JPH0479164A - Fuel cell device - Google Patents

Fuel cell device

Info

Publication number
JPH0479164A
JPH0479164A JP2192976A JP19297690A JPH0479164A JP H0479164 A JPH0479164 A JP H0479164A JP 2192976 A JP2192976 A JP 2192976A JP 19297690 A JP19297690 A JP 19297690A JP H0479164 A JPH0479164 A JP H0479164A
Authority
JP
Japan
Prior art keywords
gas
flow path
gas flow
fuel
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2192976A
Other languages
Japanese (ja)
Inventor
Tatsuo Mitsunaga
光永 達雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2192976A priority Critical patent/JPH0479164A/en
Publication of JPH0479164A publication Critical patent/JPH0479164A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0263Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant having meandering or serpentine paths
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To homogenize gas composition over the whole surface of reaction within a cell by constituting gas to flow in a gas passage from a gas inlet section to a gas outlet section while making a round trip 1.5 times. CONSTITUTION:The flow passage of oxidant gas or fuel gas is made up out of members made of porous material while being flexed in such a way that a round trip is made 1.5 times between an inlet section provided for one end section in the surface direction of an electrode and an outlet section provided for the other end section. Oxidant gas or fuel gas flows in a passage 3 from a grooved seal member 5A at the inlet side of one end section to a grooved seal member 5B at the outlet side of the other end section, and it is turned over at a tuning section 3A so as to be forwarded to the seal member 5A at the inlet side at the turning section 3B where it is turned over so as to be forwarded to the grooved seal member 5B at the outlet side, so that it then flows out of the outlet sections 52, 52,.... By this constitution, gas composition can thereby be homogenized over the whole surface of reaction within a cell.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、燃料電池装置に関し、特にガス流路の改善
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a fuel cell device, and particularly to improvement of a gas flow path.

〔従来の技術〕[Conventional technology]

第3図(平面図)および第4図(断面図)は、例えば特
開昭63−318075号公報に示された従来のリン酸
型燃料電池のガス流路部を示す図である。
FIG. 3 (plan view) and FIG. 4 (cross-sectional view) are diagrams showing a gas flow path portion of a conventional phosphoric acid fuel cell disclosed in, for example, Japanese Patent Application Laid-Open No. 63-318075.

図において、(1)は平板セパレータ、(2)はカーボ
ン板からなり、酸化剤ガスまたは燃料ガスを通流するガ
ス流路(3)とそれらのガス流路間に介在するリブ部(
4)で構成されている。(6)は端部シール板、(8)
は接着剤である。なお、上記セパレータ(1)は、燃料
電池の積層体く図示省略)において、交互に配!される
燃料ガスの流路と酸化剤ガスの流路とを分離するもので
ある。
In the figure, (1) is a flat plate separator, (2) is a carbon plate, and a gas flow path (3) through which oxidizing gas or fuel gas flows and a rib portion (
4). (6) is an end seal plate, (8)
is an adhesive. Note that the separators (1) are arranged alternately in the fuel cell stack (not shown)! The fuel gas flow path and the oxidant gas flow path are separated from each other.

従来の燃料電池の酸化剤ガスまたは燃料ガスの流路(3
)は入口マユホールドから出口マニホールド(何れも図
示省略)に向がってガスが一方向に流れるようにカーボ
ン板(2)にリブ部(4)によって形成されていた。ま
た、平板セパレータ(1)と酸化剤ガス流路(3)や燃
料ガス流路(3)を形成しているカーボン板(2)は接
着剤(8)で接着一体止されていた。
Conventional fuel cell oxidant gas or fuel gas flow path (3
) was formed by a rib part (4) on the carbon plate (2) so that gas flows in one direction from the inlet manifold to the outlet manifold (both not shown). Further, the flat plate separator (1) and the carbon plate (2) forming the oxidizing gas flow path (3) and the fuel gas flow path (3) were bonded together with an adhesive (8).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の燃料電池装置は、酸化剤ガス流路や燃料ガス流路
が上記のように構成されているので、ガスが一方向のみ
にしか流れず、酸化剤ガスと燃料ガスの入口部と出口部
の間にガス組成に大きな差を生じており、電池内に大き
な電流密度分布や温度分布が生じ、電池の特性、寿命お
よび信頼性の点で問題があった。また、平板セパレータ
と酸化剤ガス流路や燃料ガス流路を形成しているカーボ
ン板を接着剤で接着しているので接着剤のしみ出しによ
りカーボン板のガス流路が閉塞するという問題点があっ
た。
In conventional fuel cell devices, the oxidizing gas flow path and the fuel gas flow path are configured as described above, so that the gas flows only in one direction, and the oxidizing gas and fuel gas inlet and outlet sections are This caused a large difference in the gas composition between the batteries, resulting in large current density distributions and temperature distributions within the battery, which caused problems in terms of battery characteristics, lifespan, and reliability. In addition, since the flat separator and the carbon plates that form the oxidizing gas flow path and the fuel gas flow path are bonded with adhesive, there is a problem that the gas flow path of the carbon plate may become clogged due to seepage of the adhesive. there were.

