JPH0142934Y2 - - Google Patents

Info

Publication number
JPH0142934Y2
JPH0142934Y2 JP1983079786U JP7978683U JPH0142934Y2 JP H0142934 Y2 JPH0142934 Y2 JP H0142934Y2 JP 1983079786 U JP1983079786 U JP 1983079786U JP 7978683 U JP7978683 U JP 7978683U JP H0142934 Y2 JPH0142934 Y2 JP H0142934Y2
Authority
JP
Japan
Prior art keywords
gas flow
flow path
gas
fuel cell
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983079786U
Other languages
Japanese (ja)
Other versions
JPS59184466U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1983079786U priority Critical patent/JPS59184466U/en
Publication of JPS59184466U publication Critical patent/JPS59184466U/en
Application granted granted Critical
Publication of JPH0142934Y2 publication Critical patent/JPH0142934Y2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【考案の詳細な説明】 この考案は、燃料電池に関するものであり、も
う少し詳しくいうと、電解質を挟む1対の電極
と、この電極にそれぞれ酸化剤ガスと燃料ガスを
流通させるガス流路で構成された単位電池を複数
積層してなる燃料電池に関するものである。
[Detailed explanation of the invention] This invention relates to a fuel cell, and to be more specific, it consists of a pair of electrodes sandwiching an electrolyte, and a gas flow path through which an oxidant gas and a fuel gas flow through the electrodes, respectively. This invention relates to a fuel cell formed by stacking a plurality of unit cells.

従来、この種の燃料電池の単位電池は、通常、
第1図に示すように構成されていた。図において
電解液を含浸した電解質マトリクス1をはさむ電
極2a,2bと、電極2a,2bの背面に酸化剤
ガスおよび燃料ガスを流通させるための複数のガ
ス流路4を平行に設けたセパレータ板3でなるも
のである。この単位電池は実用的な電圧を得るた
め複数段積層される。かかる構成により、燃料電
池に供給される酸化剤ガスおよび燃料ガスはセパ
レータ板3に設けられた複数のガス流路4を流通
する。このとき酸化剤ガスおよび燃料ガスの一部
はそれぞれ電極2a,2bの背面を通過し、電解
質マトリクス1の部分で化学反応を起こし、この
際に電極2a,2bの間から電気エネルギが取り
出せる。
Conventionally, the unit cell of this type of fuel cell is usually
It was constructed as shown in Figure 1. In the figure, electrodes 2a, 2b sandwiching an electrolyte matrix 1 impregnated with an electrolytic solution, and a separator plate 3 are provided with a plurality of parallel gas passages 4 for circulating oxidizing gas and fuel gas on the back surfaces of the electrodes 2a, 2b. It consists of This unit battery is stacked in multiple stages to obtain a practical voltage. With this configuration, the oxidant gas and fuel gas supplied to the fuel cell flow through the plurality of gas channels 4 provided in the separator plate 3. At this time, a portion of the oxidizing gas and the fuel gas pass through the back surfaces of the electrodes 2a and 2b, respectively, causing a chemical reaction in the electrolyte matrix 1, and at this time electrical energy can be extracted from between the electrodes 2a and 2b.

燃料電池は実用的な電圧を得るため、以上の単
位電池を数多く積層する必要があるが、装置をコ
ンパクトにするためには自ずからセパレータ板3
に設けられる流路4としては単一流路断面積の小
さいものを数多く並列に設けることが必要とな
る。
In order to obtain a practical voltage for a fuel cell, it is necessary to stack many of the above unit cells, but in order to make the device compact, it is necessary to stack separator plates 3
It is necessary to provide a large number of channels 4 with small single channel cross-sectional areas in parallel.

従来のセパレータ板3に設けられるガス流路4
は、以上のように複数等間隔に形成した一方向流
路構成とするのが通常であつた。しかし、この構
成ではガス流路4の加工工数は少ないが単一流路
の断面積が小さいため、ガス流路4の一部に障害
物がつまるとガス流路4が閉塞しやすく、その部
分のガス流路4全体に流れがなくなり、電池の反
応面積が減少して電池性能を低下させるという欠
点があつた。
Gas flow path 4 provided in conventional separator plate 3
Usually, a plurality of unidirectional flow channels are formed at equal intervals as described above. However, in this configuration, although the number of man-hours required for processing the gas flow path 4 is small, the cross-sectional area of a single flow path is small, so if a part of the gas flow path 4 becomes clogged with an obstacle, the gas flow path 4 is likely to be blocked. There was a drawback that there was no flow in the entire gas flow path 4, and the reaction area of the battery was reduced, resulting in a decrease in battery performance.

この考案は、上記のような従来のものの欠点を
除去するためになされたもので、セパレータ板の
各ガス流路の間を流路のガス流れ方向に対して斜
めの角度をもつて連通するつなぎ流路を適宜設け
ることにより、ガス流路の一部が閉塞した場合で
も電池の反応面積を減少させず、安定な性能を発
揮しうる燃料電池を提供することを目的とするも
のである。
This idea was made in order to eliminate the above-mentioned drawbacks of the conventional ones. It is an object of the present invention to provide a fuel cell that can exhibit stable performance without reducing the reaction area of the cell even if a part of the gas flow path is blocked by appropriately providing the flow path.

