JPH0442544A - Microwave integrated circuit - Google Patents

Microwave integrated circuit

Info

Publication number
JPH0442544A
JPH0442544A JP15065290A JP15065290A JPH0442544A JP H0442544 A JPH0442544 A JP H0442544A JP 15065290 A JP15065290 A JP 15065290A JP 15065290 A JP15065290 A JP 15065290A JP H0442544 A JPH0442544 A JP H0442544A
Authority
JP
Japan
Prior art keywords
electrode
mesfet
insulating substrate
hole
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15065290A
Other languages
Japanese (ja)
Inventor
Kazuhiro Arai
一弘 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP15065290A priority Critical patent/JPH0442544A/en
Publication of JPH0442544A publication Critical patent/JPH0442544A/en
Pending legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To realize a microwave integrated circuit at a high production yield which can prevent non-uniformity of solder flowing into a via-hole produced when assemblying and a cavity of the electric field effect transistor and which has a sufficiently-small value of a thermal resistance and an excellent high frequency characteristic by a method wherein an opening end is provided on the bottom of a recess part in which a via-hole is formed in an upper surface of a semiconductor substrate. CONSTITUTION:In a MMIC, directly under an MESFET part in which a GaAa semi-insulating substrate 10 of a part to be grounded by a via-hole 111 previous ly comprises a source electrode 13, a drain electrode 14, and a gate electrode 115, a recess 118 having a thickness portion of GaAs semi-insulating substrate is formed. Thus, a via-hole depth is in the same degree as a depth of a cavity 110 directly under the MESFET part. With this arrangement, an increase in a grounding inductance between an electrode for grounding to be generated in an element assembly step and an electrode on the rear face can be prevented.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明はマイクロ波集積回路(以下阿MICと略称)に
係り、特に電界効果トランジスタ(以下MESFETと
略称)が半導体基板の板厚を低減して設けられ、接地の
バイアホールを有するMMICにおけるバイアホールの
構造に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a microwave integrated circuit (hereinafter abbreviated as AMIC), and in particular a field effect transistor (hereinafter abbreviated as MESFET) on a semiconductor substrate. The present invention relates to the structure of a via hole in an MMIC that is provided with a reduced board thickness and has a grounded via hole.

(従来の技術) 砒化ガリウム(GaAs)を用いたMMICの特性を向
上させるには、MESFETの熱抵抗及び接地インダク
タンスを低減させることが必要である。MESFETの
熱抵抗は、GaAg基板厚を薄くするほど、低減するこ
とができる。また、接地インダクタンスは、バイアホー
ル構造を採用して低減させることができる。ところで、
MMICにおいては、GaAs基板厚も整合回路の一部
として設計しているため、MESFETの性能向上だけ
を考えGaAs基板厚を薄くすることはできない。そこ
で、最近では、NESFETの性能と整合回路の設計性
を両立させるためMESFET部直下のGaAs基板厚
を小にし、整合回路部の厚さを大にして、MMICの特
性向上を図ったものがある。
(Prior Art) In order to improve the characteristics of MMICs using gallium arsenide (GaAs), it is necessary to reduce the thermal resistance and grounding inductance of MESFETs. The thermal resistance of the MESFET can be reduced as the thickness of the GaAg substrate becomes thinner. Furthermore, grounding inductance can be reduced by employing a via hole structure. by the way,
In an MMIC, the thickness of the GaAs substrate is also designed as part of the matching circuit, so it is not possible to reduce the thickness of the GaAs substrate with consideration only to improving the performance of the MESFET. Therefore, recently, in order to achieve both NESFET performance and matching circuit design, the thickness of the GaAs substrate directly under the MESFET section has been reduced, and the thickness of the matching circuit section has been increased, thereby improving the characteristics of MMIC. .

第3図に、その従来例を示す。図中、30はGaAs半
絶縁性基板、31は動作層(N層)、32はオーム性接
触層(N層層)、33はソース電極、34はドレイン電
極、35はゲート電極、36は絶縁膜(S13N4 )
、315は接地用電極、37はキャパシタ上面電極、3
11はバイアホール、330はMESFET部直下の空
洞、39は裏面電極である。
FIG. 3 shows a conventional example. In the figure, 30 is a GaAs semi-insulating substrate, 31 is an active layer (N layer), 32 is an ohmic contact layer (N layer), 33 is a source electrode, 34 is a drain electrode, 35 is a gate electrode, and 36 is an insulating layer. Membrane (S13N4)
, 315 is a grounding electrode, 37 is a capacitor top electrode, 3
11 is a via hole, 330 is a cavity directly under the MESFET section, and 39 is a back electrode.