この発明は、上記のような問題点を解消するためになさ
れたもので、電池内の反応面全体についてガス組成の均
一化ができるとともに電流密度分布や温度分布の均一化
か図れる燃料電池装置を得ることを目的とする。
This invention was made in order to solve the above-mentioned problems, and provides a fuel cell device that can make the gas composition uniform over the entire reaction surface in the cell, and can also make the current density distribution and temperature distribution uniform. The purpose is to obtain.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る燃料電池装置は、電解質保持マトリック
スを介して配設された酸化剤電極および燃料電極、なら
びにこれら酸化剤電極および燃料電極の外側にそれぞれ
該電極の面方向に沿って配設された酸化剤ガスの流路及
び燃料ガスの流路を有するものにおいて、上記酸化剤ガ
スまたは燃料ガスの流路を、上記電極の面方向の一端部
に設けられた入口部と他端部に設けられた出口部との開
で1.5往復するように屈曲形成したものである。
The fuel cell device according to the present invention includes an oxidizer electrode and a fuel electrode disposed through an electrolyte holding matrix, and an oxidizer electrode and a fuel electrode disposed outside the oxidizer electrode and the fuel electrode, respectively, along the surface direction of the electrodes. In the device having an oxidant gas flow path and a fuel gas flow path, the oxidant gas or fuel gas flow path is provided at an inlet portion provided at one end in the surface direction of the electrode and at the other end. It is bent so that it makes 1.5 reciprocations when opening with the exit part.

〔作 用〕[For production]

この発明におけるガス流路は、ガス入口部からガス出口
部まで1.5往復してガスが流れるように構成したこと
により電池内の反応面全体についてガス組成をより均一
化する。
The gas flow path in this invention is configured so that the gas flows 1.5 times back and forth from the gas inlet to the gas outlet, thereby making the gas composition more uniform over the entire reaction surface within the cell.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図(平面図)および第2図(断面図)において、(1)
は酸化剤ガス流路と燃料ガス流路を分離する平板状のセ
パレータ、(2)は酸化剤ガスまたは燃料ガスの流路(
3)をリブ部(4)によって形成している多孔質のカー
ボン板である。このカーボン板(2)は平均気孔径が3
〜5μm、気孔率が50〜80%のものである。(5)
はガス流路(3)の入口部(51)又は出口部(52〉
を形成すると共に、リブ部(4)の端部(41)と共働
してガス流路(3)のターン部(3B)またはく3A)
を形成する溝付シール部材、(6)は端部シール部材で
ある。なお、この実施例においてはセパレータ(1)と
多孔質りカーボン板(2)との間に接着剤は用いていな
い〈分かりやすいように第2図ではそれらを離して図示
しである)。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figure (top view) and Figure 2 (sectional view), (1)
(2) is a flat separator that separates the oxidizing gas flow path and the fuel gas flow path; (2) is the oxidizing gas or fuel gas flow path (
3) is a porous carbon plate formed by rib portions (4). This carbon plate (2) has an average pore diameter of 3
~5 μm and a porosity of 50 to 80%. (5)
is the inlet (51) or outlet (52) of the gas flow path (3)
At the same time, it forms a turn part (3B) or 3A) of the gas flow path (3) in cooperation with the end part (41) of the rib part (4).
(6) is an end seal member. In this example, no adhesive is used between the separator (1) and the porous carbon plate (2) (for clarity, they are shown separated in FIG. 2).