以下、この考案の一実施例を図面について説明
する。第2図において、セパレータ板3に並設し
たガス流路4のガスの流れ方向に対して斜めに、
隣接するガス流路4を連通するつなぎ流路5を形
成してなるものである。
An embodiment of this invention will be described below with reference to the drawings. In FIG. 2, diagonally to the gas flow direction of the gas passages 4 arranged in parallel to the separator plate 3,
A connecting channel 5 is formed to communicate adjacent gas channels 4.

次に、作用、効果について説明する。第3図に
おいて、反応ガスはセパレータ板3の一端面より
供給される。ガスはガス流路4を流れるが、ある
ガス流路4aが何らかの障害物6により閉塞した
り、流路面積が小さくなつて流路抵抗が増したり
した場合、ガスはこの障害物6の部分を迂回して
つなぎ流路5aを経由して隣接するガス流路4b
に流入する。またガス流路4aの下流側にはガス
流路4aに隣接するガス流路4cからのガスがつ
なぎ流路5bを経由して流入するので、ガス流路
4aの反応面積をほとんど減少させることがなく
安定な反応を保持することができる。また、つな
ぎ流路5はガス流路4に対して傾斜をもたせて設
けられているので、ガス流の迂回、分岐にともな
う圧力損失を最小限に抑えることができる。
Next, the action and effect will be explained. In FIG. 3, the reaction gas is supplied from one end surface of the separator plate 3. Gas flows through the gas flow path 4, but if a certain gas flow path 4a is blocked by some kind of obstruction 6, or the flow path area becomes small and flow path resistance increases, the gas flows through the obstruction 6. The adjacent gas flow path 4b is detoured and passed through the connecting flow path 5a.
flows into. Further, since the gas from the gas flow path 4c adjacent to the gas flow path 4a flows into the downstream side of the gas flow path 4a via the connecting flow path 5b, it is possible to almost reduce the reaction area of the gas flow path 4a. It is possible to maintain a stable reaction without any problems. Further, since the connecting flow path 5 is provided with an inclination to the gas flow path 4, pressure loss due to detours and branching of the gas flow can be minimized.

なお、上記実施例ではつなぎ流路5のガス流れ
方向をガス流路4のガス流れ方向に対して片側
(第2図では右側)方向のみとしたが、第4図に
示すように、ガス流路4からつなぎ流路5を両側
に分岐させる構成とし、つなぎ流路5のガス流れ
方向とガス流路4のガス流れ方向のなす角度が交
互に鋭角と鈍角になるようにつなぎ流路5を形成
してもよく、上記実施例と同様の効果を奏する。
In the above embodiment, the gas flow direction in the connecting channel 5 was set to only one side (the right side in FIG. 2) with respect to the gas flow direction in the gas channel 4, but as shown in FIG. The connecting passage 5 is configured to branch from the passage 4 to both sides, and the connecting passage 5 is arranged so that the angles formed between the gas flow direction of the connecting passage 5 and the gas flow direction of the gas passage 4 are alternately acute angles and obtuse angles. Alternatively, the same effect as in the above embodiment can be obtained.

また、上記実施例ではセパレータ板3にガス流
路4を設けたものについて示したが、このガス流
路は電極2a,2b自体の電解質マトリツクス1
に接していない背面に形成してもよい。この場
合、セパレータ板3にガス流路は不要となること
はいうまでもない。
Further, in the above embodiment, the separator plate 3 is provided with a gas flow path 4, but this gas flow path is connected to the electrolyte matrix 1 of the electrodes 2a, 2b themselves.
It may be formed on the back surface that is not in contact with the In this case, it goes without saying that the separator plate 3 does not require a gas flow path.