上記MMICの製造工程の要部につき第4図を参照して
次に説明する。
The main part of the manufacturing process of the above MMIC will be explained below with reference to FIG.

まず、イオン注入法、写真蝕刻法、蒸着法等によりGa
As半絶縁性基板30上に動作層(N層)31、オーム
性接触層(N層層)32、ソース電極33、ドレイン電
極34、ゲート電極35、接地用電極335、 キャパ
シタ絶縁膜(Si、N層)36、キャパシタ上面電極3
7を形成する。次にGaAs半絶縁性基板30裏面をラ
ッピングとケミカルボリジングにより、厚さ約1007
gまで薄層化する。次に接地用電極335に対向する部
分のGaAs半絶縁性基板30裏面からエツチングの精
密制御に優れた反応性イオンエツチング(RIE)によ
り接地用電極335に到達するバイアホール311を形
成する。次に、ソース電極33、ドレイン電極34、ゲ
ート電極35に対向する部分のGaAs半絶縁性基板3
0裏面からRIEにより、例えば501Im厚さエツチ
ングを施し、MESFET部直下のGaAs半絶縁性基
板30の下面に空洞330を設ける。最後に蒸着等によ
り裏面電極39を形成する。
First, Ga is formed by ion implantation, photolithography, vapor deposition, etc.
An operating layer (N layer) 31, an ohmic contact layer (N layer) 32, a source electrode 33, a drain electrode 34, a gate electrode 35, a grounding electrode 335, a capacitor insulating film (Si, N layer) 36, capacitor top electrode 3
form 7. Next, the back surface of the GaAs semi-insulating substrate 30 is wrapped and chemically borated to a thickness of about 1,007 cm.
Thin the layer to g. Next, a via hole 311 reaching the grounding electrode 335 is formed from the back surface of the GaAs semi-insulating substrate 30 in a portion facing the grounding electrode 335 by reactive ion etching (RIE), which has excellent etching precision control. Next, a portion of the GaAs semi-insulating substrate 3 facing the source electrode 33, drain electrode 34, and gate electrode 35 is
Etching is performed to a thickness of, for example, 501 Im by RIE from the back side of the substrate 30 to form a cavity 330 on the lower surface of the GaAs semi-insulating substrate 30 directly under the MESFET section. Finally, a back electrode 39 is formed by vapor deposition or the like.

上記構造のMNICはパッケージ等に金すず(AuSn
)はんだ等によりマウントすることにより、孔部に金属
が充填されるため、MESFETの熱抵抗および整合回
路の接地インダクタンスが十分に小さくでき、高周波特
性に優れたものである。しかし、このMMICには以下
に述べる問題点がある。
The MNIC with the above structure uses gold tin (AuSn) for the package etc.
) By mounting with solder or the like, the holes are filled with metal, so the thermal resistance of the MESFET and the grounding inductance of the matching circuit can be made sufficiently small, resulting in excellent high frequency characteristics. However, this MMIC has the following problems.

(発明が解決しようとする課題) 素子部の組立で、金すず(AuSn)はんだ等を用いた
パッケージ等への接着にあたり、理想的にはバイアホー
ル、MESFET部直下の空洞部分にはんだが流れ込み
、MESFET、接地電極とパッケージ間の接着を完壁
なものにできるが、実際には第4図に示すように、バイ
アホール内にはんだ300の流れ込みが不充分な空隙3
01が生じやすい。このような空隙301が生ずると、
接地用電極335と裏面電極39間の接地インダクタン
スが大きくなり、高周波特性の低下を招く。これはME
SFET直下の空洞の深さに比ベパイアホール深さがよ
り深いために生ずる現象である。この場合でもはんだ量
を多くしてより深いバイアホールに合わせた組立工程に
すればそれなりにはんだを流し込むことができそうであ
るが、実際にははんだ量が多くなり過ぎて、マウント領
域外に流出して信頼性の低下を招いたり、マウント部分
のはんだの厚さに不均一を生じ、熱抵抗の増大、ばらつ
きを生ずる等の重大な問題点がある。
(Problem to be Solved by the Invention) When assembling the element part and adhering it to the package using gold-tin (AuSn) solder, etc., ideally the solder should flow into the via hole and the hollow part directly under the MESFET part. Although it is possible to achieve perfect adhesion between the MESFET, the ground electrode, and the package, in reality, as shown in Figure 4, the solder 300 does not flow into the via hole sufficiently.
01 is likely to occur. When such a void 301 is created,
The grounding inductance between the grounding electrode 335 and the back electrode 39 increases, leading to deterioration of high frequency characteristics. This is ME
This phenomenon occurs because the depth of the via hole is deeper than the depth of the cavity directly below the SFET. Even in this case, if you increase the amount of solder and adjust the assembly process to fit a deeper via hole, it seems possible to pour the solder to a certain degree, but in reality, the amount of solder becomes too large and flows out of the mounting area. There are serious problems such as a decrease in reliability, non-uniformity in the thickness of the solder at the mounting portion, and an increase in thermal resistance and variations.