なお、図示を省略しているが、第1図の紙面に対し上方
に、酸化剤電極と燃料電極との間に電解質保持マトリッ
クスを挟み込んだものが配置され、さらにその上方に第
1図に示すガス流路と実質的に同一のガス流路が上下を
逆にし、かつガスの通流方向を90°偏向させて配設さ
れ、燃料電池装置の単電池が構成される。
Although not shown, an electrolyte retention matrix sandwiched between an oxidizer electrode and a fuel electrode is arranged above the paper surface of FIG. 1, and further above it is shown in FIG. A gas flow path that is substantially the same as the gas flow path is arranged upside down and with the gas flow direction deflected by 90 degrees to form a unit cell of the fuel cell device.

次に動作について説明する。入口マニホールド(図示省
略)より流入した酸化剤ガス、または燃料ガスは溝付シ
ール部材〈5)の入口部(51)、<51>・・より流
入し、流路(3)を一端部の入口側溝付シール部材(5
^)より他端部の出口側溝付シール部材(5B)に向か
って流れ、ターン部(3^)で反転して入口側溝付シー
ル部材〈5^)に向かって流れる。そしてさらにターン
部(3B)で入口側溝付シール部材(5^〉にぶつかり
反転して出口側の溝付シール部材(5B)に向かって流
れ、最後は出口側の溝付シール部材の出口部(52) 
、 (52)   ・・より出口マニホールド(図示省
略)へ流出していく。
Next, the operation will be explained. The oxidant gas or fuel gas that has flowed in from the inlet manifold (not shown) flows through the inlet portion (51), <51>, etc. of the grooved seal member (5), and the flow path (3) is connected to the inlet at one end. Side groove seal member (5
^), it flows toward the outlet side grooved seal member (5B) at the other end, reverses at the turn part (3^), and flows toward the inlet side grooved seal member <5^). Then, at the turn part (3B), it collides with the grooved seal member (5^) on the inlet side, turns around, flows toward the grooved seal member (5B) on the outlet side, and finally ends up at the outlet part (5^) of the grooved seal member on the outlet side. 52)
, (52) ... flows out to the outlet manifold (not shown).

このように、従来のリン酸型燃料電池のガスが一方向に
1回なかれるだけなので電池内の反応に1回しか寄与し
なかったのに対して、この実施例によるリン酸型の燃料
電池装置では燃料ガスまたは酸化剤ガスが電極面方向の
一端部に設けられたガスの入口部(51)と他端部に設
けられた出口部(52)との間て15往復するように構
成したので、電池内の反応に3回寄与することがてき、
ガスの利用率を著しく向上させることができる。
In this way, in contrast to the conventional phosphoric acid fuel cell, where the gas was removed once in one direction and therefore contributed only once to the reaction within the cell, the phosphoric acid fuel cell according to this embodiment The device was configured so that fuel gas or oxidant gas made 15 reciprocations between a gas inlet (51) provided at one end in the direction of the electrode surface and an outlet (52) provided at the other end. Therefore, it can contribute three times to the reaction in the battery,
The gas utilization rate can be significantly improved.

また、本発明の上記実施例では、多孔質のカーボン板(
2)は平均気孔径が3〜5μ棚、気孔率が50〜80%
でしかもセパレータ(1)との間に接着剤を用いていな
いので、接着剤のしみ出しにより多孔質カーボン板(2
)の内部(即ち気孔)や流路(3)を閉塞する恐れがな
く、酸化剤ガスや燃料ガスがガス流路(3)方向および
ガス流路と直交する方向に充分流入拡散でき、電池の特
性の向上、あるいは信頼性が向上する。
In addition, in the above embodiment of the present invention, a porous carbon plate (
2) has an average pore diameter of 3 to 5μ and a porosity of 50 to 80%.
Moreover, since no adhesive is used between the separator (1) and the porous carbon plate (2), the adhesive oozes out and causes damage to the porous carbon plate (2).
), there is no risk of clogging the inside (i.e., pores) or the flow path (3), and the oxidant gas and fuel gas can sufficiently flow in and diffuse in the direction of the gas flow path (3) and in the direction perpendicular to the gas flow path, and the battery Improved characteristics or reliability.

