells assembled into a stack
US4686159A (en) Laminated layer type fuel cell
JP3486213B2 (en) Solid oxide fuel cell
JPH0442779B2 (en)
JPH05159790A (en) Solid electrolyte fuel cell
JPH03266365A (en) Separator of solid electrolytic type fuel cell
US5149601A (en) Solid oxide fuel cell
EP0410796A1 (en) Fuel cell generator
EP0585709A1 (en) Fuel cell system
JP4947337B2 (en) Fuel cell separator
JPH0142934Y2 (en)
JP4344584B2 (en) Fuel cell
JPH01176664A (en) Fuel cell
JPH04121967A (en) Solid electrolyte type fuel cell
JPH0462757A (en) Solid electrolyte type fuel cell
JPH02197055A (en) Cell structure of fuel cell
JPH0142935Y2 (en)
JP2736190B2 (en) Gas separator for solid oxide fuel cell
TWM290614U (en) Structure of cathode channel for fuel cell