以上のように、この考案によれば反応ガスのガ
ス流路間に、ガス流路のガス流れ方向に対して斜
めの角度をもつつなぎ流路を設けたので、ガス流
路の一部が障害物等により閉塞された場合でも電
池の反応面積をほとんど低下させることがなく、
安定な電池性能を発揮する燃料電池が得られる効
果がある。
As described above, according to this invention, a connecting flow path is provided between the gas flow paths of the reaction gas, which has an oblique angle with respect to the gas flow direction of the gas flow path. Even if it is blocked by objects, the reaction area of the battery will hardly decrease.
This has the effect of providing a fuel cell that exhibits stable cell performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の燃料電池の単位電池を示す分解
斜視図、第2図はこの考案の一実施例の要部平面
図、第3図はそのガス流れ状況の説明図、第4図
はこの考案の他の実施例の要部平面図である。 1……電解質マトリツクス、2a,2b……電
極、3……セパレータ板、4……ガス流路、5…
…つなぎ流路、6……障害物。なお、各図中、同
一符号は同一又は相当部分を示す。
Fig. 1 is an exploded perspective view showing a unit cell of a conventional fuel cell, Fig. 2 is a plan view of the main part of an embodiment of this invention, Fig. 3 is an explanatory diagram of the gas flow situation, and Fig. 4 is an exploded perspective view of a unit cell of a conventional fuel cell. FIG. 7 is a plan view of main parts of another embodiment of the invention. DESCRIPTION OF SYMBOLS 1... Electrolyte matrix, 2a, 2b... Electrode, 3... Separator plate, 4... Gas flow path, 5...
... Connecting channel, 6... Obstacle. In each figure, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【実用新案登録請求の範囲】 (1) 電解質マトリクスを挟んで配置された1対の
電極と、これら電極の背面にそれぞれ当接する
セパレータ板と、一対の前記電極の背面に沿つ
て酸化剤ガスを、他方の前記電極の背面に沿つ
て燃料ガスをそれぞれ流通させる複数の平行な
ガス流路を備えた単位電池を複数積層してなる
燃料電池において、隣接する前記ガス流路間を
前記ガス流路のガス流れ方向に対して斜めの角
度をもつて連通するつなぎ流路を備えてなるこ
とを特徴とする燃料電池。 (2) ガス流路およびつなぎ流路がセパレータ板に
形成された実用新案登録請求の範囲第1項記載
の燃料電池。 (3) ガス流路およびつなぎ流路が電極に形成され
た実用新案登録請求の範囲第1項記載の燃料電
池。
[Claims for Utility Model Registration] (1) A pair of electrodes arranged with an electrolyte matrix in between, a separator plate abutting the back surfaces of these electrodes, and an oxidizing gas flowing along the back surfaces of the pair of electrodes. , in a fuel cell formed by stacking a plurality of unit cells each having a plurality of parallel gas flow paths through which fuel gas flows along the back surface of the other electrode, the gas flow path is connected between adjacent gas flow paths. What is claimed is: 1. A fuel cell characterized in that the fuel cell is provided with a connecting channel communicating at an oblique angle with respect to the gas flow direction. (2) The fuel cell according to claim 1, wherein the gas flow path and the connecting flow path are formed in the separator plate. (3) The fuel cell according to claim 1, wherein the gas flow path and the connecting flow path are formed in the electrode.
JP1983079786U 1983-05-25 1983-05-25 Fuel cell Granted JPS59184466U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1983079786U JPS59184466U (en) 1983-05-25 1983-05-25 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1983079786U JPS59184466U (en) 1983-05-25 1983-05-25 Fuel cell

Publications (2)

Publication Number Publication Date
JPS59184466U JPS59184466U (en) 1984-12-07
JPH0142934Y2 true JPH0142934Y2 (en) 1989-12-14

Family

ID=30209777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1983079786U Granted JPS59184466U (en) 1983-05-25 1983-05-25 Fuel cell

Country Status (1)

Country Link
JP (1) JPS59184466U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001052723A (en) * 1999-08-13 2001-02-23 Honda Motor Co Ltd Fuel cell stack

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5041640B2 (en) * 2001-07-31 2012-10-03 株式会社日本自動車部品総合研究所 Fuel cell separator
JP5575765B2 (en) * 2008-08-01 2014-08-20 トプサー・フューエル・セル・アクチエゼルスカベット FUEL CELL INTERCONNECTOR AND METHOD FOR PRODUCING FUEL CELL INTERCONNECTOR

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001052723A (en) * 1999-08-13 2001-02-23 Honda Motor Co Ltd Fuel cell stack
JP4590047B2 (en) * 1999-08-13 2010-12-01 本田技研工業株式会社 Fuel cell stack

Also Published As

Publication number Publication date
JPS59184466U (en) 1984-12-07

Similar Documents

Publication Publication Date Title
US5998055A (en) Gas-passage plates of a fuel cell
US6638658B1 (en) Fuel cell separator plate providing interconnection of reactant gas flowpaths in undulate layer fuel cell stacks
JP5693968B2 (en) Fuel cell stack
JP3700642B2 (en) Fuel cell
JP2002260710A (en) Solid polymer cell assembly, fuel cell stack and supply method of reactive gas for fuel cell
JPH10308227A (en) Solid high molecular electrolyte type fuel cell
MXPA04004279A (en) Fuel cell fluid flow field plates.
US10026975B2 (en) Fuel cell
US5508128A (en) Fuel cell system and fuel cells therefor
JPH05159790A (en) Solid electrolyte fuel cell
JP5504017B2 (en) Fuel cell
JPH03266365A (en) Separator of solid electrolytic type fuel cell
JP4259041B2 (en) Fuel cell
JPH0729579A (en) Separator for fuel cell and cell stack for fuel cell
JP6228984B2 (en) Fuel cell
JPH0142934Y2 (en)
JP4228501B2 (en) Current collector plate of polymer electrolyte fuel cell and polymer electrolyte fuel cell
JP5207440B2 (en) Fuel cell
JP2017195053A (en) Gas passage formation plate for fuel cell and fuel cell stack
KR102014821B1 (en) Bipolar plates for Redox flow Battery
WO2020012617A1 (en) Cell, cell stack and redox flow battery
JPH0442779B2 (en)
JP2017123249A (en) Separator for solid polymer type fuel battery
JPH0142935Y2 (en)
JPH0238376Y2 (en)