なお、上記多孔質のカーボン板(2)は平均気孔径や気
孔率は大きい方がガス流路直角方向へのガス拡散性は良
くなるが、機械的強度や電池の寿命の面から制約を受け
るので、好ましくは平均気孔径が5〜20μ艶、気孔率
が60〜70%程度のものを用いることは望ましい。
Note that the larger the average pore diameter and porosity of the porous carbon plate (2), the better the gas diffusion in the direction perpendicular to the gas flow path, but this is subject to limitations in terms of mechanical strength and battery life. Therefore, it is desirable to use a material with an average pore diameter of 5 to 20 microns and a porosity of about 60 to 70%.

以下に上記実施例のリン酸型燃料電池のガス流路が電池
内の反応面全体のガス組成、ひいては電流密度分布や温
度分布を改善できることを燃料ガス流路の場合を例にと
って示す9 人口組成がN2 : N2= 80・20の燃料ガスを
従来の燃f4電池の燃料ガス流路にガス利用率80%で
流すと、出口組成がN2・N2=1.6:20となり燃
料ガス中のN2濃度が低く、N2ガス量も少なく、燃料
ガス出口側の酸化側電極が腐食する虞れがある。
The following is an example of how the gas flow path of the phosphoric acid fuel cell of the above embodiment can improve the gas composition of the entire reaction surface within the cell, as well as the current density distribution and temperature distribution, using the fuel gas flow path as an example.9 Population Composition is N2: When fuel gas with N2 = 80.20 is passed through the fuel gas flow path of a conventional fuel F4 battery at a gas utilization rate of 80%, the outlet composition is N2.N2 = 1.6:20, and the N2 in the fuel gas is Since the concentration is low and the amount of N2 gas is small, there is a risk that the oxidation side electrode on the fuel gas outlet side will corrode.

これに対し、同様に組成がN2:N2=8020の燃料
ガスを上記実施例のガス流路を用いた燃料電池にガス利
用率80%で流すと、3本のガス流路の平均で、入口組
成がH2: N 2 = 155 :60、出口組成が
N2・N2=133:60.入ロ〜出ロ中閏の組成がN
2+ N2= 144・60程度になり、ガス組成分布
が均一化しているとともにN2ガス・量が出口側でも充
分あり、酸化剤極の腐食の心配がなくなることが分かる
On the other hand, when a fuel gas having a composition of N2:N2=8020 is similarly flowed at a gas utilization rate of 80% through a fuel cell using the gas flow channels of the above example, the average of the three gas flow channels is The composition is H2:N2=155:60, and the outlet composition is N2・N2=133:60. The composition of the input and exit loops is N.
2+N2=approximately 144.60, indicating that the gas composition distribution is uniform and the amount of N2 gas is sufficient on the outlet side, eliminating concerns about corrosion of the oxidizer electrode.

従来の燃料電池装置と本発明の一実施例の燃料電池装置
の燃料ガス流路の出口ガス組成を比較すると、従来のも
のがN2 : N2= 16 : 20 (8244%
)であるのに対して、本実施例のものはN2:N、=1
33:60=44:20 ()]22669%となり大
きく改善される。出口ガス中のN2ガス量そのものは、 (従来のもの)・ (本実施例のもの)−1633とな
り、8倍以上に改善される。
Comparing the outlet gas composition of the fuel gas flow path of a conventional fuel cell device and a fuel cell device of an embodiment of the present invention, the conventional one has a ratio of N2:N2=16:20 (8244%).
), whereas in this example N2:N, = 1
33:60=44:20 ()]22669%, which is a great improvement. The amount of N2 gas in the outlet gas is (conventional) - (this embodiment) -1633, which is an improvement of more than 8 times.