本発明は上記従来の問題点に鑑み、改良されたMMIC
の構造を提供するものである。
In view of the above conventional problems, the present invention provides an improved MMIC
It provides the structure of

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明に係るマイクロ波集積回路は、半導体基板に設け
られたバイアホールと、前記半導体基板にその下面側か
らその板厚を低減させた部分に設けられた電界効果トラ
ンジスタ部を備えたマイクロ波集積回路において、バイ
アホールが半導体基板上面に形成された凹部の底部に開
端を有することを特徴とするマイクロ波集積回路。
(Means for Solving the Problems) A microwave integrated circuit according to the present invention includes a via hole provided in a semiconductor substrate and an electric field provided in a portion of the semiconductor substrate where the plate thickness is reduced from the lower surface side. 1. A microwave integrated circuit including an effect transistor section, wherein a via hole has an open end at the bottom of a recess formed on an upper surface of a semiconductor substrate.

本発明にかかるMMICの構造は、接地用電極直下の半
導体基板の上面側を予め凹状に加工することにより、バ
イアホールの深さと、MESFET直下の空洞の深さを
同程度にすることができるため1組立の際に生じるバイ
アホール内とMESFETの空洞内に流れ込むはんだの
不均一を防ぐことができる。したがって、熱抵抗および
接地インダクタンスが十分に小さく高周波特性に優れた
MMICを高歩留りで実現できる。
In the structure of the MMIC according to the present invention, the depth of the via hole and the depth of the cavity directly under the MESFET can be made to be approximately the same by processing the upper surface side of the semiconductor substrate directly under the grounding electrode into a concave shape in advance. It is possible to prevent non-uniformity of solder flowing into the via hole and the MESFET cavity during assembly. Therefore, an MMIC with sufficiently small thermal resistance and ground inductance and excellent high frequency characteristics can be realized with high yield.

(実施例) 以下、本発明の実施例につき第1図を参照し、さらに製
造工程の要部を第2図によって説明する。
(Example) Hereinafter, an example of the present invention will be described with reference to FIG. 1, and further a main part of the manufacturing process will be explained with reference to FIG. 2.

第3図において、10はGaAs半絶縁性基板、11は
動作層(N層)、12はオーム性接触層(N層層)、1
3はソース電極、14はドレイン電極、15はゲート電
極、16はSi、 N4層、115は接地用電極、17
はキャパシタ上面電極及びボンディング用パッド電極、
118は凹部、 illはバイアホール、11はMES
FET部直下の空洞、19は裏面電極である。第1図お
よび第2図に示すようにこの発明にかかるMNICは、
バイアホールにより接地する部分のGaAs半絶縁性基
板10を、予め、ソース電極13、ドレイン電極14.
ゲート電極15からなるMESFET部直下のGaAs
半絶縁性基板の厚さ分、例えばそれが30.であれば、
深さ30趨の凹部18を形成する。このようにしてパイ
アホール深さをMESFET部直下の空洞の深さと同程
度にすることができる構造上の特徴を備えている。
In FIG. 3, 10 is a GaAs semi-insulating substrate, 11 is an active layer (N layer), 12 is an ohmic contact layer (N layer), 1
3 is a source electrode, 14 is a drain electrode, 15 is a gate electrode, 16 is a Si, N4 layer, 115 is a grounding electrode, 17
is the capacitor top electrode and bonding pad electrode,
118 is a recess, ill is a via hole, 11 is an MES
The cavity 19 directly below the FET section is a back electrode. As shown in FIGS. 1 and 2, the MNIC according to the present invention is
A portion of the GaAs semi-insulating substrate 10 that is to be grounded through a via hole is connected in advance to a source electrode 13, a drain electrode 14, .
GaAs directly below the MESFET section consisting of the gate electrode 15
The thickness of the semi-insulating substrate, for example, 30. If,
A recess 18 having a depth of 30 mm is formed. In this way, it has a structural feature that allows the depth of the pipe hole to be approximately the same as the depth of the cavity directly below the MESFET section.