以上は燃料ガス流路について説明したが、酸化剤ガス流
路でも同様の効果を奏する。全体として電池内の反応面
内のガス組成分布、ひいては電流密度分布や温度分布の
均一化が達成され、電池の特性向上、長寿命化が可能と
なり、また電極の腐食の心配のない信頼性の高い燃料電
池装置が得られる。さらに、本発明のものは構造が簡単
なので、量産化に適しており、燃料電池装置のコスト低
減にも貢献できるものである。
Although the fuel gas flow path has been described above, the oxidant gas flow path also provides similar effects. Overall, the gas composition distribution within the reaction surface within the battery, as well as the current density distribution and temperature distribution, have been made uniform, making it possible to improve battery characteristics and extend the lifespan, and to ensure reliability without worrying about electrode corrosion. A highly efficient fuel cell device can be obtained. Furthermore, since the structure of the present invention is simple, it is suitable for mass production and can also contribute to cost reduction of fuel cell devices.

なお、上記実施例ではガスの流路〈3)を3本設けたも
のについて説明したが流路(3)の数は特に限定される
ものでないことは言うまでもない。
In addition, in the above embodiment, an explanation has been given of a case in which three gas channels (3) are provided, but it goes without saying that the number of channels (3) is not particularly limited.

また、上記実施例ではガス流路間に介在するリブ部が電
極に接する構造について説明したが、リブ部が平板セパ
レータに接する構造、いわゆるリブ付電極の場合にも上
記実施例と同様の効果が期待できる。
Further, in the above embodiment, a structure in which the rib portion interposed between the gas flow paths is in contact with the electrode has been described, but the same effect as in the above embodiment can be obtained in the case of a structure in which the rib portion is in contact with the flat separator, so-called a ribbed electrode. You can expect it.

ところで上記実施例ではこの発明をリン酸型燃料電池に
適用する場合について説明したが、必ずしもこれに限定
されるものではない。
By the way, in the above embodiment, the case where the present invention is applied to a phosphoric acid fuel cell has been described, but the present invention is not necessarily limited to this.

また、電極の面方向の一端部に設けられた入口部と他端
部に設けられた出口部との間で行えば2.5往復、3.
5往復するように流路を屈曲形成してもよい。
Furthermore, if the operation is performed between the inlet section provided at one end of the electrode in the planar direction and the outlet section provided at the other end, it will take 2.5 reciprocations and 3.
The flow path may be bent so as to make five reciprocations.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、酸化剤ガス丈たは燃料
ガスの流路を、電極の面方向の一端部に設けられた入口
部と他端部に設けられた出口部との間で1.5往復する
ように屈曲形成したことにより、電池内の反応面全体に
ついてガス組成の均一化ができ、また、電流密度分布や
温度分布の均一化した燃料電池装置が得られる効果があ
る。
As described above, according to the present invention, the flow path of the oxidant gas or the fuel gas is formed between the inlet section provided at one end in the surface direction of the electrode and the outlet section provided at the other end. By forming the bend so as to make 1.5 reciprocations, the gas composition can be made uniform over the entire reaction surface within the cell, and there is also an effect that a fuel cell device with uniform current density distribution and temperature distribution can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による燃料電池装置の要部
であるガス流路部分を示す平面図、第2図は第1図の■
−■線における断面図、第3図は従来のリン酸型燃料電
池のガス流路部分を示す平面図、第4区は第3図の■−
■線における断面図である。 (2)はカーボン板、(3)はガス流路、(51)は入
口部、(52)は出口部である。 なお、図中、同一符号は同一、または相当部分を示す。 2 カーホ゛ン木呆 箒3図 ±口か 菫4図
FIG. 1 is a plan view showing a gas flow path portion which is a main part of a fuel cell device according to an embodiment of the present invention, and FIG.
3 is a plan view showing the gas flow path portion of a conventional phosphoric acid fuel cell, and the 4th section is a cross-sectional view taken along line -■.
It is a cross-sectional view taken along the line. (2) is a carbon plate, (3) is a gas flow path, (51) is an inlet portion, and (52) is an outlet portion. In addition, in the figures, the same reference numerals indicate the same or equivalent parts. 2 Carhorn wooden broom 3 figures ± mouth or violet 4 figures

Claims (1)