上記構造により、素子組立工程で生じる接地用電極と裏
面電極間の接地インダクタンスの増大を防止できる。
The above structure can prevent an increase in ground inductance between the ground electrode and the back electrode that occurs during the element assembly process.

次に、上記構造の製造方法を第2図を参照して説明する
Next, a method of manufacturing the above structure will be explained with reference to FIG.

まず、GaAs半絶縁性基板20上の動作層形成予定域
に加速エネルギ140KeV、ドース層3 X 101
012a”のSiイオンを選択的に注入する。次にオー
ム性接触層形成予定域に加速エネルギ120KeVと2
50KeV、ドース量それぞれ2X10”am’″2の
Siイオンを選択的に注入する。続いて850℃の温度
でアニールを施しSiイオンを活性化させて、動作層(
N層)21、オーム性接触層(N層層)22を形成する
。次に接地用電極形成予定域に開口を有するフォトレジ
スト299をマスクとして精密制御可能なRIEにより
深さ30/aの凹部288を形成する(第2図(a))
。ここで、この凹部288の深さはMESFET部直下
のGaAs半絶縁性基板の厚さ程度にする。次に写真蝕
刻法と蒸着法、およびプラズマCVD法などによりソー
ス電極23、ドレイン電極24.ゲート電極25、接地
用電極255などをそれぞれ形成する。
First, an acceleration energy of 140 KeV and a dose layer of 3×101
012a'' Si ions are selectively implanted. Next, an acceleration energy of 120 KeV and 2
Si ions are selectively implanted at 50 KeV and at a dose of 2×10"am'"2. Subsequently, annealing is performed at a temperature of 850°C to activate the Si ions and form the active layer (
An ohmic contact layer (N layer) 21 and an ohmic contact layer (N layer) 22 are formed. Next, a recess 288 with a depth of 30/a is formed by RIE, which can be precisely controlled, using a photoresist 299 having an opening in the area where the ground electrode is to be formed as a mask (FIG. 2(a)).
. Here, the depth of the recess 288 is approximately the thickness of the GaAs semi-insulating substrate directly below the MESFET section. Next, a source electrode 23, a drain electrode 24, etc. are formed by photolithography, vapor deposition, plasma CVD, etc. A gate electrode 25, a grounding electrode 255, and the like are respectively formed.

次に、ラッピング及びケミカルボリジングにより、Ga
As半絶縁性基板20を厚さ100pまで薄層化する。
Next, Ga
The As semi-insulating substrate 20 is thinned to a thickness of 100p.

次に赤外線を利用した写真蝕刻法により、接地用電極2
5に対向するGaAs半絶縁性基板20裏面部分に開口
を有するフォトレジストパターンを形成した後、反応ガ
スにBCl2.系を用いたRIEにより、GaAs結晶
を約70IIInエツチングし、接地用電極215に到
達するバイアホール211を形成する(第2図(b))
Next, by photolithography using infrared rays, the grounding electrode 2 is
After forming a photoresist pattern having an opening on the back surface of the GaAs semi-insulating substrate 20 facing the substrate 5, BCl2. By RIE using the system, the GaAs crystal is etched by about 70% IIIn to form a via hole 211 that reaches the grounding electrode 215 (FIG. 2(b)).
.

次に、ソース電極23、ドレイン電極24、ゲート電極
25からなるMESFET部に対向するGaAs半絶縁
性基板20裏面部分に開口を有するフォトレジストパタ
ーンを形成した後、BCQ、を用いたRIEによりGa
As結晶を70虜エツチングして、空洞220を形成す
る(第2図(C))。
Next, after forming a photoresist pattern having an opening on the back surface of the GaAs semi-insulating substrate 20 facing the MESFET section consisting of the source electrode 23, drain electrode 24, and gate electrode 25, GaAs
The As crystal is etched 70 times to form a cavity 220 (FIG. 2(C)).

最後に、蒸着法により、裏面電極28を形成して第1図
に示すMMICを完成する。
Finally, a back electrode 28 is formed by vapor deposition to complete the MMIC shown in FIG.

叙上の如く、接地用電極215直下のGaAs半絶縁性
基板20の上面側を凹状に加工することによって、バイ
アホール深さとMESFET部直下のGaAs半絶縁性
基板20のエツチング深さを同程度にすることができる
As mentioned above, by processing the upper surface of the GaAs semi-insulating substrate 20 directly below the grounding electrode 215 into a concave shape, the via hole depth and the etching depth of the GaAs semi-insulating substrate 20 directly below the MESFET section can be made to be approximately the same. can do.

なお、上記実施例で述べた凹部の深さ及びMESFET
部直下のGaAs半絶縁性基板の厚さを30iaとした
がこれに限られるものではなく、凹の深さとMESFE
T部直下のGaAs半絶縁性基板の厚さが同程度であれ
ば構わない。
Note that the depth of the recess and the MESFET described in the above example
Although the thickness of the GaAs semi-insulating substrate directly under the part was set to 30 ia, the thickness is not limited to this, and the depth of the recess and the MESFE
It does not matter as long as the thickness of the GaAs semi-insulating substrate directly under the T portion is approximately the same.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、以上述べたように接地用電極直下の
GaAs半絶縁性基板の下面を凹状に加工することによ
って、MESFET部直下のGaAs半絶縁性基板厚を
薄く形成しながらも、バイアホール深さとMESFET
部直下のGaAs半絶縁性基板のエツチング深さを同程
度にすることができることから、素子組立工程で生じる
接地用電極と裏面電極間の接地インダクタンスの増大を
防ぐことができ、熱抵抗および接地インダクタンスが十
分小さく高周波特性に優れたMMICを高歩留りで実現
できる顕著な利点がある。
According to the present invention, as described above, by processing the lower surface of the GaAs semi-insulating substrate directly under the grounding electrode into a concave shape, the thickness of the GaAs semi-insulating substrate directly under the MESFET portion can be made thin, while the via hole can be formed. Depth and MESFET
Since the etching depth of the GaAs semi-insulating substrate directly under the surface can be made to the same level, it is possible to prevent an increase in the grounding inductance between the grounding electrode and the back electrode that occurs during the device assembly process, thereby reducing thermal resistance and grounding inductance. There is a remarkable advantage that an MMIC having a sufficiently small value and excellent high frequency characteristics can be realized at a high yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかる一実施例のMMICの断面図、
第2図は第1図に示されたMNICの製造工程の要部を
説明するための断面図、第3図と第4図は従来例のMM
ICの要部を示す断面図である。 10、2O−GaAs半絶縁性基板、118.218−
・・凹部、19・・・裏面電極、111.211・・・
バイアホール、115、215・・・接地電極 代理人 弁理士 大 胡 典 夫 GaAs  午!Pi、六4セし≦4k       
 +1 :  113j下眉 (〜漫)オーム性f勇鴛
眉 <y”/li>      +3:  ンース嘴じ
撤Pbイン4L・毛k               
  1s:  γ″−ト を粘kSisN”M    
             m:  バイア ホー)し
午マパシタよj励t)iK−hはυ′ホ゛ソiンZ′斤
1ハ・ッi’fL穢、l!L韻を攻         
115:掻比削t4MESFE丁(毬j【千の?−悶 
    118− 凹(9第1図 2o:aaAsJfe、縁□はし奈4更  z+:il
l’F層 (〜贋)−2@  (嘔の1) 23 : 25: 211; 218: ソース’を穢 デート ik バ1アホール 凹音p 24  :  F’b<ン’@:Jaシ26 : Si
a N+眉 215:4玉:jl!)@’嘘Eじ1に11?。 220: MESFET潜号【1め79局 第 図 (譜の2)
FIG. 1 is a cross-sectional view of an MMIC according to an embodiment of the present invention;
FIG. 2 is a cross-sectional view for explaining the main parts of the manufacturing process of the MNIC shown in FIG. 1, and FIGS. 3 and 4 are the conventional MM.
FIG. 3 is a cross-sectional view showing the main parts of the IC. 10, 2O-GaAs semi-insulating substrate, 118.218-
... Recessed portion, 19... Back electrode, 111.211...
Via hole, 115, 215...Ground electrode agent Patent attorney Norihiro Ogo GaAs afternoon! Pi, 64 sets ≦ 4k
+1: 113j lower eyebrow (~man) ohmic f Yuraku eyebrow <y”/li> +3: Nsu beak removal Pb in 4L/hair k
1s: γ″−t kSisN”M
m: Bahia Ho) Shigo Mapasita j exhortation) iK-h is υ'ho゛soin Z'catty 1 ha, i'fL 穢, l! Attack the L rhyme
115: Kibige t4MESFE Ding (ball j [thousand? - agony
118- Concave (9 Fig. 1 2o: aaAsJfe, edge □ Hashina 4 more z+:il
l'F layer (~false)-2@ (vo's 1) 23: 25: 211; 218: Source' is filthy dating ik ba1a hole concave p 24: F'b<n'@:Ja shi26: Si
a N + eyebrow 215: 4 balls: jl! ) @'lie Eji1 to 11? . 220: MESFET latent code [1st 79th station number (2 of the score)