【特許請求の範囲】[Claims]  電解質保持マトリックスを介して配設された酸化剤電
極および燃料電極、ならびにこれら酸化剤電極および燃
料電極の外側にそれぞれ該電極の面方向に沿って配設さ
れた酸化剤ガスの流路及び燃料ガスの流路を有するもの
において、上記酸化剤ガスまたは燃料ガスの流路は、上
記電極の面方向の一端部に設けられた入口部と他端部に
設けられた出口部との間で1.5往復するように屈曲形
成されていることを特徴とする燃料電池装置。
An oxidant electrode and a fuel electrode arranged through an electrolyte retention matrix, and an oxidant gas flow path and a fuel gas arranged outside the oxidant electrode and the fuel electrode along the surface direction of the electrodes, respectively. In the device, the oxidant gas or fuel gas flow path is arranged between an inlet portion provided at one end in the surface direction of the electrode and an outlet portion provided at the other end. A fuel cell device characterized in that it is bent so as to make five reciprocating movements.
JP2192976A 1990-07-23 1990-07-23 Fuel cell device Pending JPH0479164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2192976A JPH0479164A (en) 1990-07-23 1990-07-23 Fuel cell device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2192976A JPH0479164A (en) 1990-07-23 1990-07-23 Fuel cell device

Publications (1)

Publication Number Publication Date
JPH0479164A true JPH0479164A (en) 1992-03-12

Family

ID=16300170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2192976A Pending JPH0479164A (en) 1990-07-23 1990-07-23 Fuel cell device

Country Status (1)

Country Link
JP (1) JPH0479164A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997042672A1 (en) * 1996-05-07 1997-11-13 Alliedsignal Inc. Flow field plate for use in a proton exchange membrane fuel cell
KR100563226B1 (en) * 2004-08-10 2006-03-21 한국생산기술연구원 Bipolar-Plate for Fuel Cell

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60227361A (en) * 1984-04-25 1985-11-12 Fuji Electric Corp Res & Dev Ltd Internal structure of fuel cell for supply and exhaust of reaction gas
JPS6240169A (en) * 1985-08-13 1987-02-21 Mitsubishi Electric Corp Fuel cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60227361A (en) * 1984-04-25 1985-11-12 Fuji Electric Corp Res & Dev Ltd Internal structure of fuel cell for supply and exhaust of reaction gas
JPS6240169A (en) * 1985-08-13 1987-02-21 Mitsubishi Electric Corp Fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997042672A1 (en) * 1996-05-07 1997-11-13 Alliedsignal Inc. Flow field plate for use in a proton exchange membrane fuel cell
KR100563226B1 (en) * 2004-08-10 2006-03-21 한국생산기술연구원 Bipolar-Plate for Fuel Cell

Similar Documents

Publication Publication Date Title
JP5500254B2 (en) Fuel cell
KR101667123B1 (en) Flow battery with mixed flow
JPH08138692A (en) Fuel cell
US20020006539A1 (en) Fuel cell assembly
JPH041469B2 (en)
KR20130040923A (en) Solid oxide fuel cell
JPS5940471A (en) Electrochemical power generating element
JP3447875B2 (en) Direct methanol fuel cell
JP3555215B2 (en) Method of manufacturing fuel cell and flow path forming member used therein
JPH11185778A (en) Fuel cell
JPS5893170A (en) Molten carbonate type fuel cell
JP2001250568A (en) Collector panel for solid polymer fuel cell
JPH0479164A (en) Fuel cell device
JP2002246035A (en) Battery electrode and battery using the same
JPH08185873A (en) Fuel cell
JP2001023661A (en) Fuel cell and solid polymer electrolyte membrane
JP2000012053A (en) Solid high-polymer electrolyte-type fuel cell
JPS62188177A (en) Molten carbonate fuel cell
JP2006252941A (en) Fuel cell
JPS5996668A (en) Bipolar separator for fuel cell
JP2002231271A (en) Solid electrolyte fuel cell
JPS61248364A (en) Fused carbonate type fuel cell
JPH02215051A (en) Electrode for fuel cell
JPS628454A (en) Fuel cell
JPS63313472A (en) Free electrolyte type fuel cell