Claims (1)

【特許請求の範囲】[Claims]  半導体基板に設けられたバイアホールと、前記半導体
基板にその下面側からその板厚を低減させた部分に設け
られた電界効果トランジスタ部を備えたマイクロ波集積
回路において、バイアホールが半導体基板上面に形成さ
れた凹部の底部に開端を有することを特徴とするマイク
ロ波集積回路。
In a microwave integrated circuit including a via hole provided in a semiconductor substrate and a field effect transistor section provided in a portion of the semiconductor substrate whose thickness is reduced from the lower surface side, the via hole is provided on the upper surface of the semiconductor substrate. A microwave integrated circuit characterized in that the formed recess has an open end at the bottom.
JP15065290A 1990-06-08 1990-06-08 Microwave integrated circuit Pending JPH0442544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15065290A JPH0442544A (en) 1990-06-08 1990-06-08 Microwave integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15065290A JPH0442544A (en) 1990-06-08 1990-06-08 Microwave integrated circuit

Publications (1)

Publication Number Publication Date
JPH0442544A true JPH0442544A (en) 1992-02-13

Family

ID=15501524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15065290A Pending JPH0442544A (en) 1990-06-08 1990-06-08 Microwave integrated circuit

Country Status (1)

Country Link
JP (1) JPH0442544A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104465569A (en) * 2014-11-12 2015-03-25 华天科技(昆山)电子有限公司 Packaging structure for reducing internal resistance of MOS chip and packaging method
KR20200097113A (en) * 2019-02-07 2020-08-18 국방과학연구소 Semiconductor chip package and method for packaging semiconductor chip

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104465569A (en) * 2014-11-12 2015-03-25 华天科技(昆山)电子有限公司 Packaging structure for reducing internal resistance of MOS chip and packaging method
KR20200097113A (en) * 2019-02-07 2020-08-18 국방과학연구소 Semiconductor chip package and method for packaging semiconductor chip

Similar Documents

Publication Publication Date Title
US5034347A (en) Process for producing an integrated circuit device with substrate via hole and metallized backplane
US5770513A (en) Method for producing semiconductor device with heat dissipation structure
US5105242A (en) Field effect transistor having schottky contact and a high frequency characteristic
US4956697A (en) Microwave monolithic integrated circuit with heat radiating electrode
JP2003007706A (en) Manufacturing method of semiconductor device
JPH11168104A (en) Electronic device and its manufacture
JPH0282629A (en) Self-aligning gallium arsenide (gaas) field effect transistor making use of multilayer resist
JPH0640591B2 (en) Monolithic semiconductor structure and its manufacturing method.
JPH0360180B2 (en)
JPH0732257B2 (en) Monolithic semiconductor structure
US4692791A (en) Monolithic IMPATT with stripline leads
JPH0442544A (en) Microwave integrated circuit
EP0069511A1 (en) Fabricating integrated circuits
JPH03181138A (en) Compound semiconductor device
JPH06326330A (en) Semiconductor device and its manufacture
JPS62211962A (en) Manufacture of high-frequency semiconductor device
JPS61268060A (en) Semiconductor device
JP2001267331A (en) Method of manufacturing semiconductor device
JP2792421B2 (en) Method for manufacturing semiconductor device
JPH11150113A (en) Manufacture of semiconductor device
JPS6179261A (en) Manufacture of semiconductor device
JPH06334197A (en) Semiconductor device and manufacture
JP2697683B2 (en) Semiconductor device and manufacturing method thereof
KR950003237B1 (en) Semiconductor device
JPH05243396A (en) Semiconductor device and its manufacture